Acta Universitatis Carolinae. Mathematica et Physica

Piergiulio Corsini; Violeta Leoreanu
About the heart of a hypergroup

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 37 (1996), No. 1, 17--29
Persistent URL: http://dml.cz/dmlcz/142675

Terms of use:

© Univerzita Karlova v Praze, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

About the Heart of a Hypergroup

PIERGIULIO CORSINI and VIOLETA LEOREANU
Udine, Iaşi*)
Received 1. October 1995

This paper presents some types of hypergroups, associated to an arbitrary hypergroup, studying the properties and the heart of them, establishes results concerning the width and gives some other results about the sequence of hearts, which can be associated to a hypergroup, in connection with the subhypergroups generated by a non-empty set, by an union of subhypergroups or by the intersection of subhypergroups, if it is not empty.

Introduction

The notion of the heart ω_{H} of a hypergroup H, introduced by two among the founders of the Hypergroup Theory, Dresher and Ore [9], has been studied by many mathematicians.

Just this subject is involved by most of the results of this paper, which throws light also on the algebraic structure of the set $\mathscr{P}^{*}(H)$ of non-empty subsets of H, of the set of the hyperproducts of elements of H, and on some topics of join spaces and of subhypergroup theory.

Let $\langle H, O\rangle$ be a hypergroup, $P=\langle\mathscr{P} *(H) ; \otimes\rangle$ be the set of non-empty subsets of H endowed with the hyperoperation $\langle\otimes\rangle$ defined: $\forall(A, B) \in \mathscr{P} *(H)^{2}$, $A \otimes B=\left\{C \in \mathscr{P}^{*}(H) \mid C \subset A \circ B\right\} . \quad \forall a \in H, \quad$ let $\quad I_{p}(a)=\{e \in H \mid a \in e \circ a\}$, $I_{p r}(a)=\{f \in H \mid a \in a \circ f\}, I_{p}(a)=I_{p r}(a) \cup I_{p}(a)$. Let $\Delta=\left\{D \subset I_{p}(H) \mid \forall h \in H\right.$, $\left.\left|D \cup I_{p l}(h)\right|=1=\left|D \cap I_{p r}(h)\right|\right\}, I_{p}=\bigcup_{u \in H} I_{p}(a)$. Moreover, $\forall e \in I_{p}, \forall q \in H$, let

$$
\begin{aligned}
& u_{r}(q, e)=\{y \in H \mid e \in q \circ y\} \\
& u_{1}(q, e)=\{z \in H \mid e \in z \circ q\}
\end{aligned}
$$

1. Theorem.
2. If $Q \in \mathscr{P}^{*}(H), Q$ is an identity in P iff there exists $D \in \Delta$ such that $Q \supset D$.

[^0]2. If $Q, Q^{\prime} \in \mathscr{P}^{*}(H)$, then Q^{\prime} is an inverse of Q iff there is $D \in \Delta$ such that
\[

$$
\begin{aligned}
& \forall e \in D, \bigcup_{q \in Q} u_{1}(q, e) \cap Q^{\prime} \neq \emptyset, \\
& \forall e \in D, \bigcup_{q \in Q} u_{r}(q, e) \cap Q^{\prime} \neq \emptyset,
\end{aligned}
$$
\]

3. If ω_{P} is the heart of P, we have $\omega_{P}=P$.

Proof.

1. Let Q be an identity. Then $\forall a \in H$ one has $\{a\} \in Q \otimes\{a\},\{a\} \in\{a\} \otimes Q$, whence $a \in Q \circ a, a \in a \circ Q$ from which there exists $\left(e_{1}, e_{2}\right) \in I_{p l}(a) \times I_{p r}(a)$ such that $\left\{e_{1}, e_{2}\right\} \subset Q$ hence $\forall a \in H, I_{p}(a) \cap Q \neq \emptyset \neq Q \cap I_{p r}(a)$. On the converse if this condition is satisfied by a subset Q of H, we have: $\forall S \in \mathscr{P}^{*}(H), \forall s \in S$, $\exists e_{s} \in I_{p r}(s) \cap Q$, whence $S \in S \otimes Q \circ Q \supset \bigcup_{s \in S} s \circ e_{s} \supset S$ from which Q is a right identity. Similarly on the left.
2. It's enough to remark that Q^{\prime} is an inverse of Q iff there is $D \in \Delta$ such that $Q^{\prime} \circ Q \supset D \subset Q \circ Q^{\prime}$ and this condition is satisfied iff for all $h \in H$, we have $Q^{\prime} \cap\left(Q \backslash I_{p \prime}(h)\right) \neq \emptyset \neq Q^{\prime} \cap\left(Q \backslash I_{p r}(h)\right)$ and $Q^{\prime} \cap\left(I_{p \prime}(h) / Q\right) \neq \emptyset \neq Q^{\prime} \cap\left(I_{p r} / Q\right)$.
3. It's enough to remark that H is an identity for P and it is inverse for any element of H. It follows, by Th. 129 [5], that $\omega_{P}=H \otimes H=P$.
4. Definition. Let A be a non-empty subset of a hypergroup H. Let's set

$$
\begin{gathered}
T(A)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in H^{n} \mid \prod_{i=1}^{n} x_{i}=A\right\} \\
\lambda_{H}(A)=\min \left\{n \in \mathbb{N}^{*} \mid T(A) \neq \emptyset\right\}
\end{gathered}
$$

Clearly, $\lambda_{H}\left(\omega_{H}\right)=w(H)$ where $w(H)$ is the width of H (see [7]).
3. Definition. If $\langle H ; \bigcirc\rangle$ is a semi-hypergroup, let's denote $\prod_{\mathscr{G}}(H)$ the set of the hyperproducts P of elements of H, such that $\mathscr{C}(P)=P$.
4. Theorem. Let $\langle H ; \bigcirc\rangle$ be a hypergroup, let $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in H^{n}$ be such that $\prod_{i=1}^{n} x_{i} \in \prod_{\mathscr{甘}}(H)$, then $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \in H^{n}$ exists such that $x_{1} \circ x_{2} \circ \ldots \circ x_{n} \circ x_{n}^{\prime} \circ \ldots$ $\ldots \circ x_{1}^{\prime}=\omega_{H}$.

Proof. $\forall k \in I_{n}=\{1,2, \ldots, n\}$, let u_{k} be an element of ω_{H}, and let $x_{k}^{\prime} \in H$ be such that $u_{k} \in x_{k} \circ x_{k}^{\prime}$, then, since ω_{H} is a complete part, we have $\omega_{H} \supset x_{k} \circ x_{k}^{\prime}$. It follows $x_{1} \circ x_{2} \circ \ldots \circ x_{n} \circ x_{n}^{\prime}=\omega_{H} \circ x_{1} \circ \ldots \circ x_{n} \circ x_{n}^{\prime}=x_{1} \circ \ldots \circ x_{n-1} \circ \omega_{H} \circ x_{n} \circ x_{n}^{\prime}=$ $x_{1} \circ \ldots \circ x_{n-1} \circ \omega_{H}=\omega_{H} \circ \prod_{i=1}^{n-1} x_{i}$.

Hence $\quad x_{1} \circ x_{2} \circ \ldots \circ x_{n} \circ x_{n}^{\prime} \circ x_{n-1}^{\prime}=\omega_{H} \circ \prod_{i=1}^{n-2} x_{i} \circ x_{n-1} \circ x_{n-1}^{\prime}=\omega_{H} \circ \prod_{i=1}^{n-2} x_{i}$.
Going on in the same way, one arrives to $x_{1} \circ x_{2} \circ \ldots \circ x_{n} \circ x_{n}^{\prime} \circ \ldots \circ x_{2}^{\prime}=\omega_{H} \circ x_{1}$ whence finally $x_{1} \circ x_{2} \circ \ldots \circ x_{n} \circ x_{n}^{\prime} \circ \ldots \circ x_{2}^{\prime} \circ x_{1}^{\prime}=\omega_{H} \circ x_{1} \circ x_{1}^{\prime}=\omega_{H}$.
5. Corollary. If $\langle H ; \circ\rangle$ is a hypergroup, then $w(H)<\aleph_{0}$ iff $n \in \mathbb{N}^{*}$ and $\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$ exist such that $\prod_{i=1}^{n} x_{1} \in \prod_{\mathscr{V}}(H)$.
6. Lemma. Let $\langle H ; \bigcirc\rangle$ be a hypergroup, then $H-\omega_{H}$ is a complete part.
7. Proposition. Let $\langle H ; \bigcirc\rangle$ be a hypergroup. If $H-\omega_{H}$ is a hyperproduct, then ω_{H} also is a hyperproduct.

If follows straight from Th. 4 and from the former lemma.
8. Remark. Let H be a hypergroup endowed with a complete hyperproduct. The following implication is satisfied for $\forall A \in \mathscr{P} *(H): A \cap \Pi x_{i}=\emptyset \Rightarrow \mathscr{C}(A) \cap \prod_{i=1}^{n} x_{i}=\emptyset$. Let's suppose $z \in \mathscr{C}(A) \cap \prod_{i=1}^{n} x_{i}$, then $a \in A$ exists such that $z \in \mathscr{C}(a)$, hence $\mathscr{C}(a)=\mathscr{C}(z)$. The hypothesis $\prod_{i=1}^{n} x_{i}=\mathscr{C}\left(\prod_{i=1}^{n} x_{i}\right)$ implies

$$
\mathscr{C}(z) \subset \bigcup_{y \in \prod_{i=1}^{n} x_{i}} \mathscr{C}(y)=\mathscr{C}\left(\prod_{i=1}^{n} x_{i}\right)=\prod_{i=1}^{n} x_{i}
$$

Therefore $a \in A, a \in \mathscr{C}(z) \subset \prod_{i=1}^{n} x_{i}$, whence $\prod_{i=1}^{n} x_{i} \cap A \neq \emptyset$ which is absurd.
9. Theorem. Let $\langle H ; \bigcirc\rangle$ be a hypergroup, such that $w(H)<\mathcal{\aleph}_{0}$. Let's denote

$$
\begin{aligned}
& \lambda_{m}(H)=\min \left\{k \mid \exists Q \in \Pi_{\%}(H): k=\lambda(Q)\right\} \\
& \lambda_{M}(H)=\max \left\{h \mid \exists Q \in \Pi_{ध}(H): h=\lambda(Q)\right\}
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
\text { I. } & \lambda_{m}(H) \in\{w(H), w(H)-1\} \\
\text { II. } & \lambda_{M}(H) \in\{w(H), w(H)+1\}
\end{aligned}
$$

Proof.

Proof.
I. By the Corollary 5., $\Pi_{\mathscr{r}}(H) \neq \emptyset$. Let $Q=\prod_{i=1}^{n} y_{i} \in \prod_{\mathscr{C}}(H)$. By Th. 63 [5], we have $Q=\mathscr{C}(Q)=\bigcup_{x \in Q} \mathscr{C}(x)$, we have clearly: $\forall x \in Q, \mathscr{C}(x) \cap Q \neq \emptyset$ it follows $\mathscr{C}(x) \supset Q=\mathscr{C}(Q) \supset \mathscr{C}(x)$ whence $\mathscr{C}(x)=Q$. Therefore by Th. 67 [5], $Q=\omega_{H} \circ x$, from which if $y \in H$ is such that $x \circ y \subset \omega_{H}$ (it exists since ω_{H} is conjugable, Th. $75,110[5])$, it follows $Q \circ y=\omega_{H}$ whence $w(H) \leq \lambda(Q)+1$.

If we suppose $\lambda_{m}(H) \neq w(H)$, we have clearly $\lambda_{m}(H)<w(H)$, then if Q is such that $\lambda(Q)=\lambda_{m}(H)$, one obtains $\lambda(Q)<w(H) \leq \lambda(Q)+1$. Therefore $w(H)=\lambda(Q)+1$, whence $\lambda_{m}(H)=w(H)-1$.
II. It's immediate.
10. Remark. Hypergroups H exist such that
a) $\lambda_{m}(H)=w(H)-1$ and others such that b) $\lambda_{M}(H)=w(H)+1$.
a) See for instance the Example H1, 220 [5]. We have $\omega\left(H_{1}\right)=3$ since $\omega_{H_{1}}=\left\{0, a_{1}, a_{2}, a_{3}\right\}$ and $\omega_{H_{1}}=\left(x_{1} \circ x_{2}\right) \circ x_{3}$. But we have also $\lambda\left(\left\{x_{3}, x_{5}\right\}\right)=$ $\lambda\left(x_{1} \circ x_{2}\right)=2$, whence $\lambda_{m}\left(H_{1}\right)=2$.
b) See the Examples I, II, 267 [5], in both of them $\lambda_{M}(H)=w(H)+1$.
11. Remark. If $\langle H ; O\rangle$ is n-complete, we have by 112 [5], $\lambda_{m}(H)=w(H) \leq n$.
12. Remark. Let $\langle H ; O\rangle$ be a strongly canonical hypergroup. If it is finite, then $\lambda_{m}(H)=2=w(H)$ (see Th. 211 [5]). If it is not finite it can happen $w(H) \nless \aleph_{0}$, see for instance the following example: let $\langle K ; \leq\rangle$ be an infinite, totally ordered set, endowed with a minimum element 0 . Let $\langle O\rangle$ be the hyperoperation defined in K (see [13]) $0 \circ 0=0, \forall x: x \neq 0, x \circ x=\{y \mid y<x\}, \forall(x, y) \in K ; x \neq y$, $x \circ y=\max \{x, y\}$. Clearly, $\langle K ; \circ\rangle$ is strongly canonical, $\omega_{K}=K$ and $w(K) \nless \aleph_{0}$.

Let $\langle H ; O\rangle$ be a semi-hypergroup, let $\Pi(H)$ the set of hyperproducts of elements of H. In $\Pi(H)$ let's define the hyperoperation $\langle\odot\rangle, A \odot B=\{C \in \Pi(H) \mid C \subset A \circ B\}$.
13. Theorem. If $\langle H ; \bigcirc\rangle$ is a hypergroup, then $\langle\Pi(H) ; \odot\rangle$ is a hypergroup.

Proof. It's clear that $\langle\odot\rangle$ is associative. Let's prove now the reproducibility. Let $A=\prod_{i=1}^{p} a_{i}, B=\prod_{i=1}^{p} b_{j}$ elements of $\Pi(H)$. By the reproducibility of $\langle O\rangle$, there exists $y_{1} \in H$ such that $a_{p} \in y_{1} \circ b_{q}$. Similarly, there is y_{2} such that $y_{1} \in y_{2} \circ b_{q-1}$, whence $a_{p} \in y_{2} \circ b_{q-1} \circ b_{q}$. Going up in the same way, one obtains y_{q} such that $y_{q-1} \in y_{q} \circ b_{1}$. Hence $a_{p} \in y_{q} \circ b_{1} \circ b_{2} \circ \ldots \circ b_{q}$. Therefore if we let $X=\prod_{i=1}^{p-1} a_{i} \circ y_{q}$, we have $A \in X \odot B$.

Similarly, we can find $z_{1}, z_{2}, \ldots, z_{q}$ such that $a_{1} \in b_{1} \bigcirc z_{1}, z_{1} \in b_{2} \bigcirc z_{2} \ldots z_{q-1} \in b_{q} \bigcirc z_{q}$ whence $A=a_{1} \circ a_{2} \circ \ldots \circ a_{p} \subset b_{1} \circ b_{2} \circ \ldots \circ b_{q} \circ z_{q} \circ a_{2} \circ a_{2} \circ \ldots \circ a_{p}$.
14. Theorem. If K is a subhypergroup of a hypergroup $\langle H ; \circ\rangle$ and K belongs to $\Pi(H)$, then K is contained in ω_{H}.

Proof. If A is an element of $\Pi(H)$ and $A \cap \omega_{H} \neq \emptyset$, then $A \subset \omega_{H}$ since ω_{H} is a complete part. Then it's enough to remark that $K \cap \omega_{H}$ contains the set $I_{p}(K)$ of partial identities of K, to obtain the Theorem.
15. Remark. Not all subhypergroups of a hypergroup H are in $\Pi(H)$. For instance:

	0	1	2
0	0	1	2
1	1	0	2
2	2	2	H

Let $\langle H ; O\rangle$ be the hypergroup.
It's clear that $K=\{0,1\}$ is a subhypergroup, and that $K \notin \Pi(H)$.
Moreover, $\omega_{H}=H \in \Pi(H)$.
Now a natural question arises: do non-conjugable subhypergroups exist, which can be written as hyperproducts?
For instance, does a hypergroup H exists, which is endowed with an ultraclosed subhypergroup A such that $\lambda_{H}(A)=n$?

The following example proves it exists.
Let $\langle A ; \bigcirc\rangle$ be a hypergroup such that $\omega_{A}=A$ and $w(A)=n$.
It could be this one (see [5], §2):

$$
A=\bigcup_{i=1}^{n} A_{i} \text { where } i \neq j \Rightarrow A_{i} \cap A_{j} \neq \emptyset, \forall(x, y) \in A_{i} \times A_{j}, x \circ y=A_{i} \cup A_{j} .
$$

Now, let's set $H=A \cup T$ where $A \cap T=\emptyset,|T| \geq 3$ and the hyperoperation \otimes in H is defined (see 112, [5]). $\forall(a, b) \in A^{2}, a \otimes b=a \circ b, \forall(a, t) \in A \times T$, $a \otimes t=t \otimes a=t, \forall(t, s) \in T^{2}, s \otimes t=A \cup(T-\{s, t\})$. We have clearly that $\langle A ; \circ\rangle$ is an ultraclosed (non conjugable) subhypergroup of $\langle H ; \otimes\rangle$ and $\lambda_{H}(A)=n$.
We have clearly $\omega_{H}=H$ and $w(H)=2$.
Indeed since T contains $\left\{s_{1}, s_{2}\right\}, s_{1} \neq s_{2}$; then

$$
\left(s_{1} \circ s_{1}\right) \circ s_{2}=\left(A \cup\left(T-\left\{s_{1}\right\}\right)\right) \circ s_{2} \supset\left\{s_{2}\right\} \cup\left(T-\left\{s_{2}\right\}\right) \cup A=H .
$$

Let $\langle H ; \circ\rangle$ be a hypergroup. Let's consider the sequence
(*) $H \supset \omega(H)=\omega_{1} \supset \omega(\omega(H))=\omega_{2} \supset \ldots \supset \omega_{k} \supset \omega_{k+1} \supset \ldots \supset \omega_{n} \supset \ldots$
16. Theorem. The following conditions are equivalent:

1. the sequence (*) is finite;
2. there is $(n, k) \in \mathbb{N}^{2}$, where $n>k+1$, such that ω_{n} is a complete part of ω_{k};
3. there is $(n, k) \in \mathbb{N}^{2}$ where $n>k+1$, such that for any $(x, y) \in\left(\omega_{k}-\omega_{n}\right) \times\left(\omega_{k}-\omega_{n}\right) ; x \circ y \cap\left(\omega_{k}-\omega_{n}\right) \neq \emptyset$ implies $x \circ y \subset \omega_{k}-\omega_{n} ;$
4. there is $(n, k) \in \mathbb{N}^{2}$ where $n>k+1$, such that for any ω_{n} is ω_{k}-conjugable.
Proof. 1. $\Rightarrow 2$. If the sequence (*) is finite, then there is $n \in \mathbb{N}$ such that $\omega_{n}=\omega_{n-1}$, hence ω_{n-2} is a complete part of ω_{n}.
5. $\Rightarrow 3$. If ω_{n} is a complete part of ω_{k}, then $\omega_{k}-\omega_{n}$ is a complete part of ω_{k}.
6. $\Rightarrow 4$. One proves easily that for any $s \in \mathbb{N}^{*}, \omega_{s}$ is a closed subhypergroup of H. Moreover, for all a, b in ω_{k}, if $\{a, b\} \subset \omega_{k}-\omega_{n}$, we have $a \circ b \subset \omega_{n}$, if $a \neq b$ and $\left|\{a, b\} \cap \omega_{n}\right|=1$, we have $a \circ b \subset \omega_{k}-\omega_{n}$. Then, by Th. 104, $3^{\prime \prime}$) [5], we obtain that ω_{n} is ω_{k}-conjugable.
7. $\Rightarrow 1$. By the Th., ω_{n} is a complete part subhypergroup of ω_{k}. Hence $\omega_{k+1}=$ $\omega\left(\omega_{k}\right) \subset \omega_{n} \subset \omega_{k+1}$ from which $\omega_{n}=\omega_{k+1}$. So, we have: $\omega_{n+1}=\omega\left(\omega_{n}\right)=$ $\omega\left(\omega_{k+1}\right)=\omega_{k+2} \supset \omega_{n}=\omega_{k+1} \supset \omega_{k+2}$. Therefore, $\quad \omega_{n}=\omega_{k+2}=\omega_{n+1}$. Let $\omega_{n+s}=\omega_{k+1}$. It follows $\omega_{n+s+1}=\omega\left(\omega_{n+s}\right)=\omega\left(\omega_{k+1}\right)=\omega_{k+2}=\omega_{k+1}$. Then, for any m such that $m \geq n$, we have $\omega_{m}=\omega_{\mathrm{n}}$.
8. Theorem. Let $\langle H ; \bigcirc\rangle$ be a hypergroup such that the sequence $(*)$ is finite, and let K be a complete part subhypergroup of H. Then there is $p \in \mathbb{N}$ such that $\omega_{p+1}(K)=\omega_{p+1}(H)$.

Proof. Let's remark that $\omega(K)$ is a subhypergroup of $\omega(H)$. Indeed, for any $a \in \omega(K)$, there is $e \in K$ such that $a \in a \circ e$; it's clear that $a \in \beta_{k}(e) \subset \beta_{H}(e)=\omega(H)$. Moreover, since K is a complete part subhypergroup of H, we have $\omega(H) \subset K$. Then $\omega_{1}(K) \subset \omega_{1}(H) \subset K$. For any $s \geq 1$, from $\omega_{s}(K) \subset \omega_{s}(H) \subset \omega_{s-1}(K)$, one obtains $\omega_{s+1}(K) \subset \omega_{s+1}(H) \subset \omega_{s}(K)$, hence a sequence $K \supset \omega_{1}(H) \supset \omega_{1}(K) \supset$ $\omega_{2}(H) \supset \omega_{2}(K) \supset \ldots$.

By Th. 16, there is $(n, p) \in \mathbb{N} \times \mathbb{N}$, where $n>p+1$, such that $\omega_{n}(H)=\omega_{p+1}(H)$, therefore $\omega_{p+1}(H)=\omega_{p+1}(K)$.
18. Remark. If $K_{1}, K_{2} \leq H$, then

$$
\omega\left(K_{1} \cap K_{2}\right) \leq \omega\left(K_{1}\right) \cap \omega\left(K_{2}\right)
$$

Generally, we have not equality.
19. Examples. I. Let h be a hypergroup, for which $\omega(h) \neq h$ and let be x, y arbitrary in H. Let's define on $H=h \cup\{b, c, d\}(\{b, c, d\} \cap h=\emptyset)$ the following hyperoperations:
1.

\otimes	x	b	c	d
y	$y \circ x$	b	c	d
b	b	h	d	c
c	c	d	h	b
d	d	c	b	h

\square	x	b	c	d
y	$y \circ x$	b	$h \cup\{c\}$	$\{b, d\}$
b	b	h	$\{b, d\}$	$h \cup\{c\}$
c	$h \cup\{c\}$	$\{b, d\}$	$h \cup\{c\}$	$\{b, d\}$
d	$\{b, d\}$	$h \cup\{c\}$	$\{b, d\}$	$h \cup\{c\}$

(H, \square) is a hypergroup. We consi$\operatorname{der} K_{1}=h \cup\{b\}, K_{2}=h \cup\{c)$, $\omega\left(K_{1}\right)=h ; \quad \omega\left(K_{2}\right)=h \cup\{c\}$, $\omega\left(K_{1} \cap K_{2}\right)=\omega(h) \neq h=\omega\left(K_{1}\right) \cap$
$\omega\left(K_{2}\right)$
We can easily verify the associativity and the reproducibility, so (H, \otimes) is a hypergroup. We consider $K_{1}=h \cup\{b\}, K_{2}=h \cup\{c\}, K_{3}=h \cup\{d\}$, $\omega\left(K_{1}\right)=\omega\left(K_{2}\right)=\omega\left(K_{3}\right)=h, \omega\left(K_{1} \cap K_{2} \cap K_{3}\right) \neq h$
II. Let h and k be two hypergroups with $\omega_{h} \neq h$ and let be x, y arbitrary in h and t, f arbitrary in k. Let's define on $H=h \cup k \cup\{a, c\}(\{a, c\} \cap h \cup k=\emptyset)$ the following hyperoperation

\odot	x	a	t	c
y	$y \circ x$	a	$h \cup k$	$\{a, c\}$
a	a	h	$\{a, c\}$	$h \cup k$
f	$h \cup k$	c	$f \circ t$	$\{a, c\}$
c	$\{a, c\}$	$h \cup k$	$\{a, c\}$	$h \cup k$

(H, \odot) is a hypergroup. We consider $K_{1}=h \cup\{a\}, K_{2}=h \cup k, \omega\left(K_{1}\right)=h ;$ $\omega\left(K_{2}\right)=h \cup k, \omega\left(K_{1} \cap K_{2}\right)=\omega(h) \neq h$ $=\omega\left(K_{1}\right) \cap \omega\left(K_{2}\right)$

But, for H a hypergroup, whose sequence ($*$) is finite, between $\omega\left(K_{1} \cap K_{2}\right)$ and $\omega\left(K_{1}\right), \omega\left(K_{2}\right)$ we can find the following.
20. Proposition. If $K_{1}, K_{2} \leq H$, where H has a finite sequence (*), then $\exists p \in \mathbb{N}^{*}, \omega_{p+1}\left(K_{1} \cap K_{2}\right)=\omega_{p+1}\left(\omega\left(K_{1}\right) \cap \omega\left(K_{2}\right)\right)$.

Proof. Let's consider $\bar{H}=K_{1} \cap K_{2}$ and $\bar{K}=\omega\left(K_{1}\right) \cap \omega\left(K_{2}\right) . \bar{K}$ is a subhypergroup, complete part of \bar{H}. (We can verify this using the definition of a complete part of a hypergroup.) Then we use the proof of Th. 17.

Also, we can give a relation for n-subhypergroups of $H: \exists p \in \mathbb{N}^{*}$, $\omega_{p+1}\left(K \cap K_{2} \cap \ldots \cap K_{n}\right)=\omega_{p+1}\left(\omega\left(K_{1}\right) \cap \omega\left(K_{2}\right) \cap \ldots \cap \omega\left(K_{n}\right)\right)$.
21. Remark. If $K_{1}, K_{2} \leq H$, then $\omega\left(K_{1}\right) \subset K_{1} \cap \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)$. Generally, we haven't equality.
22. Example. Let h and k be two hypergroups and let be x_{1}, x_{2} arbitrary in h and y_{1}, y_{2} arbitrary in k. Let's define on $H=h \cup k \cup\{a\}(a \notin h \cup k)$ the following hyperoperation

\square	x_{1}	a	y_{1}
x_{2}	$x_{2} \circ x_{1}$	a	H
a	a	h	H
y_{2}	H	H	$y_{2} y_{1}$

(H, \square) is a hypergroup. Let's consider $K_{1}=h \cup\{a\}$, $K_{2}=k, \quad K_{1} \cup K_{2}=H, \quad\left\langle K_{1} \cup K_{2}\right\rangle=H \Rightarrow$ $\omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)=H$. So

$$
\omega\left(K_{1}\right)=h \subsetneq K_{1} \cap \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)=K_{1}=h \cup\{a\} .
$$

But, also in this case, for H, whose sequence $(*)$ is finite, we can find: $\exists p \in \mathbb{N}^{*}$, $\omega_{p+1}\left(\omega\left(K_{1}\right)=\omega_{p+1}\left(K_{1} \cap \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)\right)\right.$.

Indeed, we have $\omega\left(K_{1}\right) \subset K_{1} \cap \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right) \subset K_{1}$ so $\omega\left(K_{1}\right)$ is a subhypergroup, complete part of $K_{1} \cap \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)$, whence using the Th. 17, we obtain this equality.
23. Remark. If $K_{1}, K_{2} \leq H$, then $\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle \cup \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)$. Generally, we haven't equality.
24. Example. Let h be a hypergroup, which has an identity, i; and let be y, y^{\prime} arbitrary in $h\{i\}$. Let's define on $H=h \cup\{a, c\}(\{a, c\} \cap h=\emptyset)$ the following hyperoperation

\odot	i	a	y	c
i	i	a	y	H
a	a	i	y	H
y^{\prime}	y^{\prime}	y^{\prime}	$y^{\prime} \circ y$	H
c	H	H	H	H

(H, \odot) is a hypergroup. Let's consider: $K_{1}=\{i, a\}$. (In fact, K_{1} is group.) $K_{2}=h$

$$
\begin{gathered}
K_{1} \cup K_{2}=\{a\} \cup h \Rightarrow\left\langle K_{1} \cup K_{2}\right\rangle=H \Rightarrow \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)=H \\
\omega\left(K_{1}\right)=\{i\}, \omega\left(K_{2}\right)=\eta(h) \Rightarrow\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle=\langle\{i\} \cup \omega(h)\rangle=\omega(h) \subset h \neq H
\end{gathered}
$$

In general, $\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$ is not a complete part of $\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)$. In the case of the example given, $c^{2} \cap(h) \neq \emptyset$, but $c^{2} \not \subset \omega(h)$.
25. Remark. If A is a subset of a hypergroup H, then

$$
\langle\omega(\langle A\rangle) \cap A\rangle \subset \omega(\langle A\rangle) .
$$

Indeed, $\omega(\langle A\rangle) \cap A \subset \omega(\langle A\rangle) \cap\langle A\rangle=\omega(\langle A\rangle)$ so that $\langle\omega(\langle A\rangle) \cap A\rangle \subset \omega(\langle A\rangle)$. Generally, we haven't equality.
26. Example. Let's define on $H=\{e, x, y, z\}$ the hyperoperation

\circ	e	x	y	z
e	e	x	$\{e, x, y\}$	z
x	x	e	$\{e, x, y\}$	z
y	$\{e, x, y\}$	$\{e, x, y\}$	$\{e, x, y\}$	z
z	z	z	z	$\{e, x, y\}$

Let's consider $A=\{e, x, z\}$.
$\langle A\rangle=H \Rightarrow \omega(\langle A\rangle)=\{e, x, z\}$.
So, $\langle\omega(\langle A\rangle) \cap A\rangle=\{e, x\} \varsubsetneqq \omega(\langle A\rangle)$.

We notice $\langle\omega(\langle A\rangle) \cap A\rangle$ isn't a complete part of $\omega(\langle A\rangle)$. For the preceding example, $y^{2} \cap\langle\omega(\langle A\rangle) \cap A\rangle \neq \emptyset$, but $y^{2} \not \subset\langle\omega(\langle A\rangle) \cap A\rangle$.
27. Proposition. Let H be a commutative hypergroup and K_{1}, K_{2} be subhypergroups of H. If for any $a \in\left\langle K_{1} \cup K_{2}\right\rangle-\left(K_{1} \cup K_{2}\right)$, there exists $\left(k_{1}, k_{2}\right) \in K_{1} \times K_{2}$, such that $a \in k_{1} k_{2}$ and if $\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$ is a closed subhypergroup of $\omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)$ then

$$
\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle=\omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right) .
$$

Proof. We shall prove that $\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$ is conjugable in $\left\langle K_{1} \cup K_{2}\right\rangle$. $\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$ is closed in $\left\langle K_{1} \cup K_{2}\right\rangle$ because, from $a \in b x$, where $(a, b) \in\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle^{2}$ and $x \in\left\langle K_{1} \cup K_{2}\right\rangle$, it results $(a, b) \in\left(\omega^{2}\left\langle K_{1} \cup K_{2}\right\rangle\right)$ and so $x \in \omega\left(\left\langle K_{1} \cup K_{2}\right\rangle\right)$. Using now the condition given in the proposition, $x \in\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$.

As regards an arbitrary element $a \in\left\langle K_{1} \cup K_{2}\right\rangle$, we have three situations:

$$
\begin{aligned}
& a \in K_{1} \Rightarrow \exists a^{\prime} \in K_{1}, a a^{\prime} \subset \omega_{K_{1}} \subset\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle ; \\
& a \in K_{2} \Rightarrow \exists a^{\prime} \in K_{2}, a a^{\prime} \subset \omega_{K_{2}} \subset\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle ; \\
& a \in\left\langle K_{1} \cup K_{2}\right\rangle-\left(K_{1} \cup K_{2}\right) \Rightarrow \exists k_{1} \in K_{1}, \exists k_{2} \in K_{2}, a \in k_{1} k_{2} .
\end{aligned}
$$

For k_{i} there exists $k_{i}^{\prime} \in K_{i}$, such that $k_{i} k_{i}^{\prime} \in \omega_{K_{i}}, i=1,2$.
So, $\quad a k_{1}^{\prime} k_{2}^{\prime} \subset\left(k_{1}^{\prime} k_{2}^{\prime}\right)\left(k_{2} k_{2}^{\prime}\right) \subset \omega\left(K_{1}\right) \circ \omega\left(K_{2}\right) \subset\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$, whence for every $t \in k_{1}^{\prime} k_{2}^{\prime}$, at $\subset\left\langle\omega\left(K_{1}\right) \cup \omega\left(K_{2}\right)\right\rangle$.
28. Remark. If H is a hypergroup, such that ω_{H} can be written as a hyperproduct and if h is a subhypergroup of H, then, generally, $\omega(h)$ can't be written as a hyperproduct.

We can consider h a hypergroup, for which $\omega_{h} \neq h$ and ω_{h} can't be written as a hyperproduct.

Let's define on $H=h \cup\{a\}(a \notin h)$ the following hyperoperation:

$$
\left\{\begin{array}{l}
x \circ y=x y \\
a \circ a=h \\
a \circ x=x \circ a=a, \forall x \in h
\end{array}\right.
$$

$\langle H ; \circ\rangle$ is a hypergroup, for which $\omega_{H}=h=a \circ a$, but $\omega(h)=\omega(\omega(H))$ is not a hyperproduct.
29. Theorem. Let $H_{1}, H_{2}, \ldots, H_{m}$ be hypergroups, such that for any $i=1,2, \ldots$ $\ldots, m, \omega_{H_{i}}$ can be written as a hyperproduct, with $w\left(H_{i}\right)=n_{i}$. Let $H=\underset{i=1}{\infty} H_{i}$. Then ω_{H} is a hyperproduct and $w(H)=\max \left\{n_{i} \mid i=\overline{1, m}\right\}$.

Proof. Let $x_{i_{1}}, \ldots, x_{i_{n_{i}}} \in H_{i}$, such that $\omega\left(H_{i}\right)=\prod_{j=1}^{n_{1}} x_{i j}$ and let $q=\max \left\{n_{i} \mid i=\overline{1, m}\right\}$. If $q>n_{i}$, then for any $k=n_{i}+1, \ldots, k=q$ we define $x_{i k}$ in this manner: $x_{i_{n_{i}}+1}=e$, where e is a partial identity on the right of $x_{i_{n},}$; for $k \geq n_{i}+2, x_{i_{k}}$ is a partial identity on the right of $x_{i_{k-1}}$.

We obtain $\omega\left(H_{i}\right)=\prod_{j=1}^{n_{i}} x_{i j} \subset \prod_{j=1}^{q} x_{i j}=\left(\prod_{j=1}^{n_{i}+1} x_{i j}\right) \cdot \prod_{n_{i}}^{q} x_{i j} \subset \omega\left(H_{i}\right)$ whence $\omega(H)=\prod_{j=1}^{q} x_{i j}$ and $\omega(H)=\prod_{k=1}^{q}\left(x_{i k}, \ldots, x_{m_{k}}\right)$.

For $p<q, P \neq \omega(H)$, for any hyperproduct P of p elements of H. So, $w(H)=q$.

Let H be a hypergroup and let's denote by $A \| B=\{a / b \mid a \in A, b \in B\}$, where $\{A, B\} \subset \mathscr{P}^{*}(H)$.

Let's define on $H \| H$ the hyperoperation: $(a / b) \square(c / d)=(a c) \|(b d)$.
Generally, \square is not well defined.
30. Example.

1. Let's consider the following join space: $\langle\boldsymbol{Z}, \circ\rangle$, where $x \circ y=\{x+y$, $x+y+1, \ldots, x+y+n\}$. Then $x / y=\{x-y, x-y-1, \ldots, x-y-n\}$ and $x / y \square z / w=\{(x+z) /(y+w), \ldots,(x+z) /(y+w+n),(x+z+1) /(y+w), \ldots$, $(x+z+1) /(y+w+n), \ldots,(x+z+n) /(y+w), \ldots,(x+z+n) /(y+w+n)\}=$
$\{\{x-y+z-w, \ldots, x-y+z-w-n\}, \ldots,\{x-y+z-w-n, \ldots, x-y+z-w+2 n\}$,
$\{x-y+z-w+1, \ldots, x-y+z-w-n+1\}, \ldots,\{x-y+z-w+1-n, \ldots$, $x-y+z-w+1-2 n\}, \ldots,\{x-y+z-w+n, \ldots, x-y+z-w\}, \ldots$, $\{x-y+z-w, \ldots, x-y+z-w-n\}\}$.

Let's remark that $x / y=x^{\prime} / y^{\prime}$ if and only if $x-y=x^{\prime}-y^{\prime}$.
Therefore, " \square " is well defined.
2. Let $\langle H, O\rangle$ be the hypergroup:

\circ	x	y	z	H is not a join space. In fact, $y / z \cap z / z \in x$,
x	x	H	H	but $y \circ z \cap z \circ z=\emptyset$.
y	H	y	z	
z	H	z	y	

We shall prove that " \square " is well defined.
One has $x / x=H ; y / x=\{y, z\}=\{x, y\}=z / x ; x / y=\{x\}=x / z ; y / z=\{x, z\}=z / y$ and $y / y=\{x, y\}=z / z$.

Whence, for any $\{a, b, c, d\} \subset\{y, z\}$, we have:

$$
\begin{aligned}
& x / x \square b / x=a / x \square x / b=x / x \square a / b=H \| H ; \\
& x / x \square x / a=\{x\} \| H=\{H ;\{x\}\} ; \\
& x / x \square a / x=H \|\{x\}=\{H ;\{y, z\} ; \\
& x / x \square x / x=x / x=H ; \\
& x / a \square x / b=\{x\}=x / y=x / z ; \\
& a / x \square b / x=\{y, z\}=y / x=z / x ; \\
& x / a \square b / c=H\|\{y\}=H\|\{z\}=\{\{x\},\{x, y\},\{x, z\}\} ; \\
& a / x \square b / c=\{y\}\|H=\{z\}\| H=\{\{y, z\},\{x, y\},\{x, z\}\} ; \\
& a / b \square c / d \in\{y / y=z / z, z / y=y / z\}=\{\{x, y\},\{x, z\}\} ;
\end{aligned}
$$

So, " \square " is well defined. If we denote by $\alpha=x / x ; \beta=y / x ; \gamma=x / y ; \mu=y / z$ and $\Psi=y / y$, then $\langle H \| H ; \square\rangle$ is the following hypergroup:

\square	α	β	γ	μ	Ψ		
α	α	α, β	α, γ	$H \\| H$	$H \\| H$		
β	α, β	β	$H \\| H$	β, μ, Ψ	β, μ, Ψ		
γ	α, γ	$H \\| H$	γ	γ, μ, Ψ	γ, μ, Ψ		
μ	$H \\| H$	β, μ, Ψ	γ, μ, Ψ	Ψ	μ		
Ψ	$H \\| H$	β, μ, Ψ	γ, μ, Ψ	μ	Ψ		

Let's remark that $\langle H \| H, \square\rangle$ is not a join space. (We have $\mu / \mu \cap \mu / \Psi \alpha$, $\mu \circ \Psi \cap \mu \circ \mu=\emptyset$.)
3. Let's consider the hypergroup $\langle H, \circ\rangle$, where $x \circ y=\{x, y\}$, for any $(x, y) \in H^{2}$. Then, " \square " is not well defined. Indeed, for x, y, z, w four different
elements of H, we have $z / z=H, x / y=x / z=\{x\}$, so $x / y \square z / w=x / z \square z / w$. But, on the other hand, $x / y \square z / w=(x \circ z) \|(y \circ w)=\{x / y, z / y, x / w, z / w\}=\{\{x\},\{z\}\}$ and $x / z \square z / w=\{\{x\},\{z\}, H\}$.
4. Let $L=\langle L ; \wedge, \vee\rangle$ be a lattice, without inferior and superior limits. Let $\langle L, O\rangle$ be the hypergroup (join space) defined:

$$
x \circ y=\{u \mid x \wedge y \leq u \leq y \vee y\} .
$$

Also, in this case, " \square " is not well defined. Indeed, we have

$$
x / y= \begin{cases}\{t \mid t \leq x\}, & \text { if } x<y \\ \{t \mid x \leq t\}, & \text { if } x>y \\ L, & \text { if } x=y\end{cases}
$$

and $x_{1} / y_{1}=x_{2} / y_{2}$ if and only if $\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$ or $\left(x_{1}=x_{2}=x\right.$ and $\left\{y_{1}, y_{2}\right\} \subset$ $\{t \mid t<x\})$ or $\left(x_{1}=x_{2}=x\right.$ and $\left.\left\{y_{1}, y_{2}\right\} \subset\{t \mid x<t\}\right)$.

On the other hand,

$$
(x / y) \square(u / v)=\{z \mid x \wedge u \leq z \leq x \vee u\} \|\{z \mid y \wedge v \leq z \leq y \vee v\} .
$$

Choose, x, y, y^{\prime}, u, v in L such that $y<u<v<y^{\prime}<x$ (it is possible, because L is infinite).

So $x / y=x / y^{\prime}$ and we have $x / y=(x \wedge u) /(y \wedge v) \in(x / y) \square(u / v)$, but $u / y \neq$ $u / s=(x \wedge u) / s$, for any s, such that $y^{\prime} \wedge v=v \leq s \leq y^{\prime} V v=y^{\prime}$. Moreover, $u / y \neq z / t$, for any z, t such that $x \wedge u<z \leq x \vee u$ and $y \wedge v \leq t \leq y \vee v$. Therefore, $u / y \notin\left(x / y^{\prime}\right) \square(u / v$ (, whence " \square " is not well defined.
31. Proposition. Let H be a hypergroup, for which " \square " is well defined. Then $\langle H \| H, \square\rangle$ is a hypergroup. Moreover,

1. If H is regular, $H \| H$ is regular, too;
2. If H is join space, $H \| H$ is join space, too;
3. $(H \| H) / \beta_{H \| H}=\left\{\beta_{H \| H}(a / b) \mid\left(\beta_{H}(a), \beta_{H}(b)\right) \in H / \beta_{H} \times H / \beta_{H}\right\}$.

Proof. 1. If $e \in E(H)$, then $e / e \in E(H \| H)$.
For any $a / b \in H \| H, a^{\prime} / b^{\prime} \in i_{H \| H}(a / b)$, where $a^{\prime} \in i_{H}(a)$ and $b^{\prime} \in i_{H}(b)$. $(E(H)$ is the set of identities of H and $i(x)$ is the set of inverses of x, for any $x \in H$.)
2. Let $\left(x_{1} / x_{2}\right) /{ }_{H \| H}\left(y_{1} / y_{2}\right) \cap\left(z_{1} / z_{2}\right) /{ }_{H \| H}\left(w_{1} / w_{1}\right) \neq \emptyset$, that is α_{1} / α_{2} exists, such that $x_{1} / x_{2} \in\left(y_{1} \circ \alpha_{1}\right) \|\left(y_{2} \circ \alpha_{2}\right)$ and $z_{1} / z_{2} \in\left(w_{1} \circ \alpha_{1}\right) \|\left(\omega_{2} \circ \alpha_{2}\right)$. Then, there exist $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in H^{2}$ and $\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \in H^{2}$, such that $x_{1} / x_{2}=x_{1}^{\prime} / x_{2}^{\prime}$ and such that $z_{1} / z_{2}=z_{1}^{\prime} / z_{2}^{\prime}$, where $x_{1}^{\prime} \in y_{1} \circ \alpha_{1}$ and $x_{2}^{\prime} \in y_{2} \circ \alpha_{2}$, respectively, $z_{1}^{\prime} \in w_{1} \circ \alpha_{1}$ and $z_{2}^{\prime} \in w_{2} \circ \alpha_{2}$. Hence $x_{1}^{\prime} / y_{1} \cap z_{1}^{\prime} / w_{1} \neq \emptyset$ and $x_{2}^{\prime} / y_{2} \cap z_{2}^{\prime} / w_{2} \neq \emptyset$.

So, there exist $a \in x_{1}^{\prime} \circ w_{1} \cap y_{1} \circ z_{1}^{\prime}$ and $b \in x_{2}^{\prime} \circ w_{2} \cap y_{2} \circ z_{2}^{\prime}$.
We have $a / b \in\left(x_{1}^{\prime} \circ w_{1}\right)\left\|\left(x_{2}^{\prime} \circ w_{2}\right) \cap\left(z_{2}^{\prime} \circ y_{1}\right)\right\|\left(z_{2}^{\prime} \circ y_{2}\right)=\left(x_{1}^{\prime} / x_{2}^{\prime} \square w_{1} / w_{2}\right) \cap$ $\left(z_{1}^{\prime} / z_{2}^{\prime} \square y_{1} / y_{2}\right)=\left(x_{1} / x_{2} \square w_{1} / w_{2}\right) \cap\left(z_{1} / z_{2} \square y_{1} / y_{2}\right)$, so $\langle H \| H, \square\rangle$ is a join space, too.
3. We shall prove that for $\left(\beta_{H}\left(a_{1}\right), \beta_{H}\left(b_{1}\right)=\left(\beta_{H}\left(a_{2}\right), \beta_{H}\left(b_{2}\right)\right)\right.$ we have $\beta_{H \| H}\left(a_{1} / b_{1}\right)=$ $\beta_{H \| H}\left(a_{2} / b_{2}\right)$.
 and $\prod_{i=1}^{m} d_{i} \supset\left\{b_{1}, b_{2}\right\}$.

If $n>m$, one considers $e_{m+1} \in I_{r}\left(d_{m}\right), e_{m+2} \in I_{r}\left(e_{m+1}\right), \ldots, e_{n} \in I_{r}\left(e_{n-1}\right)$ and one has $\left\{b_{1}, b_{2}\right\} \subset \prod_{i=1}^{m} d_{i} \subset \prod_{i=1}^{m} d_{i} e_{m+1} \cdot \ldots \cdot e_{n}$, that is b_{1} and b_{2} belong to a hyperproduct of n elements.

Similarly, for $n<m$. Therefore, we can consider $n=m$, and we obtain $\left\{a_{1} / b_{1}, a_{2} / b_{2}\right\} \subset\left(\prod_{i=1}^{n} c_{i}\right) \|\left(\prod_{i=1}^{n} d_{i}\right)=\prod_{i=1}^{n} \square\left(c_{i} / d_{i}\right)$.
32. Proposition. Let H be a commutative hypergroup. If $H \| H$ is a join space, then H satisfies the condition $\forall(a, b, c, d) \in H^{4}$, such that $a / b \cap c / d \neq \emptyset \Rightarrow$ $(a \circ d)\left\|\omega_{H} \cap(b \circ c)\right\| \omega_{H} \neq \emptyset$.

Proof. Let $y \in a / b \cap c / d$, that is $a \in y \circ$ and $c \in y \circ d$. Let's consider c^{\prime} a partial inverse of c (that is $c \circ c^{\prime} \cap I_{p} \neq \emptyset$, where I_{p} is the set of partial identities of H).

There exists $z \in H$, such that $c^{\prime} \in z \circ a$ and let $t \in z \circ c$. One has $a / c^{\prime} \in(y \circ b) \|(z \circ a)=(y / z) \square(b / a)$ and $c / t \in(y \circ d) \|(z \circ c)=(y / z) \square(d / c)$. So, $y / z \in\left(a-c^{\prime}\right) /(b / a) \cap(c / t) /_{H \| H}^{/}(d / c)$. Because $H \| H$ is a join space, it result $\left(a / c^{\prime}\right) \square(d / c) \cap(b / a) \square(c / t) \neq \emptyset$, that is $(a \circ d)\|(c \circ c) \cap(b \circ c)\|(a \circ t) \neq \emptyset$.

We have $c^{\prime} \circ c \subset \omega_{H}$, and $a \circ t \subset a \circ z \circ c \supset c^{\prime} \circ c$, so $a \circ z \circ c \subset \omega_{H}$, whence $(a \circ d)\left\|\omega_{H} \cap(b \circ c)\right\| \omega_{H} \neq \emptyset$.

References

[1] Corsini P. Hypergroupes réguliers et hypermodules. Ann. Univ. Ferrara, Sc. Mat. Ser. VII, v. XXI (1975).
[2] Corsini P. Contributo alla teoria degli ipergruppi. Atti Soc. Pelor. Sc. Mat. fis. nat., XXVI (1980).
[3] Corsini P. Feebly canonical and 1-hypergroups. Acta Universitatis Carolinae Math. et Phys., v. 24.
[4] Corsini P. Sugli impergruppi canonici finiti con identità parziali scalari. Rend. del Circ. Mat. di Palermo, serie II, t. XXXVI (1987).
[5] Corsini P. Prolegomena of hyopergroup theory. Aviani Editore (1993).
[6] Corsini P. and Freni D. On the heart of hypergroups. Mathematica Montisnigri, vol. II (1993).
[7] Corsini P. and Mittas J. New topics in hypergroup theory. Accepted by "Multiple valued logic and Applications" (1995).
[8] Corsini P. and Sureau Y. Sur les sous-hypergroupes d'un hypergroupe. Riv. Mat. Pura e Appl. n. 1 (1976).
[9] Dresher M. and Ore O. Theory of multigroups. Amer. J. of Math., 62 (1940).
[10] Leoreanu V. On the width of a hypergroup. Proceedings of "Algebraic Hyperstructures and Applications", M. Stefănescu Editor, Hadronic Press (1994).
[11] Leoreanu V. New results on subhypergroup theory and on the nucleus structure. Accepted by P.U.M.A. (1995).
[12] Leoreanu V. On the heart of join spaces and of regular hypergroups. Accepted by Riv. Mat. Pura e Appl. (1995).
[13] MitTAS J. Hypergroupes fortement canoniques et supérieurement cañoniques. Proceeding II of the Int. Symp. on Applications of Math. in Syst. Sci., Braşov, Romania (1978).
[14] Prenowitz W. and Jantosciak J. Geometries and Join Spaces. J. Reine und Angewändte Math. 257 (1972).

[^0]: *) Dept. of Math. and Comp. Sci., Via delle Scienze 206, Loc. Rizzi, 33100 Udine, Italy Faculty of Mathematics, Al. I. Cuza University, 6600 Iaşi, Romania

