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PIERGIULIO CORSINI and VIOLETA LEOREANU
Udine, Iasi*)

Received 1. October 1995

This paper presents some types of hypergroups, associated to an arbitrary hypergroup, studying the
properties and the heart of them, establishes results concerning the width and gives some other results
about the sequence of hearts, which can be associated to a hypergroup, in connection with the
subhypergroups generated by a non-empty set, by an union of subhypergroups or by the intersection of
subhypergroups, if it is not empty.

Introduction

The notion of the heart wx of a hypergroup H, introduced by two among the
founders of the Hypergroup Theory, Dresher and Ore [9], has been studied by
many mathematicians.

Just this subject is involved by most of the results of this paper, which throws
light also on the algebraic structure of the set 2*(H) of non-empty subsets of H,
of the set of the hyperproducts of elements of H, and on some topics of join spaces
and of subhypergroup theory.

Let (H,0) be a hypergroup, P = {(2*(H); ®) be the set of non-empty subsets
of H endowed with the hyperoperation (®) defined: V(4, B)e #*(H),
A®B={Ce?*H)|C < AoB}. VaeH, let I,a)={ecH|aceoa},
In{a) = {feH|aeaof}, I(a) = I,{a) U I{a). Let A = {D < I,(H)|VheH,
ID U In(h)l = 1 = |D n I{h)|}, I, = | Ix(a). Moreover, Ye € I, Vg € H, let

aeH
ul(q,e) = {ye H|eeqoy}
u(g,e) = {ze H|eezoq}

1. Theorem.
1. If Q € *(H), Q is an identity in P iff there exists D € A such that Q > D.
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2. If 0, Q' € PX(H), then Q' is an inverse of Q iff there is D € A such that

VeeD, Julg,e)n Q' *+ 0,
qeQ

Vee D, (Ju(g.e)nQ +0,

qeQ
3. If wp is the heart of P, we have wp = P.

Proof.

1. Let Q be an identity. Then Vae H one has {a}e Q @ {a},{a}e {a}® Q,
whence a€ Q 0a, acaoQ from which there exists (e, e;)€ I {a) x I,,(a) such that
{e,e2} = Q hence Yae H, I,{a)n Q + @ + Q N I,(a). On the converse if this
condition is satisfied by a subset Q of H, we have: VSe ?/’*(H), Vse S,

Je € I,(s) N Q, whence SeS® Q0 Q o (Jsoe, o S from which Q is a right
s€S

identity. Similarly on the left.
2. It’s enough to remark that Q' is an inverse of Q iff there is D € A such that
Q' 00Q >D c QoQ and this condition is satisfied iff for all h € H, we have

Q' N (Q\L(h) + O + Q" (Q\I,(h) and @' A (I,{h)/Q) + & + Q' " (I,,/Q).
3. It’s enough to remark that H is an identity for P and it is inverse for any
element of H. It follows, by Th. 129 [5], that wp, = H® H = P.

2. Definition. Let A be a non-empty subset of a hypergroup H. Let’s set
T(A) = {(xl, X2y eees x,,) € I{'l | ]—[x,- = A}
i=1

Au(A) = min {ne N* | T(4) * 0}.
Clearly, Ay(wy) = w(H) where w(H) is the width of H (see [7]).
3. Definition. If (H;0) is a semi-hypergroup, let’s denote n(H) the set of the
hyperproducts P of elements of H, such that ¢(P) = P. ‘
4. Theorem. Let (H;0) be a hypergroup, let (x,, X, ..., x,) € H" be such that
ﬁx,en(H), then (x,x,..., x;)€ H" exists such that x,0X,0... 0X,0X,0 ...
i.=.lo X 'ﬂ= wy.

Proof. Vke I, = {1,2, ..., n},let u; be an element of wy, and let x; € H be such
that u, € x;, O X;, then, since wy is a complete part, we have wy > x; O x;. It follows
X, 0X0... 0X,0X), = WgOX;0... 0X,0X) =X,0... 0X,_;OWyOX,0Xy =

n—1

X10... 0X,10Wy = Wy O l—[x,'.

i=1
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n—2 n—2
Hence x,0%,0...0X,0xX,0%,_, = wz0 [[xi0X,_;0x,_; = ogo [[x:
i=1 i=1

Going on in the same way, one arrives to X; 0 X, 0... 0 X, 0 X, O... O X3 = WO X;
whence finally x,0x,0... 0X,0X,0... 0X30X} = WO X, 0X] = Wy.

5. Corollary. If {(H;0) is a hypergroup, then w(H) < ¥, iff ne N* and
(X1, .., x,) € H" exist such that Hx, € n( ).

i=1

6. Lemma. Let {H;0) be a hypergroup, then H — wy is a complete part.

7. Proposition. Let (H;0) be a hypergroup. If H — wy, is a hyperproduct, then
wy also is a hyperproduct.
If follows straight from Th. 4 and from the former lemma.

8. Remark. Let H be a hypergroup endowed with a complete hyperproduct. The
following implication is satisfied for VAe Z*(H): A nIlx, = 0 = ¢(4) n Hx,- =0.

n

Let’s suppose z e é(4) N []x; then ae A exists such that ze %(a), hence

i=1
n

%(a) = €(z). The hypothesis [[x; = (] [x;) implies

i=1 i=1

4z) = U ) = €([1x) = [Tx-

yellx i=1 i=1
i=-1

Therefore a € 4, a € é(z) = []x;, whence [[x; n A % 0 which is absurd.
i=1 i=1
9. Theorem. Let {H;0) be a hypergroup, such that w(H) < N,. Let’s denote
An(H) = min {k|3Q e Il (H):k = 4(Q)}

Am(H) = max {h|3Q e I (H):h = 4(Q)}
L A.(H)e {w(H),w(H) — 1}

L. 2u(H)e {w(H),w(H) + 1}
Proof.
I. By the Corollary 5., II,(H) + 0. Let Q = I_[yie [I(H). By Th. 63 [5], we
i=1 4
have Q = 4(Q) = (J¥(x), we have clearly: Vxe Q, 4(x) " Q + @ it follows

xeQ
%(x) > Q = 4(Q) > %(x) whence %(x) = Q. Therefore by Th. 67 [5], Q = w, 0 X,
from which if y € H is such that x 0 y = wy (it exists since wy is conjugable, Th.
75, 110 [5]), it follows Q 0 y = wy whence w(H) < A(Q) + 1.

Then we have:
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If we suppose A,(H) + w(H), we have clearly A,(H) < w(H), then if Q is
such that A(Q) = 4,(H), onme obtains A(Q) < w(H) < A(Q) + 1. Therefore
w(H) = AQ) + 1, whence 4,(H) = w(H) — 1.

II. It’s immediate.

10. Remark. Hypergroups H exist such that
a) 4,(H) = w(H) — 1 and others such that b) Ay(H) = w(H) + 1.

a) See for instance the Example H1, 220 [S5]. We have w(H l) = 3 since
oy, = {0,a,, a5, a3} and wy, = (x;0x)0x;. But we have also A({x;, xs}) =
Mx; 0x,) = 2, whence 4,(H)) = 2.

b) See the Examples I, II, 267 [5], in both of them 1y(H) = w(H) + 1.
11. Remark. If (H;0) is n-complete, we have by 112 [5], 4,(H) = w(H) < n.

12. Remark. Let (H;0) be a strongly canonical hypergroup. If it is finite, then
An(H) = 2 = w(H) (see Th. 211 [5]). If it is not finite it can happen w(H) ¢ N,
see for instance the following example: let (K; <) be an infinite, totally ordered
set, endowed with a minimum element 0. Let {0) be the hyperoperation defined
in K (see [13]) 000 =0, Vx:x %0, xox = {y|y < x}, V(x,)) e K; x * y,
x 0y = max {x, y}.Clearly, {K;0) is strongly canonical, wx = K and w(K) £ N,.

Let (H; 0) be a semi-hypergroup, let II(H) the set of hyperproducts of elements of
H.In II(H) let’s define the hyperoperation (®), 4 © B = {CeIl(H)|C =< Ao B}.

13. Theorem. If (H;0) is a hypergroup, then II(H); ©) is a hypergroup.
Proof. It’s clear that {©®) is associative. Let’s prove now the reproducibility.

14 14

Let A = []a;, B = []b; elements of II(H). By the reproducibility of (o), there
i=1 i=1

exists y, € H such that a, € y; 0 b,. Similarly, there is y, such that y, € y,0b,_,,

whence a,€ y,0b,_,0b,. Going up in the same way, one obtains y, such that
p—1
Y41 € y,0b,. Hence a, € y,0b,0b,0... 0b,. Therefore if we let X = [[a;0 y,

i=1
we have Ae X © B.
Similarly, we can find z,,2,,..., 2z, such that a,e b, 0 z;, z,€ b, 0 2,... z,_1€b, 0 2,
whence A = a,04,0... 0a, < bjob,0... 0b,02,04,00,0... Oa,

14. Theorem. If K is a subhypergroup of a hypergroup {H;0) and K belongs
to H(H), then K is contained in wy.

Proof. If A is an element of [I(H) and 4 N wy + 0, then 4 < wy since wy is
a complete part. Then it’s enough to remark that K N wy contains the set I ,(K) of
partial identities of K, to obtain the Theorem.

15. Remark. Not all subhypergroups of a hypergroup H are in II(H). For
instance:
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0]1(2 Let {(H;0) be the hypergroup.
0[(0[1]2 It’s clear that K = {0, 1} is a subhypergroup,
1{1[0][2 and that K ¢ II(H).
2(2|12|H Moreover, wy = H e II(H).

Now a natural question arises: do non-conjugable subhypergroups exist, which
can be written as hyperproducts?

For instance, does a hypergroup H exists, which is endowed with an ultraclosed
subhypergroup A such that lH(A) = n?

The following example proves it exists.

Let {4;0) be a hypergroup such that w, = A and w(4) = n.

It could be this one (see [5], §2):

A=|JA4 wherei+j=A,n A4+ 0, V(x,y)ed; x A, xO0y = A;U 4.
i=1

Now, let’s set H = A U T where An T =0, |T| > 3 and the hyperoperation
® in H is defined (see 112, [5]). V(a,b)e A% a® b =aob, Y(a,t)e Ax T,
a®@t=tQa=t Vts)eT, s®t=AuU(T— {s,t}). We have clearly that
{4; o) is an ultraclosed (non conjugable) subhypergroup of (H; ®) and A,(A4) = n.

We have clearly wy = H and w(H) = 2.

Indeed since T contains {s;, 5,},s; =+ sy; then

(sios)os;=(Au(T— {s})os, 2 {s}u(T—{s}))ud4d=H.
Let (H;0) be a hypergroup. Let’s consider the sequence
(*) Ho o(H) = 0, > o(wH)) = 0, D ... D @D Wy1 D ... D02 ...

16. Theorem. The following conditions are equivalent:
1. the sequence () is finite;
2. there is (n, k)€ N?, where n > k + 1,
such that w, is a complete part of wy;
3. there is (n, k) € N> where n > k + 1, such that for any
(x,y) € (w0 — @,) X (0 — @,); x 0y N (0 — w,) + O implies x O y € Wy — w,;
4. there is (n, k) € N*> where n > k + 1,
such that for any w, is w,-conjugable.

Proof. 1. = 2. If the sequence (x) is finite, then there is ne N such that
o, = w,_y, hence w,_, is a complete part of w,.

2. = 3. If w, is a complete part of w,, then w, — w, is a complete part of w;.

3. = 4. One proves easily that for any s € N*, w, is a closed subhypergroup of
‘H. Moreover, for all a, b in w,, if {a,b} c w, — w,wehaveaob c w, ifa b
and |{a,b} N w,| = 1, we have aob = w, — w,. Then, by Th. 104, 3") [5], we
obtain that w, is w,-conjugable.
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4. = 1. By the Th., w, is a complete part subhypergroup of w,. Hence w;,, =
o(w) € o, € Wy, from which o, = w,,. So, we have: w,,, = o(w,) =
O(Wrs1) = Opyz D O, = Oy D W4y Therefore, ®, = w4y, = 0,4 Let
Opyy = Oy It follows @,y = O(@,4,) = O(wy ) = Wp12 = Oy, Then, for
any m such that m > n, we have 0, = w,.

17. Theorem. Let (H;0) be a hypergroup such that the sequence () is finite,
and let K be a complete part subhypergroup of H. Then there is p € N such that
wl’+l(K) = (1),,+1(H).

Proof. Let’s remark that w(K) is a subhypergroup of w(H). Indeed, for any
a € o(K), there is e € K such that a € a 0 ¢; it’s clear that a € fi(e) = Bu(e) = w(H).
Moreover, since K is a complete part subhypergroup of H, we have o(H) < K.
Then w,(K) < w,(H) < K. For any s > 1, from o(K) < w(H) c o,_,(K), one
obtains ,,,(K)  w,,,(H) = oK), hence a sequence K > w,(H) > wy(K) >
0,(H) o wyK) > ...

By Th. 16, there is (n, p) € N x N, where n > p + 1, such that w,(H) = o, ,(H),
therefore w,, (H) = w,,(K).

18. Remark. If K|, K, < H, then
C()(Kl N Kz) < w(Kl) N (l)(Kz) .
Generally, we have not equality.

19. Examples. 1. Let h be a hypergroup, for which w(h) + h and let be x, y
arbitrary in H. Let’s define on H = h U {b,c,d}({b,c,d} n h = @) the following
hyperoperations:

®| x blc|d We can easily verify the associativity and the
y| yox |b|c|d reproducibility, so (H, ®) is a hypergroup. We
1. b b hid]c consider K, =hu{b}, K,=hu{c}, Ky=hu{d},
c c d|h|b o(K,) = o(K,) = o(K;)=h, o(K,nK,nK;) $ h
d d c|blh
Ol x b c d (H, O) is a hypergroup. We consi-
y| yox b [hulc}| {bd} der K, = hu {b}, K, =hu {c),
2. b b h {b,d} |ho{c! o(K)) = h o(Ky) = hu {c},
c[huic}] {bd} |hu{c}] {bd} o(K,nK;)=ow(h) + h=o(K,)n
d| {bd} |hu{c}| {bd} |hu{c} (K

II. Let h and k be two hypergroups with w, * h and let be x, y arbitrary in h and
t, f arbitrary in k. Let’s define on H = hu k U {a,c} ({a,c} nhu k = @) the
following hyperoperation
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O x a t c (H, ©) is a hypergroup. We consider
y| yox a huk | {ac} K/ =hula},Ky=huk, oK) =h
al a h {ac} [huk o(Ky)) =huk, o(K,nK,) = w(h) +h
flhouk c fot | {ac} = w(K,) N o(K,)

c| {ac} [huk ] {ac} [huk

But, for H a hypergroup, whose sequence () is finite, between (K, N K,) and
o(K,), o(K,) we can find the following.

20. Proposition. If K,, K, < H, where H has a finite sequence (), then
Ipe N*, w,, (K, N K;) = 0, (oK) N o(K)).

Proof. Let’s consider H = K, n K, and K = o(K,) n o(K,). K is a subhy-
pergroup, complete part of H. (We can verify this using the definition of
a complete part of a hypergroup.) Then we use the proof of Th. 17.

Also, we can give a relation for n-subhypergroups of H: 3Jpe N¥*,
0 (KN Ky o nK,) = wppi(0(Ky) n oK) N ... n oK)

21. Remark. If K, K, < H, then o(K,) = K, n o((K; U K;)). Generally, we
haven’t equality.

22. Example. Let h and k be two hypergroups and let be x,, x, arbitrary in h and
Y1, ¥, arbitrary in k. Let’s define on H = hu k U {a} (a ¢ h U k) the following
hyperoperation

Ol x |a| n (H, O) is a hypergroup. Let’s consider K, = hu {a},
X |x0x,{al H K=k K uK,=H, (K uKkK,)y=H=
a a h|{ H o(<K, v Ky)) = H. So

Y2 H H| yy

oK) =hg K,no(KiuKy) =K, =hu {a}.

But, also in this case, for H, whose sequence (*) is finite, we can find: 3p € N*,
@, (0(K,) = 0,1(K, 0 o(<K; U K3))).

Indeed, we have w(K)) = K, n o(<{K; U K,)) = K, so o(K,) is a subhyper-
group, complete part of K, N w(<K; U K,)), whence using the Th. 17, we obtain
this equality.

23. Remark. If K, K, < H, then {w(K)) U o(K,)> U (<K, U K,)). General-
ly, we haven’t equality.

24. Example. Let h be a hypergroup, which has an identity, i; and let be y, )’
arbitrary in h ' {i}. Let’s define on H = h U {a,c}({a,c} n h = §) the following
hyperoperation ‘
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Olila y c (H, ©) is a hypergroup. Let’s consider: K, = {i, a}.
ilila y H (In fact, K, is group.) K, = h

alali y H

yy|ylyoy |H

c|H|H| H |H

KiuK;,={ajuh=<(K, UK,;) =H=0(KK vK))=H
o(K)) = {i},o(K,) = n(h) = <o(K,) U o(Ky)> = {i}u o(h)) = w(h) <« h + H

In general, {w(K;) U o(K,)) is not a complete part of »(K,) U w(K,). In the case
of the example given, c* N (h) + 0, but ¢* & w(h).

25. Remark. If A is a subset of a hypergroup H, then
(o({AY)N 4) = w(<4)).

Indeed, w({A))N 4 < o({A))N (A) = 0({A))so that (W({AD)N A) = w({AD).
Generally, we haven’t equality.

26. Example. Let’s define on H = {e, x, y, z} the hyperoperation

o| e x y z Let’s consider 4 = {e, x, z}.

e| e x |{exy z (A) = H = 0({A)) = {e, x, z}.

x| x e {e,x, y z So, <w({A)) N A) = {e, x} & o<4)).
yl{e x, yt {e,x, y}|{e, x, y z

z z z z {e, x, y}

We notice <w((A>)r\ A) isn’t a complete part of w({A)). For the preceding
example, y* N {o({A))n A) + 0§, but y* & w({AD)n A4).

27. Proposition. Let H be a commutative hypergroup and K ,, K, be subhyper-
groups of H. If for any a € (K, U K,> — (K, U K,), there exists (k), k;) € K, x K,,
such that aekk, and if {w(K)) v o(K,)> is a closed subhypergroup of
o(¢(K, U K,)) then

(o(Ky) v o(K2)) = oKK, U K3)).

Proof. We shall prove that {w(K;) v &(K,))> is conjugable in {K; U K;).
(o(Kj)) U o(Ky)> is closed in (K;u K;) because, from ae€bx, where
(a, b) e Cw(K;) U o(K,))? and x e (K, U Ky, it results (a, b)e (0K, U K3))
and so x € o({K, U K,)). Using now the condition given in the proposition,
x € {o(Ky) U o(K))).

As regards an arbitrary element a € {K; U K,), we have three situations:

aeK,=3a' €K, aa' c wg, < {o(K)) v o(K;));
aeK,=3d €K, ad' c wg, < (o(K)) U o(K)));
ae <K1 v K2> - (Kl V) Kz) = 3k1 € Kb 3k26 Kz, ac k|k2 .
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For k; there exists k; € K;, such that kkje wg, i = 1, 2.
So, akik; < (kiks) (k:k5) = (K)o o(K;) = w(K,) v o(K3)), whence for
every t € kik, at = {w(K;) U o(K>)).

28. Remark. If H is a hypergroup, such that wy can be written as a hyper-
product and if h is a subhypergroup of H, then, generally, w(h) can’t be written as
a hyperproduct.

We can consider h a hypergroup, for which w, + h and w,, can’t be written as
a hyperproduct.

Let’s define on H = h U {a}(a ¢ h) the following hyperoperation:

X0y =Xxy
{aoa=h
aox=x0a=a, Vxeh

(H;0) is a hypergroup, for which wy = h = aoa, but w(h) = w(w(H)) is not
a hyperproduct.

29. Theorem. Let H, H,, ..., H,, be hypergroups, such that for any i = 1, 2, ...
..., M, Wy, can be written as a hyperproduct, with w(H)) = n;,. Let H = '_;_"<1H . Then
wy is a hyperproduct and w(H) = max {n|i = T, m}.

Proof. Let x;,, ..., X;, € H,, such that o(H;) = [ ]x; and let ¢ = max {n|i =T, m}.
j=1

If g > n;, then for any k =n; + 1,..., k = q we define x; in this manner:

x;,+1 = e, where e is a partial identity on the right of x; ; for k > n; + 2, x, is

a partial identity on the right of x

ik—1°

n; q ni+1 q
We obtain o(H))=[]x; < [[x;= ( I1 x,-,-) [JIx;j = w(H)) whence o(H) = []x;
j=1 j=1

j=1 n; j=1
q

and w(H) = [](Xis s Xm)-

k=1

For p < g, P + o(H), for any hyperproduct P of p elements of H. So,
w(H) = q.

Let H be a hypergroup and let’s denote by A ||B = {a/b|a€ A4, b € B}, where
{4,B} = 2*(H).

Let’s define on H || H the hyperoperation: (a/b) O (c/d) = (ac)|| (bd).

Generally, O is not well defined.

30. Example.

1. Let’s consider the following join space: <Z,0), where xoy = {x + y,
x+y+1,.,x+y+n}Thenx/y={x—yx—y—1,.,x—y—n}and
xlyQz/w={x + 2y + w),....(x + 2}y + w + n), (x + z + )y + w), ...,
x+z+D)/y+wtn), ., (x+z+n)fy+w),...(x+z+n)fy+w+n)}=
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{x—y+z—w,..,x—y+z—w—n},..,{x—y+z—w—n,...,x—y+z—w+2n},
x—y+z—wH+l. . ,x—y+z—w—n+1}. . [x—y+z—w+1—n,..,
x—y+z—wH+1=2n}. ., {x—y+z—w+n.,x—y+z—wh..,
x—y+z—w,.,x—y+z—w-—n}}

Let’s remark that x/y = x'/y’ if and only if x — y = x" — y'.

Therefore, “0” is well defined.

2. Let (H,0) be the hypergroup:

z H is not a join space. In fact, y/z N z/z € X,
H but yoznzoz = 0.
z
y

We shall prove that “g” is well defined.
One has x/x = H; y/x = {y,z} = {x,y}=z/x; x/y = {x}=x/z; y/z = {x,2} = z/y
“and y/y = {x,y} = z/z.
Whence, for any {a,b, c, d} = {y,z}, we have:
x/xob/x = a/xox/b=x/xoa/b=H|H;
¥xxja = (x| H = (H, )}
x/x oa/x = H||{x}= {H;{y,z}};
x/x0x/x =x/x = H;
x/anx/b = {x}=x/y = x/z;
a/x ob/x = {y,z} = y/x = z/x;
Mo bje = H|[{y} = H| (£} = {{xhix
afx 0 bje = {(IH = (|5 = {{ne),

So, “O” is well defined. If we denote by « = x/x; f = y/x;y = x/y; u = y/z and
¥ = y/y, then CH| H; o) is the following hypergroup:

o| « B Y It 4
o o, B «y |H|H|H|H
a, B B |H|H |BuwY|Bu?
oy |HI|H| v |»w?|nuw?
H|H |Bw¥|yum¥ y u
H|H |Buw¥|7nuw¥| nu 07

MR | R

Let’s remark that (H||H, ) is not a join space. (We have u/unp/¥ o,
po ¥ npop=90)

3. Let’s consider the hypergroup (H,o), where xoy = {x,y}, for any
(x, y)eHZ. Then, “0” is not well defined. Indeed, for x, y, z, w four different
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elements of H, we have z/z = H, x/y = x/z = {x},s0 x/y 0 z/w = x/z O z/w. But,
on the other hand, x/y 0 z/w = (x o 2)||(y o w) = {x/y,2/y, x/w, z/w} = {{x},{z}}
and x/z o z/w = {{x},{z},H}.

4. Let L= {L; A, v) be a lattice, without inferior and superior limits. Let
(L, o) be the hypergroup (join space) defined:

xoy={ulxny<u<yvy}

% 9

Also, in this case, “0” is not well defined. Indeed, we have

{tlt<x},ifx<y
x/y = {{t]xst}, if x>y
L, ifx=y

and x,/y; = x,/y, if and only if (x;, x;) = (ys, y) or (x; = X, = x and {y, y,} ©
{t|t < x})or (x, = x, = x and {y, y»} = {t|x < t}).
On the other hand,

(xMap)={zlx nu<z<xvul|{zlyrav<z<yv v}

Choose, x, y, y', u, vin L such that y < u < v < y' < x (it is possible, because
L is infinite).

So x/y = x/y’ and we have x/y = (x A u)/(y A v)e(x/y) o (u/v), but u/y +
u/s = (x A u)/s, for any s, such that y’ Av=v <s <y Vv=y. Moreover,
uly * z/t, for any z,t such that x Au<z<xvuand yAv<t<yvo

%,

Therefore, u/y ¢ (x/y') o (u/v(, whence “0” is not well defined.

31. Proposition. Let H be a hypergroup, for which “00” is well defined. Then
(H||H, 1) is a hypergroup. Moreover,

1. If H is regular, H || H is regular, too;

2. If H is join space, H H H is join space, too;

3. (H ”H)/ﬁnun = {BHHH(a/b)[(ﬂH(a)’ ﬁH(b» € H/By x H/BH}'

Proof. 1. If e € E(H), then e/e € E(H || H).

Forany a/b € H||H, a'/b’ € iy u(a/b), where a' € iy(a) and b’ € iy(b). (E(H) is the
set of identities of H and i(x) is the set of inverses of x, for any x € H.)

2. Let (xi/x3) / (vi/y2) O (21/22) | (wi/wy) % @, that is a,/a, exists, such that

H||H H||H

xi/x;€(yiow)||(y20) and zy/z;€(w,0)|[(w;0x). Then, there exist
(x1, x2) € H* and (2}, z3) € H?, such that x,/x, = x}/x; and such that z,/z, = z}/z},
where xi€y,o0a, and x;€ y,0a, respectively, ziew, 00, and z3€w,0a,.
Hence x|/y, N zi/w; + @ and x5/y, N z3/w, * 0.

So, there exist ae x;ow, N y,0zi and be x;0w; N y,0 5.

We have a/be(xiow)|[(x20w) N (220 3)||(z20 ) = (xi/x2 0 wi/wy) N
(z1/z30 y1/y2) = (x2/x2 0 Wi/w2) N (2)/z,0 y1/y,), so CH|| H, 1) is a join space, too.
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3. We shall prove that for (Bx(a,), Bu(b)) = (Bu(az), Bu(bs)) we have By u(ai/b)) =
By I H(a?/ b 2)-

n
There exist {m, n} = N*, {c|, ¢, ..., ¢, dy, ds, ..., d,,} = H such that [[¢; © {a), a}

and l—ld, o {bl’ bz}.
i=1

If n > m, one considers e, € 1,(d,), €nss€1(€ny), ..., e,€I(e,_,) and one

i=1

has {b, b,} = [[d; = []di€m+:1- ... - €, that is b, and b, belong to a hyperproduct
i=1 i=1
of n elements.
Similarly, for n < m. Therefore, we can consider n = m, and we obtain

{asbuayps} < (116l (114) = 10 @)

i=1 i=1 i=1

32. Proposition. Let H be a commutative hypergroup. If H || H is a join space,
then H satisfies the condition Y(a, b,c,d)e H*, such that a/b nc/d + Q=
(@od)llon (b oo + 0.

Proof. Let yea/b n c/d, thatisae yoand c e y od. Let’s consider ¢’ a partial
inverse of ¢ (thatis coc' NI, *+ 0, where I » is the set of partial identities of H).

There exists ze H, such that ¢’€zoa and let tezoc. One has
a/c’ €(yob)|(zoa) = (y/z) o (b/a) and c/te(yod)||(zoc) = (y/z) o(d/c). So,
y/ze(a—c') / (b/a) n(c/t) / (d/c). Because H||H is a join space, it result

H"H H"H

(a/c') o (d/c) N (b/a) o (c/t) + O, thatis (aod)|[(coc)n(bod)|(aot) + 0.

We have ¢ occ wy, and aotcaozoc>c o0c¢, SO Aa0zOC S Wy,
whence (a 0 d)||wy N (boc)||wx + 0.
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