Acta Universitatis Carolinae. Mathematic et Physica

Per Kůrka
 Local return rates in substitutive subshifts

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 44 (2003), No. 2, 29--42

Persistent URL: http: //dml.cz/dmlcz/142725

Terms of use:

© Univerzita Karlova v Praze, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Local Return Rates in Substitutive Subshifts

PETR KŮRKA

Praha
Received 6. March 2003

Abstract

Local lower and upper return rates express the asymptotic growth of the Poincaré return time of cylinders around a given point of a dynamical system. We show that in substitutive subshifts the lower (upper) local return time assumes almost everywhere its minimum (maximum) value and give an algorithm which computes these two values.

1. Introduction

In a topologically transitive dynamical system (X, F), for every neighbourhood U of a point $x \in X$ there exists $k>0$ such that $F^{k}(U) \cap U \neq \emptyset$. The least k with this property is the Poincaré return time $\tau(U)=\min \left\{k>0: F^{k}(U) \cap U \neq \emptyset\right\}$ of U. As U shrinks, $\tau(U)$ grows (except when x is a periodic point). This dependence is expressed by the local return rates introduced by Hirata et al [4]. The lower and upper local return rates are function $\underline{R}_{\xi}, \bar{R}_{\xi}: X \rightarrow[0, \infty]$ defined for a given dynamical system (X, F) and a measurable partition ξ of X. If $\Sigma \subseteq A^{\mathbb{N}}$ is a subshift, and $\xi=\{[a]: a \in A\}$ is the canonical clopen partition, then

$$
\underline{R}(y)=\liminf _{k \rightarrow \infty} \frac{\tau\left(\left[y_{[0, k)}\right]\right)}{k}, \quad \bar{R}(y)=\limsup _{k \rightarrow \infty} \frac{\tau\left(\left[y_{[0, k)}\right]\right)}{k} .
$$

Here $y \in \Sigma$ and $\left[y_{[0, k]}\right]=\left\{z \in \Sigma: z_{[0, k)}=y_{[0, k)}\right\}$ is the cylinder of the prefix of y of length k.

Hirata et al. [4] show that both \underline{R} and \bar{R} are subinvariant, i.e., $\underline{R}(\sigma(y)) \leq \underline{R}(y)$ and $\bar{R}(\sigma(y)) \leq \bar{R}(y)$. Moreover if μ is an invariant measure and (Σ, σ, μ) is ergodic, then both \underline{R} and \bar{R} are μ-almost everywhere constant, so there exist constants

[^0]$0 \leq \mathbf{r}_{0} \leq \mathbf{r}_{1} \leq \infty$, such that $\underline{R}(y)=\mathbf{r}_{0}$ a.e. and $\bar{R}(y)=\mathbf{r}_{1}$ a.e. Saussol et al. [9] show that if (Σ, σ, μ) is ergodic with positive entropy, then $\underline{R}(y) \geq 1$ almost everywhere. This does not hold in systems with zero entropy. Cassaigne et al. show that $\mathbf{r}_{0}=\frac{3-\sqrt{5}}{2}<1$ holds for the Fibonacci subshift, which is the Sturmian subshift of the golden angle rotation. Afraimovich et al. [1] construct examples of irrational rotations with unbounded continued fractions where $\mathbf{r}_{0}=0$. These results are generalized in Kupsa [5] who treats the general case of irrational rotations and their corresponding Sturmian subshifts.

In the present paper we present another generalization of Cassaigne et al. [2]. We show that in substitutive subshifts, \mathbf{r}_{0} is the minimum of the range $\underline{R}(\Sigma)$ while \mathbf{r}_{1} is the maximum of the range $\bar{R}(\Sigma)$. Moreover we describe an algorithm which for a given substitution computes \mathbf{r}_{0} and \mathbf{r}_{1}.

2. Subshifts

For an alphabet A denote by A^{*} the set of finite words and by $A^{\mathbb{N}}$ the space of one-sided infinite words with the product topology. Denote by $|u|$ the length of a word $u \in A^{*}$ and by $|u|_{a}$ the number of occurrences of a letter a in u. The empty word is denoted by λ and $\left.A^{+}=A^{*} \backslash \lambda\right\}$ is the set of nonempty words. We write $v \sqsubseteq u$, if $v=u_{[i, j)}=u_{i} \ldots u_{j-1}$ is a subword of u for some $0 \leq i \leq j \leq|u|$.

The shift map $\sigma: A^{\mathrm{N}} \rightarrow A^{\mathrm{N}}$ is defined by $\sigma(x)_{i}=x_{i+1}$. A subshift is any subset $\Sigma \subseteq A^{N}$ which is closed and σ-invariant, i.e., $\sigma(\Sigma) \subseteq \Sigma$. A subshift is determined by its language $\mathscr{L}(\Sigma)=\left\{u \in A^{*}: \exists x \in \Sigma, u \sqsubseteq x\right\}$. The cylinder set of a word $u \in \mathscr{L}(\Sigma)$ is $[u]=\left\{x \in \Sigma: x_{[0,|u|)}=u\right\}$.

Assume that a subshift $\Sigma \subseteq A^{\mathbb{N}}$ does not have isolated points. Given $y \in \Sigma$ we define the sequence of free positions $s=\left(s_{k}\right)_{k \geq 0}$ in y by induction. Set $s_{0}=0$ and if s_{k-1} has been already defined, then $s_{k}>s_{k-1}$ is the largest integer, such that for all n,

$$
s_{k-1}<n \leq s_{k} \Rightarrow\left[y_{[0, n)}\right]=\left[y_{\left[0, s_{k}\right.}\right] .
$$

If we set $\tau_{k}=\tau\left(\left[y_{\left[0, s_{k}\right.}\right]\right)$, then for $s_{k-1}<n \leq s_{k}$ we have $\tau\left(\left[y_{[0, n)}\right]\right)=\tau_{k}$ and

$$
\begin{aligned}
& \underline{R}(y)=\liminf _{n \rightarrow \infty} \frac{\tau\left(\left[y_{[0, n)}\right]\right)}{n}=\liminf _{k \rightarrow \infty} \frac{\tau_{k}}{s_{k}}=1 / \limsup _{k \rightarrow \infty} \frac{s_{k}}{\tau_{k}} \\
& \bar{R}(y)=\limsup _{n \rightarrow \infty} \frac{\tau\left(\left[y_{[0, n)]}\right)\right.}{n}=\limsup _{k \rightarrow \infty} \frac{\tau_{k}}{s_{k-1}}=1 / \liminf _{k \rightarrow \infty} \frac{s_{k}}{\tau_{k+1}}
\end{aligned}
$$

3. Substitutive subshifts

A subshift is substitutive, if it is the orbit closure of an aperiodic fixed point of a primitive substitution (see e.g., Durand et al [3] or Kůrka [6]). Recall that
a substitution over an alphabet A is a map $\vartheta: A \rightarrow A^{+}$. It extends to a monoid morphism $\vartheta: A^{*} \rightarrow A^{*}$ and to a map $\vartheta: A^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$ by concatenation. A substitution
 radius $\alpha>1$ and corresponding left and right positive eigenvectors μ, v which are normalized to satisfy

$$
\mu M=\alpha \mu, \quad M v=\alpha v, \quad \sum_{a \in A} \mu_{a}=1, \quad \sum_{a \in A} \mu_{a} v_{a}=1 .
$$

By the Perron-Frobenius theorem we have

$$
\lim _{k \rightarrow \infty} \frac{\left|\vartheta^{k}(a)\right|_{b}}{\alpha^{k}}=v_{a} \mu_{b}, \quad \lim _{k \rightarrow \infty} \frac{\left|\vartheta^{k}(a)\right|}{\alpha^{k}}=v_{a} .
$$

If ϑ is a primitive substitution, then there exists a ϑ periodic point $x \in A^{\mathbb{N}}$ and we assume that x is not σ-periodic. By passing to a power of ϑ, we can assume that x is a fixed point, $\vartheta(x)=x$ and moreover, the lower norm $|\vartheta|=\min \{|\vartheta(a)|: a \in A\}$ is at least 2 . The corresponding subshift is the orbit closure

$$
\Sigma_{\vartheta}=\overline{\mathcal{O}(x)}=\left\{y \in A^{\mathbb{N}}: \forall n, \exists k, y_{[0, n)}=x_{[k, k+n)}\right\}
$$

and does not depend on the choice of the fixed point x. The subshift Σ_{ϑ} is minimal and uniquely ergodic. In particular, for every $y \in \boldsymbol{\Sigma}_{\boldsymbol{g}}$,

$$
\lim _{n \rightarrow \infty} \#\left\{i<n: y_{i}=a\right\} / n=\mu_{a} .
$$

We use the same symbol μ for the measure $\mu(W)$ of a Borel set $W \subseteq \Sigma_{g}$. The complexity function $P(n)=\# \mathscr{L}^{n}\left(\Sigma_{\vartheta}\right)=\#\left\{u \in \mathscr{L}\left(\Sigma_{\vartheta}\right):|u|=n\right\}$ is sublinear, i.e., there exist $0<a<b$ such that $a n \leq P(n) \leq b n$ for each n. The return times of cylinders are sublinear too. If $u \in \mathscr{L}^{n}\left(\Sigma_{\vartheta}\right)$, then $a n \leq \tau([u]) \leq b n$. We show now that is substitutive subshifts $\mathbf{r}_{0}<\mathbf{r}_{1}$.

Proposition 1. If Σ is a substitutive subshift, then there exists $y \in \Sigma$ such that $\bar{R}(y)>\underline{R}(y)$.

Proof. Let $0<a<b$ be constants which satisfy $a n \leq P(n) \leq b n$ and $a n \leq$ $\tau([u]) \leq b n$ for each $u \in \mathscr{L}^{n}\left(\Sigma_{9}\right)$. Fix a real number $0<c<1$ and assume that for all $y \in \Sigma$ and for all $k, s_{k+1} \leq(c+1) s_{k}$. Then $s_{k} \leq(c+1)^{k-1}$ and

$$
2^{k} \leq P\left(s_{k}\right) \leq b s_{k} \leq b(c+1)^{k}
$$

and this is a contradiction. Thus there exists a $y \in \Sigma$ and an increasing sequence $k_{1}<k_{2}<\ldots$, such that $s_{k_{i}+1}-s_{k_{i}} \geq c s_{k_{i}}$. It follows

$$
\frac{\tau_{k_{i}+1}}{s_{k_{i}}}-\frac{\tau_{k_{i}+1}}{s_{k_{i}+1}} \geq \frac{\tau_{k_{i}+1} \cdot c \cdot s_{k_{i}}}{s_{k_{i}} S_{k_{i}+1}} \geq a c
$$

so $\bar{R}(y)-\underline{R}(y) \geq a c$.
We shall use frequently the following "decoding" theorem.

Theorem 2 (Mossé [8]). Let ϑ be a primitive substitution with an aperiodic fixed point x. Define a function $h: \mathbb{N} \rightarrow \mathbb{N}$ by $h(n)=\left|\vartheta\left(x_{[0, n)}\right)\right|$. Then there exists a context length $m>0$ such that for every $u \in \mathscr{L}\left(\Sigma_{\vartheta}\right)$ of length at least $2 m$ there exist $i, j \in \mathbb{N}$ with $0 \leq i \leq m,|u|-m \leq j \leq|u|$ and a unique word $v \in \mathscr{L}(\Sigma)$ such that $u_{[i, j)}=\vartheta(v)$. Moreover, if $x_{[n, n+|u|)}=u$ for some n, then there exist i^{\prime}, j^{\prime} such that $n+i=h\left(i^{\prime}\right), n+j=h\left(j^{\prime}\right)$, and $x_{\left[i^{\prime}, j^{\prime}\right)}=v$.

As an auxiliary construction we consider also the two-sided subshift $\Theta_{\vartheta} \subseteq A^{\mathbb{Z}}$ with the same language $\mathscr{L}\left(\Theta_{\vartheta}\right)=\mathscr{L}\left(\Sigma_{\vartheta}\right)=\mathscr{L}(x)$. The cylinder of a word $u \in \mathscr{L}(x)$ positioned at $n \in \mathbb{Z}$ is the set $[u]_{n}=\left\{y \in \Theta_{\vartheta}: y_{[n, n+|n|)}=u\right\}$. The cylinder of the empty word is the full space $[\lambda]=[\lambda]_{0}=\Theta_{\vartheta}$. We extend the substitution to a map $\vartheta: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ by

$$
\vartheta\left(\ldots u_{-2} u_{-1} \cdot u_{0} u_{1} \ldots\right)=\ldots \vartheta\left(u_{-2}\right) \vartheta\left(u_{-1}\right) \cdot \vartheta\left(u_{0}\right) \vartheta\left(u_{1}\right) \ldots
$$

where the dot is placed immediately before the zero coordinate. As a consequence of Theorem 2 we have

Proposition 3.

1. $\vartheta\left(\Theta_{\vartheta}\right) \subseteq \Theta_{\vartheta}$.
2. $\vartheta: \Theta_{\vartheta} \rightarrow \Theta_{\vartheta}$ is one-to-one and open.
3. If $u \in \mathscr{L}\left(\Sigma_{\vartheta}\right)$, then $\vartheta\left([u]_{0}\right)=[\vartheta(u)]_{0}$ in Θ_{ϑ}.
4. For every $y \in \Theta_{\vartheta}$ the exists a unique $z \in \Theta_{\vartheta}$ and unique $i<\left|\vartheta\left(z_{0}\right)\right|$, such that $y=\sigma^{i}(\vartheta(z))$.
Definition 4. For a clopen (closed and open) set $W \subseteq \Theta_{\vartheta}$, we set

$$
\begin{aligned}
& l(W)=\max \left\{l \leq 0: \forall y \in W, \forall z \in A^{\mathbb{Z}},\left(z_{[l, \infty)}=y_{[l, \infty)} \Rightarrow z \in W\right)\right\} \\
& p(W)=\min \left\{n \leq 0: \forall y, z \in W, y_{[n, 0)}=z_{[n, 0)}\right\} \\
& q(W)=\max \left\{n \leq 0: \forall y, z \in W, y_{[0, n)}=z_{[0, n)}\right\} \\
& r(W)=\min \left\{l \geq 0: \forall y \in W, \forall z \in A^{\mathbb{Z}},\left(z_{(-\infty, l)}=y_{(-\infty, l)} \Rightarrow z \in W\right)\right\}
\end{aligned}
$$

Denote by $|W|=r(W)-l(W)$ the length of W and by $c(W) \in A^{q(W)-p(W)}$ the common central part of W, such that for all $y \in W, y_{[p(W), q(W))}=c(W)$.

Then $l(W) \leq p(W) \leq q(W) \leq r(W)$ and W is a union of cylinders of length $|W|$ positioned at $l(W)$. All these cylinders coincide at $[p(W), q(W))$. For the full set $W=[\lambda]$ we have $l(W)=p(W)=q(W)=r(W)=0$.

Figure 1. A clopen set

If $W \subseteq \Theta_{\vartheta}$ is a clopen set, then $\vartheta(W)$ is a clopen set too. We investigate the properties of the iterates $\vartheta^{k}(W)$.

Proposition 5. There exists an algorithm which, given a clopen set W, computes the limit

$$
\chi(W)=\lim _{k \rightarrow \infty} q\left(\vartheta^{k}(W)\right) \cdot \alpha^{-k} .
$$

Proof. Let $f: A \rightarrow A$ be a finite dynamical system given by $f(a)=\vartheta(a)_{0}$ and set $A_{0}=\{a \in A:[a] \cap W \neq \emptyset\}$. If for all $k \geq 0 f^{k}\left(A_{0}\right)$ contains at least two elements, then $q\left(\vartheta^{k}(W)\right)=0$ and $\chi(W)=0$. Assume that for some $j>0, f^{j}\left(A_{0}\right)$ is a singleton, so $q\left(\vartheta^{j}(W)\right)>0$. Let $v_{k}=\vartheta^{k}(W)_{\left[0, q \vartheta^{k}(W)\right),}$, so $q\left(\vartheta^{k}(W)\right)=\left|v_{k}\right|$. Since $|\vartheta| \geq 2,\left|v_{k+1}\right| \geq 2\left|v_{k}\right|$ and $\left|v_{k}\right|$ tend to infinity. Set

$$
m_{1}=\left\lceil\frac{2 m}{|\vartheta|}\right\rceil, \quad m_{2}=\left\lceil\frac{m}{|\vartheta|-1}\right\rceil, \quad q_{j}=q(\vartheta j(W)),
$$

where m is the context length from Theorem 2. Let $j_{0} \geq 0$ be the first integer for which $q_{j_{0}} \geq m_{1}$. For $j \geq j_{0}$ set

$$
V_{j}=\left\{y_{\left.q_{j}-m_{1}, q_{j}+m_{2}\right)}: y \in \vartheta^{j}(W)\right\} .
$$

By Theorem 2, for every $y \in \vartheta^{j}(W)$ we have $q_{j+1} \leq\left|\vartheta\left(y_{\left[0, q_{j}\right)}\right)\right|+m$ and therefore

$$
\left|\vartheta\left(y_{\left[0, q_{j}+m_{2}\right)}\right)\right|-q_{j+1} \geq\left|\vartheta\left(y_{\left[q_{j}, q_{j}+m_{2}\right)}\right)\right|-m \geq m_{2} \cdot|\vartheta|-m \geq m_{2} .
$$

Thus $\vartheta(y)_{\left[q_{j+1}-m_{1}, q_{j+1}+m_{2}\right)}$ is a subword of $\vartheta\left(y_{\left[q_{j}-m_{1}, q_{j}+m_{2}\right)}\right)$ and V_{j+1} is determined by V_{j}. Since V_{j} are finite (and bounded), there exist $j_{0} \leq j<j+r$ such that $V_{j+r+i}=V_{j+i}$ for all $i \geq 0$. There exist $b, c \in \mathscr{L}\left(\Sigma_{9}\right)$ such that

$$
\begin{aligned}
y \in \vartheta^{j}(W) & \Rightarrow y_{\left[0, q_{j}\right)}=b \\
y \in \vartheta^{j+r}(W) & \Rightarrow y_{\left[0, q_{j+r}\right)}=\vartheta^{r}(b) c \\
y \in \vartheta^{++r r}(W) & \Rightarrow y_{\left[0, q_{j}+(r)\right.}=\vartheta^{r}(b) \vartheta^{(l-1) r}(c) \ldots \vartheta^{r}(c) c .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\chi(W) & =\lim _{l \rightarrow \infty} \frac{\left|\vartheta^{\mid r}(b) \vartheta^{(l-1) r}(c) \ldots \vartheta^{r}(c) c\right|}{\alpha^{j+l r}}=\alpha^{-j} \sum_{i<|b|} v_{b_{i}}+\left(\alpha^{-j-r}+\alpha^{-j-2 r}+\ldots\right) \sum_{i<|c|} v_{c_{i}} \\
& =\alpha^{-j} \sum_{i<|b|} v_{b_{i}}+\frac{\alpha^{-j}}{\alpha^{r}-1} \sum_{i<|c|} v_{c_{i}}
\end{aligned}
$$

Proposition 6. There exists an algorithm which, given a clopen set W, computes the limit

$$
\gamma(W)=\lim _{k \rightarrow \infty} \tau\left(\vartheta^{k}(W)\right) \cdot \alpha^{-k}>0 .
$$

Proof. Set $b=r(W)-l(W)$. Let U be the set of all words $u \in \mathscr{L}(x)$ such that

$$
\left[u_{0, b}\right]_{(W)} \subseteq W, \quad\left[u_{[a, a+b)}\right]_{(W)} \subseteq W
$$

for some $a>0$ (Figure 2). Let $a_{u}=a$ be the least integer with this property, so $|u|=a_{u}+b$. Assume that $k \geq 0$ and let $w \in \vartheta^{k}(W) \cap \sigma^{-\tau\left(\vartheta^{k}(W)\right)}\left(\vartheta^{k}(W)\right)$. There exist $z, v \in W$ such that $w=\vartheta^{k}(z), \sigma^{\tau\left(\vartheta^{k}(W)\right)}(w)=\vartheta^{k}(v)$. By Theorem 2 there exists $a>0$ with $z=\sigma^{a}(v)$. Then $u=z_{[(\psi),(W)+a+b)} \in U$ and $a_{u}=a$, so $\tau\left(\vartheta^{k}(W)\right)=$ $\left|\vartheta^{k}\left(u_{\left[0, a_{u}\right)}\right)\right|$. For every $u \in U$ there exists a limit

$$
t_{u}=\lim _{k \rightarrow \infty}\left|\vartheta^{k}\left(u_{\left[0, a_{u}\right)}\right)\right| \cdot \alpha^{-k}=\sum_{i<a_{u}} v_{u_{u}} .
$$

Since U is a finite set, we get $\varrho(W)=\min \left\{t_{u}: u \in U\right\}>0$.

Figure 2. Return time
Definition 7. We say that a clopen set $W \subseteq \Theta_{g}$ is decodable, if for some $i \in \mathbb{Z}$, $\sigma^{-i}(W) \subseteq \vartheta\left(\Theta_{\vartheta}\right)$. If $i \geq 0$ is the least integer with this property, we write, by an abuse of notation,

$$
\vartheta^{-1}(W)=\vartheta^{-1}\left(\sigma^{-i}(W)\right)=\left\{z \in \Theta_{\vartheta}: \sigma^{i}(\vartheta(z)) \in W\right\}
$$

We say that a clopen set $W \subseteq \Theta_{ง}$ is short, if both $p(W)-l(W)$ and $r(W)-q(W)$ are less than $(m+1)|\vartheta| /(|\vartheta|-1)$, where m is the context length from Theorem 2 .

If W is decodable, then clearly $\vartheta\left(\vartheta^{-1}(W)\right)=\sigma^{-i}(W)$.
Proposition 8. If W is a clopen set with $|c(W)|=q(W)-p(W) \geq 2 m$, where m is the context length, then W is decodable, and

$$
\begin{aligned}
& r\left(\vartheta^{-1}(W)\right)-q\left(\vartheta^{-1}(W)\right) \leq \frac{r(W)-q(W)+m}{|\vartheta|}+1 \\
& q\left(\vartheta^{-1}(W)\right)-p\left(\vartheta^{-1}(W)\right) \leq \frac{q(W)-p(W)}{|\vartheta|}+1 \\
& p\left(\vartheta^{-1}(W)\right)-l\left(\vartheta^{-1}(W)\right) \leq \frac{p(W)-l(W)+m}{|\vartheta|}+1
\end{aligned}
$$

If W is also short, then so is $\vartheta^{-1}(W)$.
Proof. By Theorem 2 there exist i, j such that $p(W) \leq i \leq p(W)+m, q(W)-m \leq$ $j \leq q(W)$ and unique v such that for each $y \in W, y_{[i, j)}=\vartheta(v)$. Moreover, there exists $z \in \Theta_{\vartheta}$ with $\vartheta(z)=\sigma^{i}(y)$ and $z \in[v]_{0}$, so W is decodable. We have

$$
r\left(\vartheta^{-1}(W)\right)-q\left(\vartheta^{-1}(W)\right) \leq \frac{r(W)-j}{|\vartheta|}+1 \leq \frac{r(W)-q(W)+m}{|\vartheta|}+1 .
$$

Similarly we obtain the inequality for $p\left(\vartheta^{-1}(W)\right)-l\left(\vartheta^{-1}(W)\right)$, while the inequality for $q\left(\vartheta^{-1}(W)\right)-p\left(\vartheta^{-1}(W)\right)$ is obvious. If W is short, then

$$
r\left(\vartheta^{-1}(W)\right)-q\left(\vartheta^{-1}(W)\right) \leq \frac{\frac{(m+1)|\vartheta|}{|\vartheta|-1}+m}{|\vartheta|}+1 \leq \frac{(m+1)|\vartheta|}{|\vartheta|-1}
$$

so $\vartheta^{-1}(W)$ is short too.
Definition 9. Let $V \subset W \subseteq \Theta_{\vartheta}$ be clopen sets. We say that V is a maximal clopen subset of W, if $\chi(V)>\chi(W)$ and there is no clopen set U with $V \subset U \subset W$ and $\chi(U)>\chi(W)$.

Lemma 1. Let U, V be maximal clopen subsets of W. If $U \cap V \neq \emptyset$, then $U=V$.

Proof. Assume that $w \in U \cap V$ and set $c=\min \{\chi(U), \chi(V)\}>\chi(W)$. For $c_{k}=\min \left\{q\left(\vartheta^{k}(U)\right), q\left(\vartheta^{k}(V)\right)\right\}$ we have $\lim _{k \rightarrow \infty} c_{k} \alpha^{-k}=c$. If $u, v \in U \cup V$, then

$$
\vartheta^{k}(u)_{\left[0, c_{k}\right)}=\vartheta^{k}(w)_{\left[0, c_{k}\right)}=\vartheta^{k}(v)_{\left[0, c_{k}\right)},
$$

so $q\left(\vartheta^{k}(U \cup V)\right) \geq c_{k}$ and $\chi(U \cup V) \geq \chi(W)$. Since $U V$ are maximal, we get $U=U \cup V=V$.

We construct now a finite graph associated to a substitution. Denote by \mathscr{W} the set of all clopen sets $W \subseteq \Theta_{\vartheta}$ which are short and not decodable. By Proposition $8, \mathscr{W}$ is finite. We say that a pair $e=\left(W_{0}, W\right)$ is an edge, if $W_{0} \in \mathscr{W}$ and W is a maximal clopen subset of W_{0}. Denote by \mathscr{E} the set of edges. We have the source and target maps $s, t: \mathscr{E} \rightarrow \mathscr{W}$ defined as follows. If $e=\left(W_{0}, W\right) \in \mathscr{E}$ is an edge, then $s(e)=W_{0}$. Its target is $\left.t(e)=W_{1}=\vartheta^{-L e(}\right)(W)$, where $L(e) \geq 0$ is the least integer such that W_{1} is not decodable. Proposition 8 implies that W_{1} is short, so $W_{1} \in \mathscr{W}$. The offset of an edge $e=\left(W_{0}, W\right)$ is $\chi(e)=\chi(W)-\chi\left(W_{0}\right)>0$ and its probability is $P(e)=\mu(W) / \mu\left(W_{0}\right)$. Let $\mathscr{G}_{0}=\left(\mathscr{W}_{0}, \mathscr{E}_{0}, s, t\right)$ be the subgraph of $\mathscr{G}=(\mathscr{W}, \mathscr{E}, s, t)$ of those vertices which are reachable from the initial vertex $[\lambda]=\Theta_{9}$. Given a vertex $W \in \mathscr{W}_{0}$ the outgoing edges determine a clopen partition of W and the sum of their probabilities is 1 .

Lemma 2. For every measurable set $W \subseteq \Theta_{\vartheta}$ we have

$$
\mu(\vartheta(W))=\frac{\mu(W)}{\sum_{a \in A} \mu_{a}|\vartheta(a)|} .
$$

Proof. For $y \in \Theta_{\vartheta}$ and $n>0$ set $k_{n}=\left|\vartheta\left(y_{[0, n}\right)\right|$. If $u \in \mathscr{L}\left(\Theta_{\vartheta}\right)$, then $\vartheta(u)$ occurs in $\vartheta\left(u_{\left.m, k_{n}-m\right)}\right)$ only at positions $\left|\vartheta\left(y_{[0, j)}\right)\right|$, such that $y_{[j, j+|u|)}=u$. If follows

$$
\begin{aligned}
\mu\left(\vartheta\left([u]_{0}\right)\right. & =\lim _{n \rightarrow \infty} \frac{\#\left\{i<k_{n}: \vartheta(y)_{[0, \mid \vartheta(u))}=\vartheta(u)\right\}}{k_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\#\left\{i<n: y_{[0, u)}=u\right\}}{n} \cdot \frac{n}{k_{n}}=\frac{\mu\left([u]_{0}\right)}{\sum_{a \in A} \mu_{0}|\vartheta(a)|} .
\end{aligned}
$$

Proposition 10. For every $y \in \Sigma_{g}$ there exists a path $\left(e_{k}: W_{k} \rightarrow W_{k+1}\right)_{k \geq 0}$ in \mathscr{G}_{0} from the initial vertex $W_{0}=[\lambda]$ and integers $\left(l_{k}\right)_{k \geq 0}$ such that $l_{k+1}-l_{k}=L\left(e_{k}\right)$, and $W_{k}=\vartheta^{-l_{k}}\left(\left[y_{\left[0, s_{k}\right.}\right]\right)$. Conversely any infinite path in \mathscr{G}_{0} with starts in W_{0} yields a unique point $y \in \Sigma_{\vartheta}$ with this property. Moreover,

$$
\mu\left(\left[y_{\left[0, s_{k}\right]}\right]\right)=P\left(e_{0}\right) \ldots P\left(e_{k-1}\right) .
$$

Proof. For a fixed k set $U_{n}=\vartheta^{-n}\left(y_{\left[0, s_{k}\right.}\right) \in \mathscr{W}$, where $0 \leq n \leq l_{k}$ and $l_{k} \geq 0$ is the first integer for which $U_{l_{k}}$ is not decodable. Then $c\left(U_{l_{k}}\right)<2 m$ and by induction we get that $U_{l_{k}}$ is short. Thus $W_{k}=U_{l_{k}} \in \mathscr{W}$. Set $V_{k}=\vartheta^{-l_{k}(}\left(y_{\left[0, s_{k+1}\right)}\right)$. Since $\left[y_{\left[0, s_{k+1}\right)}\right]$ is a maximal clopen subset of $\left[y_{\left[0, s_{k}\right]}\right], e=\left(W_{k}, V_{k}\right)$ is an edge and for $W_{k+1}=t(e)$ (target) we get that $y_{\left[0, s_{k+1}\right)}=\vartheta^{\dagger_{k+1}}\left(W_{k+1}\right)$. We have $\mu\left(\left[y_{\left[0, s_{0}\right)}\right]\right)=\mu([\lambda])=1$ and

$$
\frac{\mu\left(\left[y_{\left[0, s_{k+1}\right.}\right]\right)}{\mu\left(\left[y_{\left[0, s_{k}\right]}\right]\right)}=\frac{\mu\left(\vartheta^{l_{k}}\left(V_{k}\right)\right)}{\mu\left(\vartheta^{k}\left(W_{k}\right)\right)}=\frac{\mu\left(V_{k}\right)}{\mu\left(W_{k}\right)}=P\left(e_{k}\right) .
$$

Proposition 11. For an edge $e=\left(W_{0}, W\right): W_{0} \rightarrow W_{1}$ consider a linear function

$$
f_{e}(z)=a_{e} z+b_{e}=\frac{\varrho\left(W_{0}\right) z+\chi(e)}{\varrho\left(W_{1}\right) \alpha^{L(e)}} .
$$

Given $y \in \Sigma_{g}$, let l_{k} be the sequence from Proposition 10 and let k_{i} be the sequence of times whose transitions pass through e, i.e., $W_{k_{i}}=W_{0}$ and $W_{k_{i}+1}=W_{1}$. Then

$$
\lim _{i \rightarrow \infty} \frac{s_{k_{i}+1}}{\tau_{k_{i}+1}}-f_{e}\left(\frac{s_{k_{i}}}{\tau_{k_{i}}}\right)=0 .
$$

The coefficents a_{e} and b_{e} satisfy $a_{e} \leq 1$ and $b_{e}>0$. Moreover, the product of slopes a_{e} along a cycle of the graph is strictly smaller than 1.

Proof. Since $\tau_{k_{i}}=\tau\left(\left[y_{\left[0, s_{k}\right.}\right]\right)=\tau\left(\vartheta^{l_{k}}\left(W_{0}\right)\right)$, and

$$
\lim _{i \rightarrow \infty} \frac{s_{k_{i}+1}-s_{k_{i}}}{\alpha^{k_{i}}}=\lim _{i \rightarrow \infty} \frac{q\left(\vartheta^{k_{k_{i}}}(W)\right)-q\left(\vartheta^{l_{k_{i}}}\left(W_{0}\right)\right)}{\alpha^{k_{i}}}=\chi(W)-\chi\left(W_{0}\right)=\chi(e),
$$

we get

$$
\begin{aligned}
& \frac{s_{k_{i}+1}}{\tau_{k_{i}+1}}-f_{e}\left(\frac{s_{k_{i}}}{\tau_{k_{i}}}\right) \\
& =\frac{s_{k_{i}+1}-s_{k_{i}}}{\alpha^{l_{k_{i}} \cdot \alpha^{L(e)}} \cdot \frac{\alpha^{l_{k_{i}+1}}}{\tau_{k_{i}+1}}+\frac{s_{k_{i}}}{\tau_{k_{i}}}\left(\frac{\tau_{k_{i}}}{\tau_{k_{i}+1}}-\frac{\varrho\left(W_{0}\right)}{\varrho\left(W_{1}\right) \alpha^{L(e)}}\right)-\frac{\chi(e)}{\varrho\left(W_{1}\right) \alpha^{L(e)}}} \\
& \rightarrow \frac{\chi(e)}{\tau\left(W_{1}\right) \alpha^{L(e)}}+\frac{s_{k_{i}}}{\tau_{k_{i}}} \cdot 0-\frac{\chi(e)}{\tau\left(W_{1}\right) \alpha^{L(e)}}=0 .
\end{aligned}
$$

Since $W \subset W_{0}$

$$
\frac{\tau\left(\vartheta^{k}\left(W_{0}\right)\right)}{\alpha^{k}} \leq \frac{\tau\left(\vartheta^{k}(W)\right)}{\alpha^{k}}=\frac{\tau\left(\vartheta^{k+L(e)}\left(W_{1}\right)\right)}{\alpha^{k+L(e)}} \cdot \alpha^{L(e)}
$$

so $\varrho\left(W_{0}\right) \leq \varrho\left(W_{1}\right) \alpha^{L(e)}$. If $e=e_{0}, \ldots, e_{k-1}: W_{0} \rightarrow W_{1} \rightarrow \ldots \rightarrow W_{k}=W_{0}$ is a cycle in \mathscr{G}, then $a_{e}=a_{e_{0}} \ldots a_{e_{k-1}}=\alpha^{-L\left(e_{0}\right)-\ldots-L\left(e_{k-1}\right)}<1$.

For the sequence s_{k} / τ_{k+1} we consider the graph \mathscr{G}_{2} whose vertices are \mathscr{E}_{0} and whose edges are $\mathscr{E}_{2}=\left\{(d, e) \in \mathscr{E}^{2}: t(d)=s(e)\right\}$. The source and target maps and probabilities are $s(d, e)=d, t(d, e)=e, P(d, e)=P(e)$. The paths in \mathscr{G}_{0} are in one-to-one correspondence with those paths in \mathscr{G}_{2} whose initial vertex $e \in \mathscr{E}_{0}$ satisfies $s(e)=\lambda$ in \mathscr{G}_{0}.

Proposition 12. For a pair of edges $W_{0} \xrightarrow{d} W_{1} \xrightarrow{e} W_{2}$ consider a linear function

$$
g_{d e}(z)=\frac{\varrho\left(W_{1}\right) z+\chi(d) \alpha^{-L(d)}}{\varrho\left(W_{2}\right) \alpha^{L(e)}} .
$$

Given $y \in \Sigma_{\Omega}$, let l_{k} be the sequence from Proposition 10 and let k_{i} be the sequence of times whose transitions pass through d,e, i.e., $W_{k_{i}}=W_{0}, W_{k_{i}+1}=W_{1}$ and $W_{k_{i}+2}=W_{2}$. Then

$$
\lim _{i \rightarrow \infty} \frac{s_{k_{i}+1}}{\tau_{k_{i}+2}}-g_{d e}\left(\frac{s_{k_{i}}}{\tau_{k_{i}+1}}\right)=0
$$

Proof. We have

$$
\begin{aligned}
& \frac{s_{k_{i}+1}}{\tau_{k_{i}+2}}-g_{d e}\left(\frac{s_{k_{i}}}{\tau_{k_{i}+1}}\right) \\
& =\frac{s_{k_{i}+1}-s_{k_{i}}}{\alpha^{k_{i}} \cdot \alpha^{L(d)+L(e)}} \cdot \frac{\alpha^{l_{k_{i}+2}}}{\tau_{k_{i}+2}}+\frac{s_{k_{i}}}{\tau_{k_{i}+1}}\left(\frac{\tau_{k_{i}+1}}{\tau_{k_{i}+2}}-\frac{\varrho\left(W_{1}\right)}{\varrho\left(W_{2}\right) \alpha^{L(e)}}\right)-\frac{\chi(d)}{\varrho\left(W_{2}\right) \alpha^{L(d)+L(e)}} \\
& \rightarrow \frac{\chi(d)}{\varrho\left(W_{2}\right) \alpha^{L(d)+L(e)}}+\frac{s_{k_{i}}}{\tau_{k_{i}+1}} \cdot 0-\frac{\chi(d)}{\varrho\left(W_{2}\right) \alpha^{L(d)+L(e)}}=0 .
\end{aligned}
$$

Theorem 13. Let $\vartheta: A \rightarrow A^{+}$be a primitive substitution with an aperiodic fixed point $x \in A^{\mathbb{N}}$. Set

$$
\mathbf{r}_{0}=\min \underline{R}\left(\Sigma_{\vartheta}\right), \quad \mathbf{r}_{1}=\max \bar{R}\left(\Sigma_{9}\right) .
$$

Then $0<\mathbf{r}_{0}<\mathbf{r}_{1}<\infty, \underline{R}(y)=\mathbf{r}_{0}$ a.e., and $\bar{R}(y)=\mathbf{r}_{1}$ a.e.
Proof. Say that $C \subseteq \mathscr{W}_{0}$ is a final irreducible component of \mathscr{G}_{0}, if for every $W \in C$ and $W^{\prime} \in \mathscr{W}_{0}$ we have $W^{\prime} \in C$ iff there exists a path from W to W^{\prime}. Denote by C_{1}, \ldots, C_{p} the final irreducible components of \mathscr{G}_{0}. The set $Y_{i} \subseteq \Sigma_{g}$ of those y which ultimately attain C_{i} is open, has positive measure, and $Y=Y_{1} \cup \ldots \cup Y_{p}$ has measure 1. Say that a path $e=e, \ldots, e_{j-1}, e_{j}, \ldots, e_{k-1}$ in C_{i} is simple, if e_{0}, \ldots, e_{j-1} is a cycle, i.e., $t\left(e_{j-1}\right)=s\left(e_{0}\right), e_{0}, \ldots, e_{j-1}$ are pairwise distinct, and e_{j}, \ldots, e_{k-1} are pairwise distinct. The composition $f_{e_{j-1}} \ldots f_{e_{0}}$ has a unique fixed
point z and we set $z_{e}=f_{e_{k-1}} \ldots f_{e}(z)$. The set of simple paths is finite. Denote by $c_{i}>0$ the minimum of all $1 / z_{e}$ over all simple paths in C_{i}. Then for almost all $y \in Y_{i}, \underline{R}(y)=c_{i}$. Consider now two different final irreducible components C_{i}, C_{j}. Since Y_{i}, Y_{j} are open and $\left(\Sigma_{g}, \sigma\right)$ is minimal, there exists $k>0$ such that $Y_{i j}=Y_{i} \cap \sigma^{-k}\left(Y_{j}\right)$ is nonempty and has positive measure. For almost all $y \in Y_{i j}$ we have $\underline{R}(y)=c_{i}$ and $c_{i}>\underline{R}\left(\sigma^{k}(y)\right) \geq c_{j}$. Thus all c_{i} are equal $c_{1}=\ldots=c_{p}=\mathbf{r}_{0}>0$ and for allmost all $y \in \Sigma_{g}$ we have $\underline{R}(y)=\mathbf{r}_{0}$. If $y \in \Sigma_{g} \backslash Y$, then for some $k \geq 0$, $\sigma^{k}(y) \in Y$, so $\underline{R}(y) \geq \underline{R}\left(\sigma^{k}(y)\right) \geq \mathbf{r}_{0}$, and $\mathbf{r}_{0}=\min \underline{R}\left(\Sigma_{g}\right)$.

Similarly denote by D_{1}, \ldots, D_{p} all final irreducible components of $\mathscr{C}_{2}, Y_{i} \subseteq \Sigma_{\vartheta}$ the set of those points which ultimately attain D_{i}. If $e=e_{0}, \ldots, e_{j-1}, e_{j}, \ldots, e_{k-1}$ is a simple path in \mathscr{G}_{2}, then the composition $g_{e_{j-1}} \ldots g_{e_{0}}$ has a single fixed point z and we set $z_{e}=g_{e_{k-1}} \ldots g_{e_{j}}(z)$. Since all coefficients of all functions $g_{e_{j}}$ are positive, we have $z_{e}>0$. Denote by $d_{i}<\infty$ the maximum of all $1 / z_{e}$ over all simple paths in D_{i}. Then for almost all $y \in Y_{i}, \bar{R}(y)=d_{i}$. Consider now two different final irreducible components D_{i}, D_{j}. Since Y_{i}, Y_{j} are open and $\left(\Sigma_{g}, \sigma\right)$ is minimal, there exists $k>0$ such that $Y_{i j}=Y_{i} \cap \sigma^{-k}\left(Y_{j}\right)$ is nonempty and has positive measure. The set $\sigma^{k}\left(Y_{i j}\right) \subseteq Y_{j}$ has a positive measure too, so for allmost all $y \in \sigma^{k}\left(Y_{i j}\right)$, $\bar{R}(y)=d_{i}$. If $y=\sigma^{k}(z)$ with $z \in Y_{i j}$, then $d_{j}=\bar{R}(y) \leq \bar{R}(z) \leq d_{i}$. So all d_{i} are equal, $d_{1}=\ldots=d_{p}=\mathbf{r}_{1}$, and $\bar{R}(y)=\mathbf{r}_{1}$ for allmost all $y \in Y$. If $y \in \Sigma_{g} \backslash Y$, then there exists $k>0$ and $z \in Y$ with $y=\sigma^{k}(z)$, so $\bar{R}(y) \leq \bar{R}(z) \leq \mathbf{r}_{1}$. Thus $\mathbf{r}_{1}=\max \bar{R}\left(\Sigma_{g}\right)$. By Proposition 1, $\mathbf{r}_{0}<\mathbf{r}_{1}$.

Corollary 14. There exists an algorithm with computes the values \mathbf{r}_{0} and \mathbf{r}_{1} of a given substitution.

4. The Feigenbaum subshift

The Feigenbaum subshift is generated by the substitution

$$
\vartheta=\left\{\begin{array}{lll}
0 & \rightarrow & 11 \\
1 & \rightarrow & 10
\end{array}\right.
$$

with fixed point $x=\vartheta^{\infty}(1)=10111010101110111011101010111010 \ldots$ The context length is $m=2$, the spectral radius is $\alpha=2$, and the normalized eigenvectors are $\mu=\left(\frac{1}{3}, \frac{2}{3}\right), v=(1,1)$. We show that we get the graph with vertices $W_{0}=[\lambda], W_{1}=[1]_{0}, W_{2}=[11]_{0}$. By Proposition 6 we get $\varrho\left(W_{1}\right)=\varrho\left(W_{2}\right)=1$. Denote by C_{k}, the common prefix of $\vartheta^{k}(0)$ and $\vartheta^{k}(1)$, so $\vartheta^{k}\left(W_{0}\right)=\left[C_{k}\right]_{0}$. We have $C_{1}=1, C_{2}=101, C_{3}=1011101, \ldots$ and $\left|C_{k}\right|=2^{k}-1$. If $u \in \mathscr{L}\left(\Sigma_{\vartheta}\right)$, then $c\left(\vartheta^{k}\left([u]_{0}\right)\right)=\vartheta^{k}(u) C_{k}$, so $q\left(\vartheta^{k}\left([u]_{0}\right)\right)=(|u|+1) 2^{k}-1$ and

$$
\chi\left([u]_{0}\right)=\lim _{k \rightarrow \infty} \frac{(|u|+1) 2^{k}-1}{2^{k}}=|u|+1 .
$$

In the graph there are two edges leading from the initial vertex $W_{0}=[\lambda]: e=$ $\left(W_{0},[1]_{0}\right): W_{0} \rightarrow W_{1}$ with $L(e)=0$ and $f=\left(W_{0},[0]_{0}\right)$. Since $[0]_{0}=[01]_{0}$ and $\tau^{-1}\left([01]_{0}\right)=[1]_{0}$, we get $f: W_{0} \rightarrow W_{1}$ with $L(f)=1$. Continuing in this way we get edges (Figure 3)

Figure 3. The graphs of the Feigenbaum subshift

$$
\begin{array}{llll}
e=([\lambda],[1]): & W_{0} \rightarrow W_{1}, & L(e)=0, & \chi(e)=1 \\
f=([\lambda],[01]): & W_{0} \rightarrow W_{1}, & L(f)=1, & \chi(f)=2 \\
a=([1],[101]): & W_{1} \rightarrow W_{1}, & L(a)=2, & \chi(a)=2, \\
b=([1],[11]): & W_{1} \rightarrow W_{2}(z)=\frac{z+2}{2} \\
c=([11],[1101]): & W_{2} \rightarrow W_{1}, & L(b)=0, & \chi(b)=1, \\
d=(c) & f_{b}(z)=z+1 \\
d=([11],[11101]): & W_{2} \rightarrow W_{1}, & L(d)=2, & \chi(d)=3,
\end{array}
$$

Figure 4. The functions of the Feigenbaum subshift
For any $z \in \mathbb{R}$ we have $\lim _{n \rightarrow \infty} f_{a^{n}}(z)=2$, and 2 is the fixed point of f_{a}. The maximum of iteratuins if functions f_{a}, f_{b}, f_{c} and f_{d} is attained by $f_{b}(2)=3$. The minimum is attained by the iterations of the function $f_{b c}(z)=f_{c}\left(f_{b}(z)\right)=(z+3) / 4$ whose fixed point is 1 . Thus we get

$$
1 \leq \liminf _{k \rightarrow \infty} \frac{s_{k}}{\tau_{k}} \leq \limsup _{k \rightarrow \infty} \frac{s_{k}}{\tau_{k}} \leq 3, \quad \mathbf{r}_{0}=\frac{1}{3} .
$$

By Proposition 12 we get

$$
\begin{array}{lll}
g_{a a}(z)=\frac{z+1}{2}, & g_{a b}(z)=z+1, & g_{b c}(z)=\frac{z+1}{4},
\end{array} g_{b d}(z)=\frac{z+1}{4}, ~ 子 \quad g_{c a}(z)=\frac{2 z+1}{4}, \quad g_{c b}(z)=z+\frac{1}{2}, \quad g_{d a}(z)=\frac{4 z+3}{8}, \quad g_{d b}(z)=\frac{4 z+3}{4} .
$$

The maximum of iterations of these functions is attained from the fixed point 1 of $g_{a a}$ by $g_{a b}(1)=2$. The minimum is attained at the fixed point of the function $g_{c b c}(z)=g_{b c}\left(g_{c b}(z)\right)=\frac{2 z+3}{8}$ which is $z=\frac{1}{2}$, so

$$
\frac{1}{2} \leq \liminf _{k \rightarrow \infty} \frac{s_{k}}{\tau_{k+1}} \leq \limsup _{k \rightarrow \infty} \frac{s_{k}}{\tau_{k+1}} \leq 2, \quad \mathbf{r}_{1}=2
$$

Corollary 15.

$$
\frac{1}{3} \leq \underline{R}(y) \leq 1, \quad \frac{1}{2} \leq \bar{R}(y) \leq 2, \quad \underline{R}(y)=\frac{1}{3} \text { a.e., } \quad \bar{R}(y)=2 \text { a.c. }
$$

5. The Fibonacci subshift

The Fibonacci subshift is generated by the substitution

$$
\vartheta=\left\{\begin{array}{lll}
0 & \rightarrow & 1 \\
1 & \rightarrow & 10
\end{array}\right.
$$

with fixed point $x=\vartheta^{\infty}(1)=1011010110110101101011011010110110 \ldots$ The context length is $m=1$. The spectral radius $\alpha=\frac{\sqrt{5}+1}{2}$ satisfies $\alpha^{2}=\alpha+1$. The normalized eigenvectors are

$$
\mu=\left(\frac{3-\sqrt{5}}{2}, \frac{\sqrt{5}-1}{2}\right), \quad v=\left(\frac{\sqrt{5}+1}{2 \sqrt{5}}, \frac{3+\sqrt{5}}{2 \sqrt{5}}\right)
$$

The Fibonacci numbers $F_{k}=\left(\alpha^{k+1}-(-\alpha)^{-k-1}\right) / \sqrt{5}$ are $F_{0}=F_{1}=1, F_{2}=2$, $F_{3}=3, F_{4}=5, \ldots$ We have $\left|\vartheta^{k}(0)\right|=F_{k},\left|\vartheta^{k}(1)\right|=F_{k+1}$. We show that the vertices of the graph are $W_{0}=[\lambda]$ and $W_{1}=[1]$ (Figure 5).

Figure 5. The graph of the Fibonacci subshift

Set $C_{k}=\vartheta^{k-1}(1) \ldots \vartheta(1) 1$, so $C_{1}=1, C_{2}=101, C_{3}=101101 \ldots$. Then

$$
\vartheta^{k}\left(W_{0}\right)=\left[C_{k}\right]_{0}, \quad \vartheta^{k}\left(W_{1}\right)=\left[\vartheta^{k}(1) C_{k}\right]_{0}=\left[C_{k+1}\right]_{0} .
$$

Figure 6. The functions of the Fibonacci subshift
We have edges

$$
\begin{array}{llll}
c=([\lambda],[1]): & & W_{0} \rightarrow W_{1}, & L(c)=0, \\
d=([\lambda],[01]): & W_{0} \rightarrow W_{1}, & L(d)=1, & \\
a=([1],[101]): & W_{1} \rightarrow W_{1}, & L(a)=1, & \chi(a)=\alpha^{3} / \sqrt{5}, \\
b=([1],[1101]): & f_{a}(z)=\frac{z}{\alpha}+1 \\
b=W_{2}, & L(b)=2, & \chi(b)=\alpha^{4} / \sqrt{5}, & f_{b}(z)=\frac{z}{\alpha^{2}}+1
\end{array}
$$

Indeed $\varrho\left(W_{1}\right)=\nu_{1}=\alpha^{2} / \sqrt{5}$ and

$$
\begin{aligned}
& \chi(a)=\lim _{k \rightarrow \infty} \frac{\left|\vartheta^{k}(01)\right|}{\alpha^{k}}=\lim _{k \rightarrow \infty} \frac{F_{k+2}}{\alpha^{k}}=\frac{\alpha^{3}}{\sqrt{5}} \\
& \chi(b)=\lim _{k \rightarrow \infty} \frac{\left|\vartheta^{k}(101)\right|}{\alpha^{k}}=\lim _{k \rightarrow \infty} \frac{F_{k+3}}{\alpha^{k}}=\frac{\alpha^{4}}{\sqrt{5}}
\end{aligned}
$$

The bounds are fixed points $f_{a}\left(\alpha^{2}\right)=\alpha^{2}, f_{b}(\alpha)=\alpha$, so

$$
\alpha=\frac{\alpha^{2}}{\alpha^{2}-1} \leq \frac{s_{k}}{\tau_{k}} \leq \frac{\alpha}{\alpha-1}=\alpha^{2}, \quad \mathbf{r}_{0}=\alpha^{-2}
$$

For $s_{k} / \tau_{k+1}=s_{k} / F_{l_{k+1}}$ we get functions

$$
g_{a a}(z)=g_{b a}(z)=g_{a}(z)=\frac{z+1}{\alpha}, \quad g_{a b}(z)=g_{b b}(z)=g_{b}(z)=\frac{z+1}{\alpha^{2}}
$$

with fixed points $g_{a}(\alpha)=\alpha, g_{b}\left(\frac{1}{\alpha}\right)=\frac{1}{\alpha}$, so

$$
\frac{1}{\alpha}=\frac{1}{\alpha^{2}-1} \leq \frac{s_{k}}{\tau_{k+1}} \leq \frac{1}{\alpha-1}=\alpha, \quad \mathbf{r}_{1}=\alpha
$$

Corollary 16.

$$
\frac{1}{\alpha^{2}} \leq \underline{R}(x) \leq \frac{1}{\alpha} \leq \bar{R}(x) \leq \alpha
$$

with $\underline{R}(x)=\alpha^{-2}, \bar{R}(x)=\alpha$ almost everywhere.
Acknowledgement. A part of this research has been done during my visit at the Centre de Physique Théorique in Luminy, Marseille. I thank Sandro Vaienti for suggesting the problematics.

References

[1] Afraimovich V., Cazottes J. R., Saussol B., Pointwise dimensions for Poincaré recurrence associated with maps and special flows. Discrete and Continuous Dynamical Systems, to appear.
[2] Cassaigne J., Hubert P. and Vaienti S., private communication.
[3] Durand F., Host B. and Skau C., Substitutional dynamical systems, Bratelli diagrams and dimensions groups. Ergod. Th. \& Dynam. Sys. 19 (1999), 953-993.
[4] Hirata M., Saussol B. and Vaienti S., Statistics of return times: A general framework and new applications, Comm. Math. Phys. 206 (1999), 3-55.
[5] KUPSA M., Local return rates in Sturmian subshifts, submitted.
[6] Kürka P., Topological and Symbolic Dynamics, to be published by SMF.
[7] Moosé B., Puissances de mots et reconaissabilité des points fixed d'une substitution. Theoret. Comput. Sci. 99 (1992), 327-334.
[8] Moosé B., Reconnaissabilité des substitutions et complexité des suites automatiques. Bull. Soc. Math. France 124 (1996), 329-346.
[9] Saussol B., Troubletzkov S. and Vaienti S., Recurrence, dimensions, and Lyapunov exponents, J. Stat. Phys. 106, $3 / 4$ (2002), 623-634.

[^0]: Faculty of Mathematics and Physics, Charles University in Prague, Malostranské náměstí 25, 11800 Praha 1, Czech Republic

