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In this paper, the essentials of the algebraic theory of left distributive semigroups are
presented.

0. Introduction

Every semilattice (i.e., an idempotent commutative semigroup) is selfdistributi-
ve. An explicit formulation of this fact (perhaps for the first time) can be found
already in C. S. Pierce [Pie,80]. A structural study of two-sided selfdistributive
semigroups was initiated in M. Petrich [Pet,69] and that of one-sided selfdistribu-
tive semigroups ten years later in S. Markovski [Mar,79].

Altogether, there are only a few papers devoted to selfdistributive semigroups.
The present article is a survey treatment on the topic.

As concerns the notation, terminology, references, comments, etc., used and
related to but neither defined nor formulated in the following text, a kind reader
is fully referred to [KepN,03] (also cited as Al. ---).
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I. General theory of left distributive semigroups
1.1 Basic properties of left distributive semigroups

1.1 Proposition. Let S be an LD-semigroup. Then, for all x,y,z € S:
() xyz = xyxz = xy*z.

(ii) x"y = x?y for every n > 2.

(iii) (xy)' = xy" = xy* = (xy)’ for every n > 2.

(iv) x" = x* for every n > 3.

Proof. (i) xyz = xyxz = xyxyz = x)’z by repeated use of the left distributive
law.

(i) Forn > 3, x"y = xx""*xy = xx" "2y = x""ly

(iii) For n > 3, (xy)" = xy" = xyxy" ' = xyxyy" 2 = xyxy" 2 = xy"~\.

(iv) Forn > 4, x" = xxxx" 3 = xxx" 3 = x"~ L. O

1.2 Proposition. Let S be an LD-semigroup. Then:

(i) 1d(S) is a left ideal of S and x°, xy*, xyx € 1d(S) for all x,y € S.
(ii) S is elastic.
(iii) For every n > 3, 0,5 = 035.

Proof. (i) First, xy? € Id(S) by 1.1(iii) and (xyx)* = xyx* = xyx. Now, I1d(S)
is a left ideal of S (see also A1.Il.1.5(3)).

(i) Every semigroup is elastic.

(iii) This is an immediate consequence of 1.1(iv). O

1.3 Propeosition. The following three conditions are equivalent for an
LD-semigroup S:
() 1d(S) is an ideal of S.
(i) S* = 1d(S).
(iii) S satisfies the (semigroup) identity x*y ~ x*y*.
If these conditions are satisfied, then S/1d(S) is an A-semigroup.

Proof. (i) implies (ii). xyz = xy’z by 1.1(i), and xy* € Id(S) by 1.2(i).
(ii) implies (iii). Since x?y € Id(S), we have x’y = x?y - x%y = x?y~
(iii) implies (i). By 1.2(i), Id(S) is a left ideal. Let x € S and a € Id(S). Then
ax = a’>x = a’x* = a’x - a’x = (ax). Thus Id(S) is a right ideal. ]
1.4 Definition. An LD-semigroup satisfying the equivalent conditions of 1.3
will be called an LDR-semigroup.

1.5 Proposition. The following four conditions are equivalent for an
LD-semigroup S:
(i) §* = Id(S).
(ii) Id(S) is an ideal of S and S/1d(S) is a Z-semigroup.
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(iii) S satisfies the identity xy ~ xy*.
(iv) S/qs is idempotent.
If these conditions are satisfied, then S is an LDR-semigroup.

Proof. Easy. O

1.6 Definition By an LDR;-semigroup we mean a semigroup satisfying
xy =~ xyx. (Clearly, every LDR,-semigroup is left distributive.)

1.7 Proposition. Every LDR;-semigroup satisfies the equivalent conditions of
1.5 (hence it is an LDR-semigroup).

Proof. Let S be an LDR;-semigroup. By 1.2(1), xy = xyx eId(S) for all
x,y € S. Thus §* < Id(S). O

1.8 Proposition. Let S be an LD-semigroup. Then:
(i) ps is a congruence of S.
(ii) S/ps is an LDR;-semigroup.

Proof. (i) This is true for every semigroup
(i) We have xy-z = xyx-z for all x,y,z€ S. O

1.9 Proposition. The following four conditions are equivalent for an
LD-semigroup S:
(1) 0,5 is an endomorphism of S.
(ii) 035 is an endomorphism of S.
(iii) S satisfies the identity xy* ~ x*y*.
(iv) S is left semimedial.

Proof. By 1.1(ii)) annd 1.1(ili) we have (xy)’ = xy’ = x)y* = (xy) and
x*y* = x?y? for all x,ye S. Now it is clear that the first three conditions are
equivalent.

If (iii) is satisfied, then xx - yz = x2yz = x*)*z = xy’z = xyz = xy - xz (use
1.1). Conversely, if S is left semimedial, then x*)* = xyxy = x) O

1.10 Definition. Every LD-semigroup satisfying the equivalent conditions of
1.9 will be called an LDT-semigroup.

1.11 Proposition. Let S be an LDT-semigroup. Then:
(i) 035 is a homomorphism of S onto 1d(S).
(ii) Every block of ker (0s5) is an A-semigroup.

Proof. Easy. O

1.12 Proposition. The following conditions are equivalent for an LD-semig-
roup S:

(i) S satisfies the identity xy ~ x’y.

(ii) S/ps is idempotent.
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Proof. Easy. O

1.13 Definition. Every LD-semigroup satisfying the equivalent conditions of
1.12 will be called an LD T,-semigroup.

1.14 Proposition. Let S be an LDT;-semigroup. Then:
(1) S is an LDT-semigroup.

(ii) o5 is @ homomorphism of S onto 1d(S).

(iii) Every block of ker(os) is a Z-semigroup.

Proof. Easy. O
1.15 Proposition. Let S be an LD-semigroup. Then S/qs is an LDT,;-semigroup.
Proof. We have zxy = zx?y for all x,y,z€ S. O

1.16 Proposition. The following three conditions are equivalent for an
LD-semigroup S:
(i) S satisfies the identity x’y ~ x)* (i.e., S is delightful).
(ii) S satisfies the identities X’y ~ xy* and xyz ~ x*yz (i.e., S is strongly
delightful).
(iii) S is an LDTR-semigroup. (l.e., both LDR and LDT.)

Proof. (i) implies (ii). We have x*yz = xy’z = xyz by 1.1().

(ii) implies (iii). We have x’y = x- x’y = x*)* by 1.1(ii), so that S is an
LDR-semigroup. Similarly, xy* = xy*- y = x?y? by 1.1(iii), so that S is an
LDT-semigroup.

(iii) implies (i). This follows immediately from the definitions. O

1.17 Proposition. Let S be an LDRT-semigroup. Then:
(i) Id(S) is an ideal of S and S/I1d(S) is an A-semigroup.
(i) 035 is a homomorphism of S onto 1d(S) and every block of ker(0ss) is an
A-semigroup.
(iii) ker(03s5)n =1, = ids and S is a subdirect product of 1d(S) and S/1d(S).

Proof. For (i) see 1.3; for (ii) see 1.11; (iii) is clear. O

1.18 Proposition. Let S be an LDR,;-semigroup. Then there exists a congruence
r of S such that S/r is commutative and every block of r containing at least two
elements is a subsemigroup of S and an LZ-semigroup.

Proof. Define r by (a,b) € r iff either a = b or a = cb and b = da for some
c,d € S. Clearly, r is an equivalence and (a, b) € r implies (ax, bx) e r for any x € S.
On the other hand, using the left distributive law, one can see that (a,b) € r also
implies (xa, xb) € r. So, r is a congruence of S. Since S is an LDR,-semigroup, we
have ab = aba, ba = bab and (ab, ba) e r for all a,b € S. Thus S/r is commutative.

Now, let A be a block of r and a,be 4, a ¥ b. We have a = ¢b and b = da
for some elements ¢,d. Then ab = ada = ad = cbd = cdad = cda = ¢b = a.
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Further, (a,b) e r implies (aa,ab)er, so that (aa,a)er, and we get aae A. If
a # aa, then a = @ according to the previous observation, so that a € Id(S) by
1.2(i), a contradiction.

1.19 Proposition. The following five conditions are equivalent for an
LD-semigroup S:
(i) S is right semimedial.
(ii) S is middle semimedial.
(iii) S is medial.
(iv) S/ps is right permutable.
(v) S/qs is left permutable.

Proof. (i) implies (iii). xyuv = xyu*v = xuyuv = xuyv.
(i) implies (iii). xyuv = xyuxv = xuyxv = xuyv. O

1.20 Proposition. The following conditions are equivalent for a semigroup S:
(i) S is a medial LDR-semigroup.

(ii) S is a medial LDRT-semigroup.

(iii) S is a D-semigroup.

Proof. (i) implies (iii). xyz = xyxz = xxyz = x%’z = x*y’z? = x%yz* =

= x’zyz = xzyz.
(iii) implies (ii). xyuv = xuyuv = xuyv, xxy = xyxy = x2y* and xyy =
= xyxy = x*)%. O
1.21 Propeosition. The following conditions are equivalent for a semigroup S:
(i) S is an LD-semigroup and card (Id(S)) = 1.
(ii) S is an A-semigroup.

Proof. (i) implies (ii). Let Id (S) = {0}.By 1.2(i), 0 is a right absorbing element
of S and xy? = 0 = xyx for all x,y € S. Now, Ox = 0xOx = 0x? = 0 and hence
xyz = xyxz =0z =0 for all x,y,z€S. O

1.22 Proposition. Let S be an LD-semigroup, C = %,(S) and D = S — C.
Then:
(i) Every element of C is a left neutral element of S.

(ii) If C is nonempty, then qs = ids, S is an LDT,-semigroup and C is an
RZ-semigroup.

(iii) If D is nonempty, then D is a prime ideal of S.

(iv) If C is nonempty and S is an LDR,-semigroup, then C = {e}is a singleton
and e is a neutral element of S.

Proof. (i) For ae C and x € S, aax = aaax implies x = ax.

(i) C # @ implies immediately that g5 = idg, and then S is an LDT,-semig-
roup by 1.15. Further, C is a subsemigroup of S (see also A1.I1.4.1(i)) and C is an
RZ-semigroup by (i).
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(iii) Since S is a semigroup, D is a left ideal of S. Let ae D and x € S. Then
au = av for some u,ve S, u # v, and we have axu = axau = axav = axv.
Hence ax € D and we see that D is an ideal. Finally, if ab € D, then abu = abuv,
u # v, and therefore either ae D or b e D.

(iv) We have ax = axa and x = xa for all ae C and x € S. The rest is clear

by ). O
L.2. Examples of left distributive semigroups

2.1 Example. There are (up to isomorphism) precisely four two-element
LD-semigrops. They are:

D(1),D(2),D(3),D(4)
(see A1.IV.4). The first three of them are idempotent; the last one is not.

2.2 Example. There are (up to isomorphism) precisely sixteen three-element
LD-semigroups. They are:

D(7), ..., D(14), D(20), D(24), ..., D(28), D(36), D(46)

(see A1IV.10). All of them, except D(20) and D(28), are distributive. The
idempotent ones are D(7), ..., D(14) and D (20).

2.3 Example. The following table shows the numbers of isomorphism types of
at most five-element LD-semigroups and LDI-semigroups:

[ 1 2 3 4 5
LDS 1 4 16 93 682
LDIS 1 3 9 38 179

2.4 Example. Consider the following five-element groupoid S:

DW= e [ =
A LN AW
WA S| W
S LW

S W= O W
P WLWDO==|O

This groupoid is an LDR,-saemigroup; it is not an LDT-semigroup and it does not
satisfy the identity xyx ~ x’yx.
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2.5 Example. Consider the following four-element groupoid S:

W= O W
W= N O
W N = W p—
W N = NN
W N = N w

This groupoid is an LDR,-semigroup; it is not an LDT-semigroup; it is subdirectly
irreducible and satisfies x* ~ x?y.

2.6 Example. Consider the following two three-element LD-semigroups:

D (20) | 0 1 2 D (28) l 0 1 2
0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 2
2 0 1 2 2 0 0 0

D(20) is an idempotent LDR,;-semigroup; it is not medial. D(28) is an
LDT,-semigroup; it is medial and satisfies xy* &~ yx>. Moreover, Id (D (28)) is not
an ideal and D (28) is not an LDR-semigroup.

2.7 Example. Let f be a transformation of a nonempty set S and define
multuplication on S by xy = f(y) for all x,yeS. Then S becomes a D-semi-

group.

2.8 Proposition. Let S be an LD-semigroup and e ¢ S. Then:
(i) S[e] is an LD-semigroup.
(i) S{e]is an LD-semigroup.
(iii) S[e}is an LD-semigroup iff S is an LZ-semigroup.
@dv) S {e} is an LD-semigroup iff S is an idempotent LDR,-semigroup.

Proof. Easy (see A1.IV.1.9). O

2.9 Proposition. Let S be a D-semigroup and e ¢ S. Then:
O [e] is a D-semigroup.
(i) S {e] (resp. S[e}) is a D-semigroup iff S is an RZ-semigroup (resp.
LZ-semigroup).
(iii) S {e}is a D-semigroup iff S is a semilattice.

Proof. Use 2.8. O
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1.3 Basic facts on subdirectly irreducible left distributive semigroups

3.1 Proposition. Let S be a subdirectly irreducible LD-semigroup. Then just
one of the following two cases takes place:

(i) %(S) # 0, g5 = ids and S is an LDT,-semigroup.

(ii) %,(S) = 0 and g5 # ids.

Proof. Suppose first %,(S) = 0. Then, for every x € S, L, is not injective, so that
ws S q,s; but then ws S gs. On the other hand, if €(S) # @, then (i) is true by
1.22(ii). a

3.2 Proposition. Let S be a subdirectly irreducible LD-semigroup such that
C = %(S) # 0; put D = S — C. Then just one of the following five cases takes
place:

(i) S~ D(1).

(i) S~ D(2).

(iii) S ~ D(10).

(iv) S is neither idempotent nor an LDR-semigroup and card (D) > 2 (then

ps # idg.)

(v) S is an idempotent LDR,-semigroup, card (D) > 2, ps = ids, C = {e} for

a neutral element e of S, D is subdirectly irreducible and p, = idp, # qp.

Proof. By 3.1, g5 = idg and S is an LDT,-semigroup. By 1.22, either D = ( or
D is a prime ideal of S. Let (a,b) € ws, a # b. Obviously, D = {xe S: xa = xb}.
If D=0, then S is a RZ-semigroup by 1.22(ii) and one can readily see that
S ~ D(2) in that case.

Next assume that D = {O} is a singleton. Then O is an absorbing element of S,
C is an RZ-semigroup and it is easy to see that s U idg is a congruence of S for
any congruence s of C. If card(C) = 1, then S ~ D(1). If card(C) > 2, then
a,beC,C ~ D(2)and S ~ D(10).

Finally, assume that card (D) > 2. Since D is an ideal, =), is a congruence of
S and thus a, b both belong to D. Then aa = ab and ba = bb.

Let ps # ids. Then (a,b) € ps, ab = bb, and therefore aa = bb. It follows that
either aa # a or bb # b and we see that S is not idempotent. Suppose that S is an
LDR-semigroup. Then Id(S) is an ideal and, since either a ¢ Id(S) or b ¢ Id(S), we
must have card (Id(S)) = 1 by the subdirect irreducibility. Then by 1.21, S is an
A-semigroup and thus C = @, a contradiction.

Let ps = ids. Then, by 1.8, S is an LDR;-semigroup; S is idempotent by 1.22(ii)
and 1.17(iii). Thhe rest is clear from 1.22(iv). d

3.3 Proposition. Let S be a subdirectly irreducible delightful LD-semigroup
(see 1.16). Then just one of the following four cases takes place:
i) S ~DQ).
(ii) § ~ D(10).
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(iii) S is an idempotent LDR -semigroup with ps = ids.
(iv) S is an A-semigroup.

Proof. With respect to 1.16(iii) and 1.17(iii), we can assume that S is idempotent.
Further, with respect to 3.1 and 3.2, we can assume that g5 # ids. Let (a,b) € ws,
a # b. We have (a,b) € g5, so that a = aa = ab abd b = bb = ba. Thus ab # ba
and (a, b) ¢ ps. But then ps = ids and S is an LDR;-semigroup by 1.8(ii). O

3.4 Proposition. Let S be a subdirectly irreducible D-semigroup. Then just one
of the following two cases takes place:
(i) S is idempotent and S is isomorphic to one of the five distributive
semigroups D (1), D(2), D(3), D(9) and D (10).
(ii) S is an A-semigroup.

Proof. With respect to 3.3, we can assume that S is an idempotent
LDR,-semigroup, i.e., S satisfies xy = xyx. Dually, using the right hand form of
3.3, we can assume that S satisfies xy = yxy. However, then S is commutative, i.e.,
it is a semilattice. A subdirectly irreducible semilattice is isomorphic to D (1). O

3.5 Remark. Let S be a subdirectly irreducible LD-semigroup. We have either
ts # ids or tS = ids.

If ts # ids, then t5 = ws = {(a,b),(b,a)} for some a,be S, a # b. Then a* =
= ab = ba = b’ and so either a ¢ 1d(S) or b ¢ 1d(S).

If t = id;, then either ps = idg and S is an LDR;-semigroup, or else g5 = idg
and S is an LDT,-semigroup. In the latter case, 3.2 applies.

3.6 Proposition. The groupoids D(1), D(2), D(3) and D(4) are (up to
isomorphism) the only (congruence) simple LD-semigroups.

Proof. The result follows easily from A1.I1.7.4. O

L4 Comments and open problems

The results of this section are of introductory character and are based on the
paper [Kep, 81]. The main open problems concern a more detailed description of
subdirectly irreducible LD-semigroups. In particular, their subsemigroups are not
known (cf IIL.4 and 1V.3,4,5).

I1. Free left distributive semigroups
II.1 Construction of free left distributive semigroups
1.1 Construction. Let X be a nonempty set. Denote by F the (absolutely) free

semigroup over X. Denote by F the union of the following four pairwise disjoint
subset A, B, C, D of F:
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XXy oo Xy_1X, 1 X1, ..., X, € X pairwise different, n > 3, 1 < i,

={X¥y:x,yeX,x #y,1<ij<2}
{ i, j
(XX ... Xp_ 1 XXyt Xy ..., X, € X pairwise different, n > 2,1 < k

<2}
<n,

For every element u of F, (uniquely) expressed as u = xf~... xk» where n > 1,
xi€ X, k; > 1and x; # x, # ... # X,, we define an element f (u) of F as follows:
(@) If n =1, let f(u) = x| where k = min (3, k,).

(i) If n = 2, let f(u) = xkx} where k = min(2,k,) and | = min (2, k,).

(i) If n>3 and x,¢{x,...,x,_1}, let f(u) = xby,... y,x, where k =
= min (2, k,), | = min(2,k,) and (by induction on i) y; is the first member
of x,,..., X,_; not contained in {x, y;,... yi_}.

iv) If n>3 and x,€{x,...,X,_5}, let f(u) = xiy;... y.x, where k =
= min(2,k,;) and (by induction on i) y; is the first member of x;,..., X,_;
not contained in {x;, y;, ..., yi_1}-

It is easy to see that f(u) € F in any case. Also, it is easy to see that f (u) = u for
u € F. Let us define a binary operation * on F in this way: u * v = f (uv) for any
u,v € F. We are going to prove that F () is a free LD-semigroup over X.

1.2 Lemma. Let u € F. The identity u ~ f (u) is satisfied in any LD-semigroup.
Proof. It is easy; use 1.1.1, I.1.2 and, of course, the left distributive law. O

1.3 Lemma. Let u,ve F and u # v. Thhen there is an LD-semigroup not
satisfying u =~ v.

Proof. Suppose that u =~ v is satisfied in all LD-semigroups. Since every
LZ-semigroup is left distributive, the words u, v have the same first letters.
Similarly, every RZ-semigroup is left distributive and hence u, v have the same
last letters. Furthermore, every semilattice is distributive and we conclude that the
set of letters occurring in u coincides with the set of letters occurring in v. Now,
we distinguish the following cases.

Case 1: u = x' and v = ¥. The LD-semigroup D(28) (see 1.2.6) satisfies
neither x & x* nor x ~ x*. The LD-semigroup D(46) (see A1.IV.8.1) does not
satisfy x> ~ x*. Using these observations, we conclude that i = j. Hence u = v,
a contradiction.

Case 2: u = x'y and v = x*y'. The LD-semigroup S from 1.2.4 satisfies none
of the identities xy ~ x%y, xy =~ x*)%, x)* ~ x’y* and x)* ~ x?y. The
LD-semigroup D(28) satisfies neither xy ~ xy* nor x’y ~ x?y°. Consequently,
i =k, j=1land u = v, a contradiction.

Case 3: u = XiXx;... X,_1% € C and v = X§11X,00)... Xpa—1yXp(n € C for a permuta-
tion p of {l,...,n} with p(1) = 1 and p(n) = n. If n > 4, then every idempotent
LD-semigroup satisfying u = v is medial. However, D(20) (see 1.2.6) is a non-
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medial LDI-semigroup. Consequently, n = 3. It is easy to see that either xy* ~ x?)?
or x’y ~ x?)? is a consequently of u ~ v, and we get a contradiction by Case 2.

Cased: u = xiX;... X,_;x, € Cand v = Xy1)Xp) ... Xpn—1)XpnXpi) € D for a per-
mutation p of {1,...,n} with p(1) = 1 and p(k) = n. One can easily check that
every LDI-semigroup satisfying u = v is distributive. However, D (20) is not
distributive, a contradiction.

Case 5: u = xixy... x,_1x,x, €D and v = x,{(l)xp(z)... Xpn—1yXpnXp) € D for
a permutation p of {1,..., n} with p(1) = 1 and p(I) = k. Since D(20) is not middle
semimedial, we have p(2) = 2,..., p(n) = n. However, the LD-semigroup from
1.2.4 does not satisfy xyx ~ x?yx. Thus i = j and u = v, a contradiction. O

1.4 Theorem. For a nonempty set X, the groupoid F (*) constructed in 1.1 is
a free LD-semigroup over X.

Proof. Denote by ~ the set of the ordered pairs (u, v) of elements of F such that
the equation u = v is satisfied in all LD-semigroups. So, ~ is a (fully invariant)
congruence of F and F/~ is a free LD-semigroup over X. We know (by 1.2) that
f(u) ~ ufor any u e F, so that (by 1.3) u ~ viff f(u) = f(v) for any u,v € F and
~ is just the kernel of f. Now, f is a homomorphism of F onto F (x): if u,v € F,
then both f (uv) and f (u) * f (v) belong to F and are congruent modulo ~ with uv.
The result follows from the homomorphism theorem. (In particular, the operation
* is associative; this is not immediate from the definition.) |

1.5 Corollary. Every finitely generated LD-semigroup is finite. The variety of
LD-semigroups is locally finite. O

1.6 Remark. Proceeding similarly, one can construct free LDI-semigroups. In
that case we get words of two types only: words of the form x;... x, for n > 1
and words of the form x,x,... x,x; forn > 2and 1 < k < n, where (in both cases)
X1, ..., X, are pairwise distinct letters.

1.7 Remark. By 1.1.20, every D-semigroup is a medial LDRT-semigroup. The
words in a free D-semigroup are of the following types only: x, x?, x*, xy, x2y,
XYX, X1X5... X, and X;X5... XnX; (m > 3). Of course,

Xiuew Xig ~ X1Xp(2) o+ Xppme1)Xm AN XX .00 XXy ~ X1 Xg0)eer Xgm)X
for any permutation p of {x,,..., X,,_,} and any permutation g of {x,,..., x,,}.

IL.2 Auxiliary results on number-theoretic functions

2.1 Definition. Put
(@) a(n,m) =n(n —1)... (n — m),
(i) a(n) = Yr_oa(n,m),
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(i) b(n) = Y moma(n,m)

for all nonnegative integers n, m.

2.2 Lemma. Let n,m > 0. Then:
@ an+ 1,m+ 1) (n + 1)a(n,m).
Gi) a(n + 1) = (n + 1)(a(n) + 1)

i) b(n + 1) = (n + 1)(a(n) + b(n)).
(iv) b(n) = (n — 2)a(n) + n.

Proof. By induction on n. O

2.3 Lemma. For every n > 1, a(n) + c(n) + 1 = nle, where (n + 1)~!
<c(m)<n'ande =Y, 1/K).

Proof. Indeed, nle —1=2n'+3-4-..-n+ 45 ..-n+...+(n—n+
+ n+ c(n) =a(n) + c(n), where c( ) = 1/(n + ) 1/(n + 1)(n+2) +
1(n+ 1)(n + 2)(n + 3) + ... Clearly, l/(n + 1) < c(n) < 1/n. O

2.4 Lemma. For every n > 1, na(n) = [nn'e] — n (here, for a positive real
number r, [r] means the entire part of r).

Proof. By 2.3, na(n) = [nn'e] — n — nc(n) + u, where 0 < u < 1. Then
—1 <u—nc(n) < (n+ 1)"" and, since u — nc(n) is a whole number, we must
have u — nc(n) = 0. O

II.3 The number of elements of a free left distributive semigroup

3.1 Theorem. The cardinality f, (n) of the free LD-semigroup of rank n and the
cadinality f,(n) of the free LDI-semigroup of rank n are given by

fi(n) = 2[nine] — n,
fi(n) = [n'(n — 1e] + 1.
Proof. By 1.4, 2.1 and 2.2 we have f;(n) = 4a(n) + 2b(n) — n = n + 2na(n).
In order to compute f; (n), it remains to use 2.4. The other formula is clear from

1.6. O

3.2 Remark.

(i) fi(n) = e(n)(n + 1)!, where &(n) — 2e. Moreover, f,(n)/ f(n) > 2

(ii) Let S be a finitely generated LD-semigroup and n = o (S) (see AL.LL5). If
n =0, then card(S) = 1. If n > 1, then

n < card(S) < 2[nlne] — n.

3.3 Remark.

(i) The cardinality f;(n) of the free idempotent LDR,-semigroup of rank n is
given by

fi(n) = [nle] — 1.

26



(ii) The cardinality ﬁ(n) of the free DI-semigroup of rank n is given by
fa(n) =n(n + 1)2 2
(iii) The cardinality f5(n) (resp. fs(n)) of the free LDI-semigroup satisfying
xyz =~ xzy (resp. xyz = yxz) of rank n is given by

fs(n) = fs(n) = n27"1.
(iv) The cardinality f;(n) of the free semilattice of rank n is given by

filn)=2"-1.
(v) The cardinality f;(n) of the free idempotent semigroup satisfying x ~ xyx
of rank n is given by
fa(n) = n*
(vi) The cardinality fy(n) (resp. fio(n)) of the free LZ-semigroup (resp.
RZ-semigroup) of rank n is given by

5(n) = fio(n) = n.

3.4 Remark. Denote by fj;(n) the cardinality of the free D-semigroup of rank
n. According to 1.7, f;;(n) = 3n + 2n(n — 1) + n(n — )(("79) + ... + (ZY) +
+ n(("7") + ... + (3Z1)). After easy calculation, we find that

fulr) =n(m + 1)(1 + 273,

3.5 Remark. Denote by fi,(n) (resp. fi3(n), fia(n), fis(n), fis(n) the cardinality
of the free A-semigroup (resp. free unipotent A-semigroup, free commutative
A-semigroup, free unipotent commutative A-semigroup, free Z-semigroup) of rank
n. Then

fi(, n)=n+ 1
3.6 Table.
1 2 3 4 5 6 7 8

f (n) 3 18 93 516 3255 23478 191793 1753608
b (n) 1 () 33 196 1305 9786 82201 762208
/s (n) 1 4 15 64 325 1956 13694 109600
fa (n) 1 6 24 80 240 672 1792 4608
fse (n) 1 4 12 32 80 192 448 1024
fg(n) 1 4 9 16 25 36 49 64
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1 2 3 4 5 6 7 8

£(n) 1 3 71 15 31 63 127 255
oao(n) 1 2 3 4 5 6 7 8
fu(n) 3 12 36 100 270 714 1848 4680
fia() 3 7 13 21 31 43 57 73
fi3(n) 2 5 10 17 26 37 50 65
fis(n) 3 6 10 15 21 28 36 45
fis(n) 2 4 7 1 16 22 29 37
fis(n) 2 3 4 5 6 7 8 9

I1.4 Comments and open problems

The description 1.4 of free LD-semigroups is taken from [Mar,79] and [Zej,89b].
The numbers of elements of finitely generated free LD-semigroups (3.1) were
computed in [KepZ,89].

An open problem is a characterization of subsemigroups of free LD-semigroups
(LDI-semigroups, etc.).

III. A-semigroups and their varieties
IIL.1 Basic properties of A-semigroups

1.1. An A-semigroup is a groupoid satisfying x - yz & uv - w. It is apparent that
A-semigroups are nothing else than semigroups nilpotent of class at most 3. Thus
every A-semigroup S contains an absorbing element 0 (= Os) such that xyz = 0
for all x,y,z€S.

1.2 Proposition. Let S be an A-semigroup and Z(S) = {aeS:Sa = 0 = aS}.
Then:
(i) 0,8 and Z (S) are ideals of S.
(i) Id(S) = Int(S) = {0} = S* = §* = Z(S) = S.
(iii) S%Z(S),S/S* and S/Z(S) are Z-semigroups.
iv) Z(S) x Z(S) < ts.
(v) o(S) = card(S — S).

Proof. Easy. |
III.2 Varieties of A-semigroups

2.1 Notation. Denote by 7, the variety of trivial groupoids, by &, the variety
of Z-semigroups, by =, the variety of commutative unipotent A-semigroups, by
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&3 the variety of commutative A-semigroups, by ./, the variety of unipotent
A-semigroups and by &/ = &/ the variety of A-semigroups.

2.2 Theorem. The varieties Sy, A\, >, A3, A4 and s are pairwise different
varieties of A-semigroups and there are no other varieties of A-semigroups. We
have

Ay < A < oA, < Ay A, Ay < Ay < As

and there are no other inclusions except those which follow by transitivity. The
lattice of varieties of A-semigroups is given in Fig. 1.

Proof. Let V by a variety of A-semigroups determined by an identity u = v,
where u, v are two semigroup words of lengths k and I, respectively. If k > 3 and
[ >3,then V= /. If k > 3 and | = 2, then V is either &/, or «/,. If k > 3 and
I=1,then V= o If k = | = 2, then V is either /s or &/, or o/ or o,. If k = 2
and | = 1, then V = o/, Finally, if k = [ = 1, then V is either 2/ or </, Hence
every one-based variety of A-semigroups can be found among &, ..., . Since
this collection is closed under intersection (we have o3 N 7, = &), it follows
that there are no other subvarieties of </.

AS

A,

Fig. 1
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All the inclusions are clear. The groupoid T given by

T 01 2 3
0 0 0 0O
1 0 0 30
2 0 3 00
3 0 0 0O
is in 27, but not in /. The groupoid D (46) see A1.IV.8.1) is in .2; but not in <7,

and the groupoid S given by

S 012 3 4
0 0 00O0O0
1 0 0300
2 0 4000
3 000 O0O
4 0 00 00O

is in &7, but not in .<Z,. O

IIL3 Free A-semigroups

3.1 Construction. Let X be a nonempty set and let f: X x X - Y be
a bijective mapping, where X N Y = . Let O be an element not belonging to
X U Y. Define a multiplication on F = X U YU {O}by xy = f(x,y) for x,ye X
and xy = 0 otherwise. Then F becomes a free A-semigroup over the set X.

3.2 Proposition. An A-semigroup S is a free A-semigroup if and only if it
satisfies the following four conditions:
(i) S is nontrivial;
(ii) If x,y,u,v € S are such that xy = uv #0, then x = uand y = v;
(iii) If x,y€ S — Z(S), then xy # 0;
(iv) Z(S) = &~

Proof. Easy. O

3.3 Proposition. An A-semigroup S is a subsemigroup of a free A-semigroup if
and only if it satisfies the conditions 3.2(ii) and 3.2(iii).

Proof. The direct implication is clear from 3.2 (if S < F, then § — Z(S) <
cF-Z7 (F)). Now, assume that S satisfies both 3.2(ii) and 3.2(iii) and put
A=S—2Z(S)and B = Z(S) — S It follows from 3.2(jii) that S = A U B U
U A* U {0} is a disjoint union. Further, let C be a set such that C S = § and
card(C) = card(B), and let g : B — C be a bijection. Put X = A U C and define

30



a mapping h: S — F (where F is as in 3.1) as follows: h(a) = a for every a € 4;
h(b) = g(b)* for every be B; h(xy) = xy for all x,ye 4; h(0) = 0. It follows
from 3.2(ii) that h is well defined and, by 3.2(iii), h is an injective homomorphism
of S onto the free A-semigroup F. O

3.4 Corollary. Every Z-semigroup is a subsemigroup of a free A-semigroup.
O

3.5 Remark. The A-semigroup T from the proof of 2.2 is not a subsemigroup
of any free A-semigroup.

3.6 Remark. The number of elements of a free semigroup in any subvariety of
&/ has been computed in I1.3.5.

II1.4 Subdirectly irreducible A-semigroups

4.1 Proposition. Let S be an A-semigroup containing at least three elements.
Then S is subdirectly irreducible if and only if the subsemigroup T = S* contains
precisely two elemnts and ts = (T X T) v idg.

Proof. Let S be subdirectly irreducible. As one can see easily, every subdirectly
irreducible Z-semigroup contains only two elements. Consequently, S is not
a Z-semigroup and card (T') > 2. On the other hand, every nonempty subset M of
T is an ideal of S, (M x M) U ids is a congruence, and it follows easily that
card(T) = 2 and ws = (T x T) v ids. Clearly, ws < t5. Conversely, if (a,b) € t;
and a # b, then ({a,b} x {a,b})U ids is a congruence of S. Thus ws = t5 =
= (TxT) U ids.

Now assume that T = {0,a} where a # 0, and that t; = (T x T) U ids. Let
r # ids be a congruence of S and let (x,y) € r, x # y. If xy # yz for some z €S,
then the elements xz and yz belong to T and we see that (a,0)er. Similarly,
zx # zy implies (a,0) e r. If xz = yz and zx = zy for all z€ S, then (x,y) e ts =
= (T x T) vids. This proves (a,0)er in any case, so that S is subdirectly
irreducible. O

4.2 Corollary. Let S be a subdirectly irreducible A-semigroup containing at
least three elements. Then Z(S) = S, ws = t5, o(S) = card(S) — 2 and every
proper homomorphic image of S is a Z-semigroup. O

4.3 Theorem. An A-semigroup S is a subsemigroup of a subdirectly irreducible
A-semigroup if and only if S? contains at most two elements.

Proof. The direct implication follows from 4.1. Let S be an A-semigroup such
that S? < {0,1}, where O is the absorbing element of S (and 1 is some other
element); let S be not subdirectly irreducible. Put K = S — {0,1}. Let f be
a bijection of K onto a set M with SA M = @. Put G = S UM and define
multiplication on G in the following way:
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(i) S is a subsemigroup of G;

(i) x f(x) = f(x) x =1and f(x) f(x) = 0 for all x € K;

(i) f(x)-y=y f(x) =0and f(x) f(y) = 1forall x,ye K, x # y

iv) z:0=0z=z-1=1-z=0forall zeG.
It is easy to check that G is an A-semigroup. Of course, S is a subsemigroup of G.
We have G* = {0,1}, so that, according to 4.1, it remains to show that t; =
= ({a,b} x {a,b})u idg.

Let (a,b) € tG, a # b. We are going to show that a,b € {0,1}. If a,b € M, then
0 = aa = ab = 1, a contradiction. Therefore, we can assume that a € S.

Suppose a€ K. If b¢ M, then 1 =a-f(a) = b-f(a) = 0, a contradiction.
Thus b € M and we have b = f(c) for some c € K. If there exists an element d of
K different from both a and ¢, then 0 = a- f(d) = b f(d) = 1, a contradiction.
Thus K = {a,c}.Ifa =c,thenb = f(a)and 1 = a-f(a) = b- f(a) = 0, a con-
tradiction. If ac = 0, then 0 = ac = bc = 1, which is not true; if ca = 0, we get
a contradiction similarly. Thus ac = 1 = ca. Similarly aa = 0, and S is subdirec-
tly irreducible by 4.1, a contradiction.

This proves that ae {0,1}. In this case, xb = 0 = bx for every x € G and
b e {0,1}. The rest is clear. O

4.4 Corollary. Every Z-semigroup is a subsemigroup of a (commutative and
unipotent) subdirectly irreducible A-semigroup. O

4.5 Remark. The subdirectly irreducible A-semigroup G constructed in the
proof of 4.3 is commutative (resp. unipotent), provided that S is commutative (resp.
unipotent). Hence, the analogue of 4.3 remains true for commutative (resp.
unipotent) A-semigroups.

II1.5 Comments

The theory of A-semigroups (i.e., semigroups nilpotent of class at most 3) is
more or less of folklore character. Anyway, the results presented here are taken
from [JezKN,81].

IV. Idempotent left distributive semigroups and their varieties
IV.1 Basic properties of idempotent left distributive semigroups

1.1 Proposition. The following conditions are equivalent for an idempotent
semigroup S:
(1) S is middle semimedial.
(i1) S is medial.
(iii) S is distributive.
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Proof. (i) implies (ii). We have abcd = abcd-abcd = a-b-cd-a-bcd =
=a-cd b-abcd=a-c-d-bab-c-d=a-c-bab-d-c-d=a-c-ba-bd-
‘crd=a-cbd-ba-c-d=acb-d-b-ac-d =acb-d-ac-b-d = acbd- achd =
= acbd for all a,b,c,d e S.

(ii) implies (iii). We have abc = aabc = abac and cba = chaa = caba for all
a,b,ceSs.

(iii) implies (i). We have abca = abcba = acba for all a,b,c € S. O

1.2 Proposition. The five pairwise nonisomorphic DI-semigroups D (1), D(2),
D(3), D(9) and D(10) are (up to isomorphism) the only subdirectly irreducible
DI-semigroups. Moreover, D (9) is right but not left permutable and D(10) is left
but not right permutable.

Proof. See 1.3.4. O

1.3 Proposition. Let S be a rectangular band, i.e., an idempotent semigroup
satisfying the identity x =~ xyx. Then:
(i) S is a DI-semigroup.
(ii) S/ps is an LZ-semigroup and S/qs is an RZ-semigroup.
(iii) § ~ S/ps x §/gs.

Proof. (i) We have abcd = aca-bcd = a-cabc-d = acd = a-cbc-d = ac-
~bdb - cd = acb - dbcd = achd for all a,b,c,d € S. Thus S is medial, and hence
distributive by 1.1.

(ii) By (i), xy = xzxy = xzy for all x,y,z€ S and it follows that (y,zy) € gs
and S/qs in an RZ-semigroup. Quite similarly, S/ps is an LZ-semigroup.

(iii) Since S is idempotent, we have tg = ps N g5 = ids. On the other hand, by
(ii), a/p = ab/p and b/q = ab/q for all a,b € S. O

1.4 Proposition. Let S be a subdirectly irreducible LDI-semigroup. Then either
S is a DI-semigroups (and so S is isomorphic to one of D(1), D(2), D(3), D(9),
D(10)) or S is an idempotent LDR,-semigroup such that ps = id.

Proof. See 1.3.3 and 1.2. O

IV.2 Varieties of idempotent LD-semigroups

2.1 Notation. Consider the following varieties of idempotent semigroups:
Fo ... trivial semigroups;
£, ... semigroups satisfying xy ~ x;
S, ... semilattices;
#5 ... semigroups satisfying xy = y;
£, ... left permutable idempotent semigroups;
F5 ... rectangular bands (idempotent semigroups satisfying x = xyx);
Fe ... right permutable idempotent semigroups;
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S5 ... normal bands (idempotent medial semigroups or DI-semigroups, see 1.1);

Fsg ... idempotent LDR,-semigroups (idempotent semigroups satisfying xy =
X XyX);

Sy = £ ... LDI-semigroups.

2.2 Theorem. The ten pairwise different varieties %, ..., #y are just all
subvarieties of the variety $ of LDI-semigroups. We have

S S Sy S, S c I < S, SIS
JpcShHhcS S, Sy < S S, S < I

and there are no other inclusions (except those that follow by transitivity). The
lattice of subvarieties of £ is given in Fig. 2.

Iy

Fig. 2
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Proof. All the non-sharp versions of the indicated inclusions are clear (use 1.1
and 1.3).

No nontrivial RZ-semigroup is in #;3. Therefore, #; & S.

No nontrivial semilattice is in .#s. Therefore, £, & 4.

No nontrivial LZ-semigroup is in %, Therefore, .4, & 4.

We have D(20) € #; — %. This completes the inclusions part of the proof.

Now let V be a variety of LDI-semigroups determined (in #) by a single
indentity u = v.

Assume first that V < #,. The variety V is generated by its subdirectly
irreducible members. Using 1.2, we easily conclude that V is one of the varieties
Sos F1, Iy I, Iy, Is, Fo, S

Let V < 4. We can restrict ourselves to the case when u = x; ... x, and
v = Yy,... ynwWhere x,, ..., x, are pairwise different and also y,, ..., y,, are pairwise
different. If var(u) # var(v), then V < S5 and, in fact, V is either %, or 4.
So, assume that var(u) = var(v). Then n = m and there is a permutation p of
{1,2,..., n} such that y; = x,,. If p(1) # 1, then V is either .%, or .%,. Let p(1) = 1,
p # id, and let 2 < k < n — 1 be the smallest number with p(k) # k. Using the
substitution x,, ..., X,_; = X, X, = y and x4, ..., X, = z, we can show that the
identity xyz ~ xzy is satisfied in ¥, and so V < #,. Thus V is either %, or #; or
S, or S,

Assume, finally, that V £ #, and V & %;. By 1.4, every subdirectly irreducible
member of V is either in %, or in 4. Consequently, V = 4, O

IV.3 Subdirectly irreducible idempotent LDR,-semigroups

3.1 Remark. According to 1.4, there exist (up to isomorphism) only two

subdirectly irreducible LDI-semigroups that are not LDR,-semigroups, namely,
D(2) and D(10).

3.2 Proposition. Let S be a subdirectly irreducible LDR,I-semigroup such that
qs = idg. Then just one of the following two cases takes places:
(i) S~ D(1);
(i) S possesses at least three elements, among them a neutral element e, such
that T= S — {e} is a subsemigroup of S, qr # idrand T is a subdirectly
irreducible LDR I-semigroup possessing no neutral element.

Proof. See 1.3.2. O

3.3 Proposition. Let T be a nontrivial semigroup and e be an element not
belonging to T. Then T {e}is a subdirectly irreducible LDR,I-semigroup if and only
if T is a subdirectly irreducible LDRI-semigroup possessing no neutral element.

Proof. See 1.2.8(iv). O
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3.4 Proposition. Let T be a nontrivial semigroup and o be an element not
belonging to T. Then T[o] is a subdirectly irreducible LDR,I-semigroup if and only
if T is a subdirectly irreducible LDR I-semigroup possessing no absorbing element.

Proof. Easy. O

3.5 Proposition. Let S be a subdirectly irreducible LDRI-semigroup posses-
sing an absorbing element o. Then just one of the following two cases takes place:
(i) S~ D(1);
(i1) S contains at least three elements, T = S — {o} is a subsemigroup of S,
T is a subdirectly irreducible LDR,I-semigroup and T contains no absorb-
ing element.

Proof. Assume that card (S) > 3 and that (a,b) e w5, a # b, a # 0. Let ue T;
put I = {xeS:xu = o} and J = Su. Then both I and J are ideals of S and
card (J) > 2; we have o,u € J. Consequently, ws < (J x J) U ids and a = vu for
some v € S. We have a = vu = vuu = au, and so a ¢ I. Thus ws & (I x I) U ids,
card(I) = 1 and I = {0}. We have proved that T is a subsemigroup of S and the
rest is clear from 3.4. O

3.6 Definition. A subdirectly irreducible LDR;I-semigroup S will be called
primary if S contains no neutral element and no absorbing element either.

3.7 Theorem. Let S be a subdirectly irreducible LDRI-semigroup. Then just
one of the following five cases takes place:

(i) S ~ D(1).

(ii) S is primary.

(iii) S contains at least three elements, among them a neutral element e, no
absorbing element, T = S — {e}is a subsemigroup of S = T{e} and T is
a primary subdirectly irreducible LDR,I-semigroup.

(iv) S contains at least three elements, among them an absorbing element o, no
neutral element, T = S — {0} is a subsemigroup of S = T[o] and T is
a primary subdirectly irreducible LDR,I-semigroup.

(v) S contains at least four elements, among them both a neutral element e and an
absorbing element o, T = S — {e,0} is a subsemigroup of S = (T{e})[o] =
= (T[o]){e}and T is a primary subdirectly irreducible LDR,I-semigroup.

Proof. Combine 3.2, 3.3, 3.4 and 3.5 O

3.8 Notation. For a semigroup S, let LA(S) denote the set of left absorbing
elements of S, i.e., LA(S) = {ae S:aS = {a}}.If L = LA(S) is nonempty, then
L is an ideal of S and L = Int (S) Moreover, L is equal to the intersection of all
left ideals of S and every nonempty subset of L is a right ideal of S.

3.9 Lemma. Let S be an idempotent semigroup and I be a right ideal of S.
Then I = LA(S) iff I is an LZ-semigroup.
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Proof. If I is an LZ-semigroup and if ael and xe€ S, then axel and
ax = a-ax = a. O

IV.4 Subdirectly irreducible semigroups in .%;

4.1 Remark. Recall that %; is the variety of LDR,I-semigroups, i.e., the variety
of idempotent semigroups satisfying xyx = xy. The aim of this section is to prove
that every semigroup from #; can be embedded into a subdirectly irreducible
semigroup from #;. This is a special case of a more general result by Goraléik and
Koubek [GorK,82]. The proof contained in [GorK,82] contains several inaccura-
cies, making it almost unreadable.

4.2 Definition. We fix two distinct elements o, 8. A semigroup S € #; will be
called admissible if {«,f} = LA(S) and s« = sf € {a,B} for all se S — LA(S).

An admissible semigroup S € .#; will be called reductive if for every pair u, v of
distinct elements of S there exists an element s € LA (S) with us # vs.

4.3 Proposition. Every semigroup S € $5 containing neither a nor f can be
extended to an admissible semigroup in %

Proof. Put T = S U {,f} and define multiplication on T as follows: S is
a subsemigroup of T; as = c and fis = Bforall se T; sa = sf = aforall seS.
It is easy to see that T € %, LA(T) = {«,f} and T is admissible. O

4.4 Proposition. Every admissible semigroup S € $3 can be extended to a re-
ductive admissible semigroup in $s.

Proof. Take an element e¢ S and put R = S {e}.Let x — X' be a bijection of
R onto a set R" with RN R = {ap}, such that o = o and f' = p. Put
T = S U R’ and define multiplication on T as follows:

(i) S is a subsemigroup of T}

(i) st' = (st) for s,t€S;

(iii) s¢’ = s for se S;

@(iv) sw=¢s forseS,weT,;

W) ew =¢ forweT.
It is easy to see that the multiplication is correctly defined, T € %, LA(T) = R/,
and T is admissible. It remains to prove tat T is reductive. Let 5,te T, s # t. If
s,teS,thense’ =5 #t' =te.Ifs,te R, thenss = s # t = ts. Finally, if se S
and te R' — {a,B}, then s # t = ta. O

4.5 Notation. In the next lemmas we suppose that S € % is a given admissible
reductive semigroup and ¢, d is a pair of distinct elements of LA(S) with
d ¢ {o,p}.

Take two distinct elements x, y not belonging to S and denote by Z the
LZ-semigroup with the underlying set {x, y}. Denote by F the free product of S and

37



Z in S, so that S and Z are disjoint subsemigroups of F, F is generated by S U Z
and for any A4 € %, any pair of homomorphism S - A, Z — A can be extended
to a homomorphism F — A.

By a canonical form of an element u € F we mean an expression u = u; ... u,,
where

i 1<n<3

(ii) if n = 2, then either u; € Z, e Soru, €S, u,e Z,

(iii) if n = 3, then u; € S, u € Z, u3 € S and wu; # u,.
Observe that for n = 3, u; € S — LA(S) (in particular, if n = 3, then u, ¢ {«,f}).

4.6 Lemma. Every element of F can be expressed in a canonical form.

Proof. As this is clear for the elements of S U Z, it is sufficient to show that
the set of the elements expressible in a canonical form is a subsemigroup of F. For
this sake, it is certainly sufficient to show that if u = u, ... u, canonically, then
each of the elements ux, uy and us (for s € S) also has a canonical form. This can
be done easily by considering the possible cases. For example, xsy = xsxy =
= xsx = Xxs. Also, if st = s, then sxt = sxst = sxs = sx. O

4.7 Lemma. Letu = u,... u,and u = v,... v,, be two canonical expressions of
the same elements u € F. Then n = m and either u; = v,,..., u, = v,orelsen = 3,
U, = vy, Uy = v, and U3 = V0.

Proof. Denote by h; the homomorphism of F onto the two-element semi-
lattice {0,1} (where 01 = 0) such that h,(S) = {1} and h,(Z) = {0}; de-
fine h, similarly, but setting h, (S) = {O}and h,(Z) = {1}.Clearly, h, (4 ... u,) = 0
iff Zn o {u,..,u} #0; also, hy(u...u,) =0 iff S N {w,..,u,}#0.
From this it follows that it is sufficient to consider the case when n > 2 and
m> 2.

For every e € LA (S) denote by h, the homomorphism of F into S extending the
identity on S and the constant homomorphism of Z onto {e}. If 4, €S, then
h.(u... w,) = we. If v, € Z, then h,(v;... v,) = e. So, if u; €S and v, € Z, then
ue = e for any e LA (S); in particular, u;« = a and u,# = B, contradicting the
admissibility of S. We conclude that u,, v, either belong both to S or belong both
to Z. In the case when u,, v, € S, we get u;e = veforallee LA (S), so that u; = v,
by the reductivity of S.

Denote by h; the homomorphism of F into Z {1} extending the constant homo-
morphism of S onto {1}and the identity on Z. If u; = v, € S, then hs(u ... u,) = u,
and h;(v;... v,) = vy, so that u, = v,. If uy,v,€Z, then hs(u,... u,) = u, and
hs(v; ... vn) = vy, so that u; = v;.

So far we have proved that u;, = v, and if u; = v, € S, then u, = v,.

Denote by h, the homomorphism of F into S {1}extending the identity on S and
the constant homomorphism of Z onto {1}.If u; = v, € Z, then hy(u; ... u,) = u,
and hy(v,... v,) = v5. So, U, = v,.
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Let s, t, t’ be elements of S. If sx = sxt, then xsx = xsxt, i.e., xs = xst and
hence s = st, so that sxt is not a canonical form. If sxt = sxt’, then (similarly)
st = st'. O

4.8 Notation. We have seen that every element ue F can be expressed
canonically, u = u,... u,, and u, is uniquely determined by u; we say that u begins
with u;.

Denote by R the relation, containing the following pairs of elements of F:

(, xc), (B, ye), (xa, xB), (v, yB), (& o), (o, ay), (B, Bx), (B, BY), (xd, yd).

Denote by ¢ the congruence of F generated by R.
Put 4, = {s€ S:sx = a}and Ay = {seS:sp = B}.
Put B, = {¢}u {xs:seS — {d}}u A,ZS (notice that A,Z = A,ZS).
Put By = {B}u {ys:se S — {d}}u 4,ZS.
For se LA(S) — {«,B} put B, = {s,sx,5y}.
For se S — LA(S) put B, = {s}.

4.9 Lemma. Let (v,w)e R U R™" and let p, q be two elements of F {1} such
that pvq € B, (or pvq € Bg). Then pwq € B, (or pwq € B, respectively).

Proof. Let pvg € B, (the other case is similar). Consider first the case pvg = a.
Then clearly p,qe S {1},ve {«,B},w € {xc,yc,ax, ay}.If p # 1, then « = pv = pa,
so that p € A, and pwg € A,ZS.If p = 1, then « = vg = v, so that w € {xc,ax} and
we have either pwqg = xcq = xc or pwg = axq = ax; in both cases, pwq € B,.

Let puge {xs:se S — {d}}u A,ZS. If p ¢ S {1}, it follows easily from 4.7 that
p, and then also pwq belong to {xs:s€ S — {d}}u 4,ZS. So, let pe S{1}.

Let pe S. Then pvg e A,ZS; since v either begins with an element of Z or
belongs to {a,B,ax,ay, Bx, By}, we get p € A,. If w either begins with an element
of Z or is one of the elements ax, ay, fx, By, we get pwq € A,ZS. So, let w e {a,ﬂ}.
Then pw = a. If g€ S{l},we get pwq = o € B,. Otherwise, pwq = age A,ZS <
< B,

Finally, let p = 1. Then pvg = vq, so that v does not begin with y and v ¢
¢ {xd,B, Bx, By}. Hence both v and w belong to {a,xc, xa, xf,ax,oy}. But then
pwqg =wqeB,. O

4.10 Lemma. Let (v,w)€ R U R™" and let p,q be two elements of F {1} such
that pvq € B,, where s€ S — {o,B}. Then pwq € B,.

Proof. Consider first the case pvg = s. Then p,v,qe S{1}, ve{a,p}, s =
= pv ¢ {a,B}, so by the admissibility of S we get p = se LA(S) — {«,8}. Hence
pwq = swq € {s,sx,s5y} = B,

It remains to consider the case s € LA(S) — {a,B}, pvq € {sx,sy}.

Let p ¢ S {1}.1t follows easily from 4.7 and from s € LA (S) that p = pvq. Then
pwq = pvq € B,.
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Let p € S {1}.If v begins with either x or y, then from pvg € {sx,sy} we get p = s
and then pwq = swq € {s,sx, sy}. So, let v € {a, 8, ax, y, Bx, By}. Then either pa or
pB does not belong to {«,f}, so pe LA(S) and we again obtain p = s and
pwq = swq e {s,;sx,sy}. O

4.11 Lemma. Let (s,t)e @ N (S x S). Then s = t.

Proof. Since (s,t) € g, there is a finite sequence sy, ... s, of elements of F such
that sop = s, s, = t and for every i = 1, ..., n we have s;,_;, = pvgq, s; = pwq for
some p,q € F {1}and (v,w) € R U R™". It remains to use 4.9 and 4.10. O

4.12 Lemma. Every congruence of F containing ¢ and containing the pair (c, d)
contains (o, B).

Proof. Let ~ be a congruence containing ¢ and (c,d). We have a ~ xc ~

4.13 Proposition. Let S be a reductive admissible semigroup from S5 and let
¢,de€ S, ¢ # d. Then S can be extended to an admissible semigroup T € S5 such
that (a, B) € 6., where 0., is the congruence of T generated by (c,d).

Proof. Since S is reductive, it is sufficient to consider the case {c,d} = LA(S).
If {c,d} = {«,B}, we can put T = S. So, we can assume that d ¢ {o,B}.

Let us keep the notation introduced in 4.5 and 4.8. Denote by T the semigroup
F/p, in which we identify (or replace) every element s/g (for s € S) with s (this is
possible according to 4.11). So, T is an extension of S. We have T € %, since
F e 4.

We have {«,} = LA(T): this follows from (ax, @) € g, (xy, @) € g, (Bx, B) € ¢ and
(B, B) € e.

Let se LA(S). Then (o, ax)€ ¢ implies (s, sax) € g, i.e., (s,sx) € . Similarly,
(s,5y) € ¢. From this it follows that (s, st) € ¢ for any t € F, so that s € LA (7). This
proves LA (S) = LA(T). Now it is easy to see that LA(T) also contains all the
elements sx/g, sy/g, xs/e and ys/g with s € LA(S).

Let u = u,... u, (canonically) be an element of F such that u/o e T — L(T). We
have u; ¢ LA(S) for all i.

We have (a, xc) € g, so that (xa, xxc) € g, i.e., (xa,xc) € ¢ and hence («, xa) €
€¢. Hence also (¢, xf)ee. Similarly, (8,yx)e¢ and (B,yf)eo. This shows
that if u; € {x,y}, then (ua)/o = (uf)/e € {a,B}. If u;€ S — LA(S), then ua =
= uf e {a,p} by the admissibility of S. Now it is easy to see that (ux)/o =
~ Wh)io< (h).

We see that T is admissible. The rest follows from 4.12. g

4.14 Proposition. Let S be an admissible semigroup from $3. Then S can be
extended to an admissible semigroup T € S5 such that for any c,d € S with ¢ # d,
the congruence of T generated by (c,d) contains (o, p).
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Proof. By 4.4 and 4.14, for every admissible semigroup S € %; and every
c,de S with ¢ # d there exists an admissible semigroup T, € % such that (c, /3)
belongs to the congruence of T,, generated by (c,d). The result follows by
a standard argument using transfinite construction; observe that the union of
a chain of admissible semigroups from #; is an admissible semigroup from
. O

4.15 Theorem. Every semigroup S € $3 can be extended to a subdirectly
irreducible semigroup from $;.

Proof. By 4.3, it is enough to consider the case when S is admissible. Define
a countable chain of admissible semigroups So, Si,... as follows: S, = §; S, is
an extension of S; claimed by 4.14. The union of this chain is the desired
semigroup. d

IV.S Comments and open problems

The first three sections of the chapter are based on [Kep,81]. The main result of
the last section (4.15) is a special case of a more general result by Goral¢ik and
Koubek [GorK,82]. The original proof contained in [GorK,82] is rather inaccurate
and almost unreadable.

According to 1.4 and 4.15, a semigroup S is a subsemigroup of a subdirectly
irreducible LDI-semigroup if and only if either S is an LDR,I-semigroup (i.e.,
S satisfies xx & x and xyx &~ xy) or S is isomorphic to either D(2) or D(10). It
is an open problem to determine which semigroups are available as subsemigroups
of finite subdirectly irreducible LDI-semigroups.

V. The lattice of varieties of left distributive semigroups

V.1 The subvarieties of 7 N #

1.1. Notation. We denote by £ the variety of LD-semigroups, by £ the
variety of idempotent LD-semigroups (so that ¥ = %), by # the variety of
LDR-semigroups and by 7 the variety of LDT-semigroups.

1.2 Lemma. J " # = & v £ and every subvariety of 7 N R is equal to
A, v S for some 0 <i<5and0 <j<09.

Proof. By 1.1.17, every semigroup in J N £ is a subdirect product of an
A-semigroup and an idempotent LD-semigroup. Now, use Theorems I11.2.2 and
v.2a. O

1.3 Lemma. For j¢{0,2} we have o, v ;= oy v F; and sly v S =
= ds A\ -fj.
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Proof. Let G be the free semigroup in &/; v .4 over two generators x and y.
Clearly, xy # yx in G and xy yx ¢ Id(G). From this it follows that G/Id(G) ¢ </,
and hence (& v J) N s & ;. Consequently, (o5 v F) N s = of;, which
means that of; v ;= = o/ v 4. One can prove &, v %, = &, v S similar-

ly. O

1.4 Lemma. Let either i ¢ {2,3} or je {0,2}. Then a semigroup S belongs to
;v Fifand only if S€ T n R, 1d(S) € 4 and S/1d(S) € o,

Proof. Denote by V the class of all semigroups S with this property. It is easy
to see that Vis a variety, and hence V = &, v 4, O

1.5 Lemma. Let (i,j) and (k,l) be two ordered pairs from {0,..., 5} x {0,..., 9}.
Then o/, v 4, < s, v F if and only if F; < #, and one of the following three
cases takes place: either o, < o, or 1¢{0,2},i =4, k =2 0r 1¢{0,2},i =5,
k= 3.

Proof. Apply 1.2, 1.3 and 1.4. O

1.6 Lemma. The variety 9 N R has the following 44 subvarieties:
LO = Mo \ -fo = .ﬂo = jo,
Ll = 'd() Vv jl = <»¢1,

Ly =slyv Iy =S,
Lo=d v I =4,

Ly, =4 Vv 4,
ng = '-dl A\ gfg,
Ly = o, v F,
L21=d2le=ﬂ4VJl,
Ly = o, v S

L23=.,Q{2Vj3=d4v.f3,

Ly =gl v Iy =5y v Iy,

Ly = o3 v Sy,
L3]=d3\/j]=d5veﬁl,
Ly, = o5 v 5,

L33=d3Vj3=vd5Vu¢3,

L39=ﬂ3vfg=.52¢5vf9=.9-ﬁ?l,

Ly = A, v Sy,
Ly=sly v S,
Lo = sls v S,
Ly = o5 v 5.
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Proof. It follows from 1.5. O

V.2 The varieties S;;, R;; and T;

2.1 Notation. We denote by M(u; ~ vy,...) the variety of LD-semigroups
satisfying u; = v;,... Put

S, =M(x¥* ~ X}, xy* & xyx),

S, =M(x* = X’),

S; = M(xy* = xyx),

S, = % (the variety of all LD-semigroups),

S; = {SeS;:1d(S)eF}for1 <i<4and0<j<9,

R, = M(xy = xyx),

R, = M(xy = x)?),

Ry = M(x* ~ X%, xy* = xyx, X’y & X)) = # N S,

R, =M ~ XXy ~ x*}) = ZN S,

T, =M(Xxxxy’xx) =9 NS,
T, =M(xy’ ~ x?) =7,
T, =T nS;;for1 <i<3and 0 <j <9

2.2 Lemma. The following are true:
(i) Si; is a subvariety of & and S;; " # = S,
@) S =85,nS;and S, v S; < S,
(iii) s = S3; & Sy, A5 & Syjand A5 £ Sy,
(iv) Si; = 85, n S35, S1o = Sy0 = Ay and S;o = S4p = As.
V) RR=R,nR;, Ry =R,n R, R, € Ryand R, v Rs < R,
(vi) T LcT

Proof. 1t is easy. O

V.3 Auxiliary results

3.1 Notation. Let X be a countably infinite set of variables. As before, we
denote by F the free semigroup over X; the elements of F will be called words.
Recall that F is a subset of F, and every word is equivalent to a unique word from
F with respect to the equational theory of LD-semigroups.

We denote by W, the set of the words t such that f(t)eId(S) for all
LD-semigroups S and all homomorphisms f of F into S. Denote by W, the
subsemigroup of F generated by {x: x € X}. Clearly, W, = W,.
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The first variable in a word ¢ will be denoted by o(t). Denote by var (r) the set
of variables occurring in t.

3.2 Lemma. Let r,s be two words with o (r) # o(s) and let x be a variable such
that x # o(r). Then M (xr ~ xs) = .

Proof. Let y be a variable not occurring in xrs. Denote by y, the first variable
in s. Consider the substitution f with f(x) = f(y;) = x and f(z) =y for
all variables z ¢ {x,y,}. Applying f to the equation xry ~ xsy (which is
a consequence of xr X xs), it is easy to see that either xy* ~ x?y or xy’ =
~ x?y* is a consequence of xr &~ xs. However, M(xy’ ~ x’y) = 7 N # and
M(xy? = x%)?) = 7. O

3.3 Lemma. Let r,s be two words.
(i) Ifo(r) # o(s) then M(r ~ s) = 7.
(i) If o(r) # o(s) = x and s starts with x* (i.e., either s = x* or s = x’t for
some t), then M(xr =~ s) = 7.
(iii) If x,y,z are variables and y # z, then M (xyr =~ xzs) < 7.

Proof. (i) Let x be a variable not occurring in rs. Then M(r = s) <
S M(xr = xs) = J by 3.2.

(ii) This follows from 3.2.

(iii) Let u be a variable not occurring in xyzrs. Consider the substitution f with
f(x) =f(2) = x and f(v) =y for all variables v ¢ {x,z}. Applying f to the
equation xyru X xzsu, it is easy to see that either xy’ ~ x%y or x)* ~ x%)? is
a consequence of xyr X xzs. d

3.4 Lemma. Let r,s be two words.

(i) If x is a variable not occurring in r and if s ¢ {x,x’} and s # tx for any
word t with x ¢ var (t), then M(rx = s) < A.
(ii) If var(r) # var(s), then M(r ~ s) < &.
Proof. (i) Consider the substitution f with f(x) = y and f(v) = x for all
variables v # x. Applying f to rx = s, we see that the equation rx =~ s has
a consequence ¢ ~ u, where

t e {xy,x’y}
and
ue {x,x% x>y, xyx, x2yx, xy%, x*y%, yx, yx%, y*x, y*x*}.
Every one of these 24 equations implies x’y = x2y%
(ii) By symmetry, we can assume that there is a variable x € var(s) — var (r). If

s = x, then M(r & s) is the trivial variety. In the opposite case we have sx ¢ {x,x*}
andM(rxs)sMrx~sx)s Zby (). O
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3.5 Lemma. Let V be a variety of LD-semigroups. If V% < S then
Ve T . IfVn £ < S then V< A

Proof. First, let Vn # <.%. Then abc = bac for all a,b,c €1d(S), for any
S € V. Consegeuntly, V = M(x?yz*> =~ y’xz?) = by 3.3(i).
Now, let VN # < . Then V= M(x® ~ x?yx?) < Z by 3.4(i). O

3.6 Lemma. The following are true:

(i) Let r,s be two words such that o(r) # o(s) and var(r) # var(s). Then
M(rx~s)cJ na.

(i1) Let V be a variety of LD-semigroups such that Vo # < #. Then V <
€I nNnAR

Proof. Use 3.3(i), 3.4(ii) and 3.5. O

3.7 Lemma. Let r,s be two words.
() Ifr,s€ W, then M(r = s) = S, for some j.
(i) Ifr,se W, then M(r = s) NI = T, for some j.
(i) If re W, then either M(r= s)nJ = R or M(rxs)nT =T, or
M(r ~ s) n T = Ty, for some j.

Proof. Put V=M(r =~ s)andlet Vn # = J. Then V< S,;and Vn I < T;;.

(i) Let S€S,; and let f be a homomorphism of F into S. Then f (W) < Id(S)
and hencef (r) = f(s). Thus S€ Vand V= S,

(ii) Let S€ T;; and let f be a homomorphism of F into S. Denote by g the
substitution with g(x) = x’ for all variables x. Put h(a) = @’ for all a € S, so that
h is an endomorphism of S. We have g(F) = W; and h(S) = Id(S). Moreover,
Id(S)e S, = Vn 7 and fy(F) < 1d(S). Consequently, fg(r) = fg(s). On the other
hand, it is easy to see that fg = hf. Therefore hf(r) = hf(s). But both f(r) and f (s)
belong to 1d(S), and so f(r) = f(s).

(iii) By the construction of free LD-semigroups given in II.1.1 we can assume
that s = xix,... x, where n > 1, x,,..., x, are pairwise different variables and
i<2 Put U=M(s~5s) Cleatlly, Vn T =Un T nM(r ~ s’). Since the
words r and s* belong to W;, we have M(r = s*) n J = Ty, for some k. If n = 1
andi=1,then U=SFand VNI = F . lfn=1andi = 2, then U = §, and
VA9 = T, Let n > 2. Then

U = M(XiX;... Xo ® XiXy... X,_1X2) S R
by 34G). O

3.8 Lemma. Let x,y be two variables and r,s be two words with x ¢ var (rs).
Let V = M(xyr = xys). If either V.= R or xyr, xys € W,, then either V = S,; or
V = R, for some j.

Proof. Put r = u,... u, and s = v,... v, (4, v; € X).
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Let V < 4. It is enough to show that a semigroup S € Z satisfies xyr =~ xys if
and only if Id(S) satisfies xyr &~ xys. The direct implication is clear. Let Id(S)
satisfy xyr & xys. In S we have

xXyr = xy’r = (xy) r = (xy)r* = (xy)’y’r’ = (xy
= (xy)’y’vi... v, = xys.

Fyul... ul

Let xyr,xys€ W;. Then V = M (xyu;... uy ~ xyvi... v3). If x =y, then the
result follows from 3.7(i). Hence suppose that x # y and put 4, = V' 4. Then
S, satisfies yu;... u, ® yv;... v, and V< §,;. Conversely, let Se€S,;. Then
S satisfies y*u3... u3 ~ y*vi... v}, and hence Se V. O

39 Lemma. Leti,j <2 < n, let xy,..., X, be pairwise different variables and
let p be a permutation of {1,..., n} such that p(1) # 1. Put

r=Xxixy... Xp S = Xp1)Xp2) -+ Xpin)
and V= M(r ~ s). Then either V= T N R or V= Ty

Proof. By 3.3(1), V= 7.1f p(n) # n, then V = Z by 3.4(i). So, we can assume
tat p(n) = n. Thenn > 3, 4, £ V, VA J = J and we get V < T;4 Conversely,
let S€ T4 and ay,..., a,€ S. Then

3 3 3 — 3 3 3
al... a,,;la,,_l - ap(l)... ap(,,_l)a,,,l

and
— 2 — 43,3 3 3 — 3 3 3
a, oo a" - alaz... a,, - a1a2... a,,__la,,Ala,, - ap(l)... ap(,,_l)a,,_la,,
= Ay1)--- Apn—1)On_18n = Ap1)--. Apfn_1) G O

3.10 Lemma. Let r,s be two words such that o(r) # o(s) and let
V= M(r = s). Then either V= I N R or V= T,jor V= T for some j.

Proof. By 3.3()) we have V<= J and by 3.6(i)) we can assume that
var(r) = var (s). Taking into account 3.7(iii), we may restrict ourselves to the case
r,se F — W,. Then r = xix,... x, and s = y¥y,... y,.. We have n = m and there
is a permutation p of {1,...,n} with p(1) # 1, such that y, = X,1),..., Yu = Xpn
The result now follows from 3.9. d

3.11 Lemma. Leti < 2,3 < n, let xy,..., X, be pairwise distinct variables and
let p be a permutation of {2,...,n} such that p(2) # 2. Put r = X\X;... X,
S = X{Xp2)... Xpm and V = M(r = s). Then:

G ve 7.
() Ifp(n) #n then V= T N A
(iii) If p(n) = n, then V= Ty

Proof. (i) Use 3.3(iii).
(ii) Use (i) and 3.43).
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(iii) It is easy to see that VN # = S; and V < T;;. Conversely, let S € T;, and
let ay,..., a, be elements of S. Then

Il

3 3 3, — 43,3 3 3
a...a, ay... a,_qq, = alap(z)... ap(n_]) aia,

= a‘l"ap(z)... Apin—1)Qn - O

3.12 Lemma. Let n > 3, let x,..., X, be pairwise different variables and let
p be a non-identical permutation of {1,...,n} such that p(1) = 1. Put V=
= M(X}X;... X, & X{Xp)-.. Xpf)- Then:

() If p(n) # n, then V = Rq,.

(i) If p(n) = n, then V = S,,.

Proof. If p(n) # n, then V = # according to 3.4(i). The rest is similar to
3.11 O

3.13 Lemma. Let i,k,q,t < 2 < n, let xy,..., X, be pairwise distinct variables
and let p be a permutation of {1,..., n}. Put

V= M(xX} X;... Xpo1X5 R X¥1pXp(2) - Xpfn1)Xbpe) -
Then either V= T nRor V= S8,;or V= T,;or V= Rq, for some m and j.

Proof. The result can be put together from the following nine cases.
(i) Let p(1) # 1. Then we can apply 3.10.

(i) Let p(1) = 1,k =t = 1 and i = g = 2. This case is clear from 3.12.

@ii) Let p(1) =1, p(2) # 2, k =t =1 and i + g < 3. In this case we can
use 3.11.

(iv) Let p(1) =1, p(2) =2,k =t =1and i = g = 1. If p is the identical
permutation, then V' = . Hence assume that p is non-identical. Then n > 4. If
p(n) #n,then Ve Zy 3.43G), Vn S = 4, and it is easy to see that V = Rq,.
Now, let p(n) = n. Then VN # = 4; and V < S, ;. Conversely, if S € S,; and if
a,..., a, are elements of S, then

... 4, = Q@3 ... Gy B30, = QA3 ... Gyn_1)@3ay
= alaza,,@)... ap(,,_l)a,,
and SeV.

(v) Let p(1) =1, p(2) =2, k=t=1i=1 and q = 2. We have
Ve J by 33Gi). If p(n) #n, then V= I nZ follows from 3.4(i). Let
p(n)=n and n > 3. Then it is easy to see that V=7 nM(xix,... x, &
R X{XyXp3)... Xpm). If p is non-identical, then V = Ti; by 3.12; if p is the identity,
then V = Ts.

(vi) Let p(l) =1L, k=t=2i=2and g =1. Then V<= J by 3.3(ii) and
we can use 3.7(ii).

(vii) Let p(1) =1, k=t =2 and i = g = 1. If p(2) = 2, then the result
follows from 3.8. If p(2) # 2, then n > 3, V= J by 3.3(iii) and the result
follows from 3.7(ii).
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(viii) Let p(1) = 1,k =t = 2and i = g = 2. In this case, it is possible to use
3.7(1).
(ix) Let p(1) =1, k =2 and t = 1. If p(n) # n, then V<= # by 3.4(). If
p(n) = n, then the inclusion V = £ is obvious. Hence we have

V=R M(X{Xs... X 1X5 & X{Xp2) .. Xpin—1) Xpn)-
The result is now clear from (vi), (vii) and (viii). O

3.14 Lemma. Let r,s be two words and let V= M(r ~ s). Then either V <
€I nRorV=T,for someiand j.

Proof. According to 3.4(ii) and 3.7(iii), we can assume that var (r) = var (s) and
r,s € F — W,. However, then 3.13 can be applied. O

V.4 The lattice of subvarieties of 7

4.1 Lemma. The following are true:

G Tynd=oA, TnAd =Ay Tynd =Asand T;n I =TH,nSI =
=T;nS = S forevery) <j<9.

G) Ty = v I, T, =y v Jjand T,; = o5 v F, for j€ {0,1,3,5}.

Proof. Use 1.5 and 3.5. O

4.2 Lemma. Let1 <i,j<3and0 < p,q < 9. Then T,, n T,, = T, for some
r,s. Moreover, T,, < T, if and only if i < j and ¥, < 4,

Proof. It is easy. O
4.3 Lemma. The varieties T;; (1 < i < 3,0 < j < 9) are pairwise distinct.
Proof. Use 4.2. O

4.4 Lemma. Let V be a subvariety of . Then either Vis contained in 7 N X
or V= T, for some i and j.

Proof. If V= £, then VS I nA. So, let VEL A. Then, by 3.14, V is the

intersection of some varieties T;;, so that V = T;; for some i,j by 4.2. O
4.5 Proposition. The variety I has the following 62 subvarieties:
LO, ceey L43,
L44 = 71,23
L, = Tz,z,
L46 = ’I;,Z’
Ly = T1,4,
L48 = ’13,4,
L49 = T3,4,
LSO = Tl,63
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Ly = Tz,s,

Ls, = Ts,s,
Ly = T1,7,
L54 = T2,7a
Ly = 73,7,
Ls = TI,S’
Ly = B,s,
Ly = T3,s,
Lsy = T1,9,
L = '13,9,

Lg = '13.9 =J.
We have Lyy,...,Ley € Lz = T N R. We have T;,, < T,, ifand only if i < j and
S, & S, We have o, v #, < T, if and only if #, < S, and either r = 3 or
r=2,me{0,1,2,4}orr = 1, me {0,1}.

Proof. Let Vbe a subvariety of J such that V = #£. By 4.4 and 4.1(Gii), V = T;;
where i€ {1,2,3} and j € {2,4,6,7,8,9}. Converserly, if i and j are such numbers,
then T;, < T;; and hence T;; & Z. The rest is easy. O

V.5 Auxiliary results

5.1 Lemma. Let i,j,k <2, n >0, x, Xy,..., X, be pairwise distinct variables
and let p be a permutation of {1,..., n}. Put

V=M(XX; .. Xpo1Xh R X Xp(1) -0 Xpp)X)-
Then either V< J or V = §,;or V= R,, for some Tand q.

Proof. We distinguish six cases.

(i) n = 0. Then either S = L or V= S0r V=1

(ii)) n > 1and i =j = k = 2. Then 3.7(i) can be applied.

(i) n>1,i=k=2andj =1.By3.4(3), V= #Zand thenclearly V=# U
where

U = M(X'%; ... Xom1 X5 R X2 Xp1)eee XpipX)-

But U = S, for some s and V = Rg,.

ivyn>1landi+ k =3.By3.3(3Gi), Ve 7.

(W nx=1li=k=1andj=21fp(l) # 1, then V= 7 due to 3.3(iii). Now
we can assume that p(1) = 1. Consider first the case when p is the identity. Then
it is easy to see that V' < S;;. Conversely, if S € S35 and a,b,,..., b, € S, then

abl... bﬁ = a(bl... b")z = abl... b"a

and S € V. Now, let p be non-identical. Using similar arguments as in the last case,
we see that V = §;,.
(vijn>landi=j=k=1. Then V< %,
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V=R OM(XX|... Xo1X3 R XXp1)ee. XpinX)
and either V= Rsg or V = Rs4 by (v). O

5.2 Lemma. Leti,j < 2,n >0, x,Xxy,..., X, be pairwise distinct variables and
let p be a permutation of {1,..., n}. Put

V= M(X%]... X,X & XXy1)... Xpn)X)-
Then either V= I or V= S,g0r V=3S,,.
Proof. It is similar to the proof of 5.1. O

5.3 Lemma. Let i,j ik <2<n, 1<gq<n, x,xy,..., X, be pairwise distinct
variables and let p be a permutation of {l,..., n}. Put

V= M(x‘xl x,,_,x{, ~ x"x,,m... xp(,,)xp(q)).
Then either V< I or V= S,, or V= Rg, for some r.

Proof. We distinguish five cases.
(i) i = j = k = 2. In this case we can use 3.7(i).
(ii)) i =k =2andj = 1. Clearly, V< £ and we can use 3.8.
(i) i+ k=3.Then V< 7.
(iv) i =k =1and p(1) # 1. Then V< J by 3.2.
(v) i=k=1and p(1) = 1. If j = 2, then we can use 3.8. If j = 1, then
V < 2 and we can again use 3.8. O

54 Lemma. Let i,j <2<n, 1<rs<n, x,Xy..., X, be pairwise distinct
variables and let p be a permutation of {1,..., n}. Put

V= M(xixl e XX, R xjxp(l)... x,,(,,)xp(s)).
Then either V<= J or V =8, ,or V= §e, for some q.
Proof. It is similar to the proof of 5.3.

5.5 Lemma. Let i,j <2<n 1<k<n, xXx,...,Xx, be pairwise distinct
variables and let p be a permutation of {1,..., n}. Put

V= M(XX;... X,X R XXp1)-. XpfnXpih)-
Then either V<= J or V = S, for some r, s or V= R, for some t, s.
Proof. Clearly, VN 4 = 4 and
V'S M(Xph - XomXa) X Xp) -+ Xofn)-
Consequently, ¥V < U where
U =M(X%;... XX & XXy1)... Xpim)

and V= U n S;5. The result now folows from 5.1. O
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5.6 Lemma. Let r,s be two words such that var(r) = var(s) a
Put V=M(r = s). Then either V=T nRor V= T,;orV
for some i,j, p,q,n,m

)l

Proof. We can assume that r,s € F. The result then follows from 3.13 and 5.1,
555 O

5.7 Lemma. Let r,s be two words such that var(r) # var(s) and let V=
= M(r = s). Then either V=9 N R or V= Rg; or V= Ry, for some j.

Proof. By 3.4(ii), V< # and we can assume that o(r) = o(s); denote this
variable by x. Recall that o(w) is the first variable in a word w. The last variable
in w will be denoted by o(w). We distinguish nine cases.

(i) r = x’p and s = x’q where p, g are two words with o(p) # x # o(q).
Then V = Ry, by 3.7().

(ii) r = x'p and s = x’q where p, q are two words with o(p) # x # o(q) and
i+ j=3.Then V= I n Z by 3.3(i).

(iii) r = xp and s = xq where p, q are two words with o(p) = o(g) # x and
o(p) # x # 0(g). Then we can assume that x ¢ var (pg) and the result follows from
3.8.

(iv) r = xp and s = xq where p, q are two words with x # o(p) # o(q) # x.
Then VS 9 n Z by 3.3(iii).

(v) r = xp and s = xq where p, q are two words with o(p) = o(g) # x and
0(p) # x = 6(g). We can assume that p = X;... X,, x¢var(p), ¢ = yy... YmX,
X, =Y, X # y. Then VA # = £, and it is easy to see that V' = Rg,.

(vi) r = xp and s = xq where p, q are two words with o(p) = o(g) # x =
= 6(p) = 6(g). We can assume that p = X;... X,X, § = V... YmX, X; = ;. Then
VA S = S and V= Res.

(vil) r = x. Then V € 4.

(vili) r = x* and s = x'q where q is a word with o( ) # x. If i =1, then
VeI nR by 3.3@i). If i = 2, then 3.7(i) can be used.

(ix) r = x* and s = x'q where g is a word with 0(g) # x. Then V < S, and

V= M(x® ~ s) N S,. The result now follows from (viii). O

5.8 Proposition. Let r, s be two words and let V= M(r =~ s). Then either
Ve RNT orV=RjjorV=T;or V=S, for somei,,j.

Proof. Apply 3.3, 5.6 and 5.7. O

V.6 The lattice of subvarieties of #

6.1 Lemma. The following are true:

) Rynd =Ryynod =s,R;;ned =Ryynd = A, Rs; "/ = Rg; N
N =ss, RynF=RyynI =Rs;nF=55nF and Ryyn S =
=RynS =R, NI = forevery ) <j<9.
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(i) Ryy= o vV I, Ryy= A, v I, Rs; = s v I, for every j€{0,2,3,6}.

(@) Rip=Ri3=o vV Iy Rpy=Ris=o vV I Rygy=Ry3 =, v S,
Ryy,=Ryg=oy v I Rsg=Rs3=ov S and Rs; =Rs6=
=&ls v L.

(iv) Ry; = Ry, Ry; = Ryjand Rs; = Rg; for every j € {1,4,8}.

(V) Ryx = R;; for i€ {1,3,5} and (k,j) € {(1,5),(4,7),(8,9)}.

Proof. (i) is easy. In order to prove (ii), it is sufficient to show that Rgse I N A.
Let S € Rge. We have x?y = x?)* and efg = feg for all elements x,y € S and all
idempotents e, f, g € S. Hence x*y* = xx’y*y® = x)’°x%y* = xy2

(iii) follows from (ii). In order to prove (iv), it is sufficient to show that
Rss = Rgg. Let SeRgs. We have x*y = x?)” and efe = ¢f for all elements
x,y € S and all idempotents e, f € S. Hence xyx = xy’x* = xy’x’y’ = xy?

In order to prove (v), it is sufficient to show that Rsg = Rsg. Let S € Rsy. We
have x?y = x?y? and xy* = xyx for all elements x,y € S. Then efe = ef? = ef
for all idempotents e, f € S. O

6.2 Lemma. Let 1 <i,j<6 and 0<r, s<9. Then R, nR;; = R,, for
some p and q.

Proof. It is easy. O

6.3 Proposition. We have the following inclusions between the varieties R;;:
i) Ry € R,,if RRs R,and S, < S
(i) R;; € R, if R;; = R, as described in 6.1.
There are no other inclusions except those that follow by transitivity from these
two cases.

Proof. The other inclusions would imply incorrect inclusions between subvarie-
ties of 7 N Z (intersect bot sides with 7). O

6.4 Proposition. The variety X has the following 62 subvarieties:
L,..., Ly,

L, = R1,1 = R2,1 = RI,S,

Le; = R3,1 = R4,1 = R3,5,

Le = RS‘I = R6,l = Rs,s,

L¢s = R1,4 = R2,4 = R1,7,

L¢ = R34 = R4,4 = R2,7,

L¢; = R5,4 = R6,4 = R5,7,

Le = Rz_s,
Le = R4,5,
Ly = Rﬁ,s,
L, = R2,7,
L72 = R4,7,
L;; = R6.7,
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L74 = Rl,s = Rz,s = R1,9,
L75 = R3,8 = R4,8 = R3,9,
L76 = Rs,s = Rs,s = R5,9,

Ly, = R2,9,
Ly = R4,9,
Loy = R6,9 = A.

Proof. Let V be a subvariety of # such that V& 7. It follows from 5.8 and
6.2 that V= R;; for some 1 < i < 6 and 0 <j < 9. According to 6.1, V'is one
of the varieties L, ..., L. Example 1.2.5 shows that Ls;, & . O

V.7 The lattice of subvarieties of .

7.1 Lemma. The following are true:

W) Synd =8nd =y, Sy;nd =S;nAd =45 8;,nI =530
NE=I5NISyynI =8;NnSF = forevery0 <j<09.

(i) Sio=S8y=S3=AsV I S30=Sp=S3=s5 VvV IS =V
Vv Sand S43 = As v SFs.

(iii) S3n T = T,

(1v) S12=822= 816 = T2 S32 = Ss2 = S36 = Tz, $26 = Trs and Sy = Tz

W) Sl,l = Sz.1 = Ry, S3,1 = S4,1 = RS,I’ Sl,s = R3,1’ Sa,s = RS,I, Sz,s = R4,5
and S5 = Rgs.

Proof. It is easy. O

7.2 Lemma. Let 0 <i <9 and S = F N S Then S,; =S, and S;; =
= S3|i'

Proof. It is easy. g
7-3 Lemma. Letic {0,1, 2, 4, 8}. Then S“ = S2,,- and S3,,' = S4),’.
Proof. It is easy. O

7.4 Lemma. Let 1 < i,j<4and0 <r,s <9.Then S;, n S;; = S,, for some
p and q.

Proof. It is easy. O

7.5 Proposition. We have the following inclusions between the varieties S;;:
(i) S;8,,if SscS,and S, < 5,
(i) Si; € S, if Sij = S,q according to 7.1, 7.2 or 7.3.
There are no other inclusions except those that follow by transitivity from these
two cases.

Proof. It is easy. d
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7.6 Theorem. The variety £ has the following 88 subvarieties:
LO: LEEE) L79’

Ly = 51,4,
Lg = Ss,4,
Lg, = Sz,7,
Lg; = S4,7,
L84 = Sl,s,
Lgs = Ss,s,
Lg = Sz,9,
Lg; = S4,9 = 2.

Proof. Apply 5.8 and 7.1, ..., 7.5. O
The lattice of varieties of LD-semigroups is pictured in Fig. 3. An element
labeled i in the picture represents the variety L, (i = 0,..., 87).

V.8 Comments and open problems

The main result of this chapter (Theorem 7.6), i.e., description of the lattice of
varieties of LD-semigroups, is adopted from [Kep,81]. Now, given a property
defined for a semigroup variety, an open problem may be to determine which of
the varieties L; (i = 0,..., 87) enjoy this property.

List of symbols
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a(n) 2.1
a(n,m) 11.2.1
g4 1I1.2.1
Aoy .. s m.2.1
b(n) 1L.2.1
Foves frs M1.3.1 —TL3.5
F II.1.1
F II.1.1
5 Iv.2.1
Foseer Fy IvV.2.1
L,,..., Ly V.1.6
Lys,..., Lg va4s
L., Lo V.6.4
Ly, ..., Ly V.7.6
LA(S) V.38
M(u, = vy, ... V.21
R; V.2.1
R;; V.2.1
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[KepN,03]
[KepZ,89]
[Mar,79]
[Pet,69]

[Pie,80]
[Zej,89a]
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R V.11
S; V.21
Sij V.2l
T; V.2.1

i V.2.1
T V.1.1
Wi, W, V.3.1
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