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Selfdistributive Groupoids Part Dl: 
Left Distributive Semigroups 

JAROSLAV JE2EK AND TOMA§ KEPKA 

Praha 

Received 27. September 2005 

In this paper, the essentials of the algebraic theory of left distributive semigroups are 
presented. 

0. Introduction 

Every semilattice (i.e., an idempotent commutative semigroup) is selfdistributi­
ve. An explicit formulation of this fact (perhaps for the first time) can be found 
already in C. S. Pierce [Pie,80]. A structural study of two-sided selfdistributive 
semigroups was initiated in M. Petrich [Pet,69] and that of one-sided selfdistribu­
tive semigroups ten years later in S. Markovski [Mar,79]. 

Altogether, there are only a few papers devoted to selfdistributive semigroups. 
The present article is a survey treatment on the topic. 

As concerns the notation, terminology, references, comments, etc, used and 
related to but neither defined nor formulated in the following text, a kind reader 
is fully referred to [KepN,03] (also cited as Al. •••). 
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I. General theory of left distributive semigroups 

1.1 Basic properties of left distributive semigroups 

1.1 Proposition. Let S be an LD-semigroup. Then, for all x,y,ze S: 

(i) xyz = xyxz = xy2z. 
(ii) xny = x2y for every n > 2. 

(iii) (xy)n = xyn = xy2 = (xy)2 for every n > 2. 
(iv) xn = x3 for every n > 3. 

Proof, (i) xyz = xyxz = xyxyz = xy2z by repeated use of the left distributive 
law. 

(ii) For n > 3, xny = xx"~2xy = xxn~~2y = x" - 1y 
(iii) For n > 3, (xy)n = xyn = x y x / 1 - 1 = xyxyy" -2 = xyxyn~2 = xy""1. 
(iv) For n > 4, x" = xxxx" - 3 = xxx""3 = x*"1. • 

1.2 Proposition. Let S be an LD-semigroup. Then: 
(i) Id (S) is a left ideal of S and x3, xy2, xyx e Id (S) for all x,y e S. 

(ii) S w elastic. 
(iii) For every n > 3, o„ s = o3 s. 

Proof, (i) First, xy 2eId(S) by 1.1 (iii) and (xyx)2 = xyx2 = xyx. Now, Id(S) 
is a left ideal of S (see also Al.II.1.5(i)). 

(ii) Every semigroup is elastic, 
(iii) This is an immediate consequence of 1.1 (iv). • 

1.3 Proposition. The following three conditions are equivalent for an 
LD-semigroup S: 

(i) Id (S) is an ideal of S. 
(ii) S3 c Id(S). 

(iii) S satisfies the (semigroup) identity x2y a x2y2. 
If these conditions are satisfied, then S/Id(S) is an A-semigroup. 

Proof, (i) implies (ii). xyz = xy2z by 1.1 (i), and xy 2eId(S) by 1.2(i). 
(ii) implies (iii). Since x2y eld(S), we have x2y = x2y • x2y = x2y2. 

(iii) implies (i). By 1.2(i), Id(S) is a left ideal. Let x e S and aeld(S). Then 
ax = a2x = a2x2 = a2x • a2x = (ax)2. Thus Id (S) is a right ideal. • 

1.4 Definition. An LD-semigroup satisfying the equivalent conditions of 1.3 
will be called an LDR-semigroup. 

1.5 Proposition. The following four conditions are equivalent for an 
LD-semigroup S: 

(i) S2 <= ld(S). 
(ii) Id (S) is an ideal of S and S/Id (S) is a Z-semigroup. 
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(iii) S satisfies the identity xy « xy2. 
(iv) S/qs is idempotent. 

If these conditions are satisfied, then S is an LDR-semigroup. 

Proof. Easy. • 

1.6 Definition By an LDRrsemigroup we mean a semigroup satisfying 
xy « xyx. (Clearly, every LDRrsemigroup is left distributive.) 

1.7 Proposition. Every LDRrsemigroup satisfies the equivalent conditions of 
1.5 (hence it is an LDR-semigroup). 

Proof. Let S be an LDRj-semigroup. By 1.2(i), xy = xyxeld(S) for all 
x ,yeS . Thus S2 c Id(S). • 

1.8 Proposition. Let S be an LD-semigroup. Then: 
(i) ps is a congruence of S. 

(ii) S/ps is an LDRrsemigroup. 

Proof, (i) This is true for every semigroup 
(ii) We have xyz = xyx • z for all x,y,zeS. • 

1.9 Proposition. The following four conditions are equivalent for an 
LD-semigroup S: 

(i) o2,s is an endomorphism of S. 
(ii) o3S is an endomorphism of S. 

(iii) S satisfies the identity xy2 « x2y2. 
(iv) S is left semimedial. 

Proof. By 1.1 (ii) annd 1.1 (iii) we have (xy)3 = xy3 = xy2 = (xy)2 and 
x3y3 = x2y2 for all x,yeS. Now it is clear that the first three conditions are 
equivalent. 

If (iii) is satisfied, then xx • yz = x2yz = x2y2z = xy2z = xyz = xy • xz (use 
1.1). Conversely, if S is left semimedial, then x2y2 = xyxy = xy2. • 

1.10 Definition. Every LD-semigroup satisfying the equivalent conditions of 
1.9 will be called an LDT-semigroup. 

1.11 Proposition. Let S be an LDT-semigroup. Then: 
(i) o3 s is a homomorphism of S onto Id (S). 

(ii) Every block of ker (o3 s) is an A-semigroup. 

Proof. Easy. • 

1.12 Proposition. The following conditions are equivalent for an LD-semig­
roup S: 

(i) S satisfies the identity xy « x2y. 
(ii) S/ps is idempotent. 
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Proof. Easy. • 

1.13 Definition. Every LD-semigroup satisfying the equivalent conditions of 
1.12 will be called an LDTrsemigroup. 

1.14 Proposition. Let S be an LDTrsemigroup. Then: 
(i) S is an LDT-semigroup. 

(ii) os is a homomorphism of S onto Id (S). 
(iii) Every block of ker(os) is a Z-semigroup. 

Proof. Easy. • 

1.15 Proposition. Let S be an LD-semigroup. Then S/qs is an LDTrsemigroup. 

Proof. We have zxy = zx2y for all x,y,ze S. • 

1.16 Proposition. The following three conditions are equivalent for an 
LD-semigroup S: 

(i) S satisfies the identity x2y « xy2 (i.e., S is delightful). 
(ii) S satisfies the identities x2y « xy2 and xyz « x2yz (i.e., S is strongly 

delightful). 
(iii) S is an LDTR-semigroup. (I.e., both LDR and LDT) 

Proof, (i) implies (ii). We have x2yz = xy2z = xyz by 1.1 (i). 
(ii) implies (iii). We have x2y = x* x2y = x2y2 by 1.1 (ii), so that S is an 

LDR-semigroup. Similarly, xy2 = xy2 • y = x2y2 by 1.1 (iii), so that S is an 
LDT-semigroup. 

(iii) implies (i). This follows immediately from the definitions. • 

1.17 Proposition. Let S be an LDRT-semigroup. Then: 
(i) Id (S) is an ideal of S and S/Id (S) is an A-semigroup. 

(ii) oxs is a homomorphism of S onto Id(S) and every block of ker(o3S) is an 
A-semigroup. 

(iii) ker(o3S)n =id(s) = ids and S is a subdirect product 6fId(S) and S/Id(S). 

Proof. For (i) see 1.3; for (ii) see 1.11; (iii) is clear. • 

1.18 Proposition. Let S be an LDRrsemigroup. Then there exists a congruence 
r of S such that S/r is commutative and every block of r containing at least two 
elements is a subsemigroup of S and an LZ-semigroup. 

Proof. Define r by (a, b) e r iff either a = b or a = cb and b = da for some 
c.deS. Clearly, r is an equivalence and (a, b)er implies (ax, bx) e r for any xeS. 
On the other hand, using the left distributive law, one can see that (a, b)er also 
implies (xa, xb) e r. So, r is a congruence of S. Since S is an LDRi-semigroup, we 
have ab = aba, ba = bab and (ab, ba) e r for all a,b e S. Thus S/r is commutative. 

Now, let A be a block of r and a,be A, a ^ b. We have a = cb and b = da 
for some elements c,d. Then ab = ada = ad = cbd = cdad = cda = cb = a. 
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Further, (a, b)er implies (aa, ab) e r, so that (aa, a) e r, and we get aae A. If 
a 7* aa, then a = a3 according to the previous observation, so that a e Id (S) by 
1.2(i), a contradiction. 

1.19 Proposition. The following five conditions are equivalent for an 
LD-semigroup S: 

(i) S is right semimedial 
(ii) S is middle semimedial. 

(iii) S is medial. 
(iv) S/ps is right permutable. 
(v) S/qs is left permutable. 

Proof, (i) implies (iii). xyuv = xyu2v = xuyuv = xuyv. 
(ii) implies (iii). xyuv = xywxt; = xuyxv = xwyu. • 

1.20 Proposition. The following conditions are equivalent for a semigroup S: 
(i) S is a medial LDR-semigroup. 

(ii) S i5 a medial LDRT-semigroup. 
(iii) S w a D-semigroup. 

Proof, (i) implies (iii). xyz = xyxz = xxj/z = x2y2z = x2y2z2 = x2yz2 = 
= x2zyz = xzyz. 

(iii) implies (ii). xyuv = xuyuv = xuyv, xxy = xyxy = x2)>2 and xyy = 
= xyxy = x2y2. • 

1.21 Proposition. The following conditions are equivalent for a semigroup S: 
(i) S is an LD-semigroup and card (Id (S)) = 1. 

(ii) S is an A-semigroup. 

Proof, (i) implies (ii). Let Id(S) = {0}.By 1.2(i), 0 is a right absorbing element 
of S and xy2 = 0 = xyx for all x, y e S. Now, Ox = OxOx = Ox2 = 0 and hence 
xyz = xyxz = Oz = 0 for all x,y,zeS. • 

1.22 Proposition. Let S be an LD-semigroup, C = #/(S) and D = S — C. 
Then: 

(i) Every element of C is a left neutral element of S. 
(ii) If C is nonempty, then qs = ids, S is an LDTrsemigroup and C is an 

RZ-semigroup. 
(iii) If D is nonempty, then D is a prime ideal of S. 
(iv) If C is nonempty and S is an LDRrsemigroup, then C = {e} is a singleton 

and e is a neutral element of S. 

Proof, (i) For aeC and xeS, aax = aaax implies x = ax. 
(ii) C # 0 implies immediately that qs = ids, and then S is an LDT rsemig-

roup by 1.15. Further, C is a subsemigroup of S (see also Al.II.4.1(i)) and C is an 
RZ-semigroup by (i). 
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(iii) Since S is a semigroup, D is a left ideal of S. Let a e D and xe S. Then 
au = av for some u,v e S, u =£ v, and we have axw = axaw = axav = axv. 
Hence axe D and we see that D is an ideal. Finally, if ab e D, then abu = abv, 
u ^ v, and therefore either ae D or be D. 

(iv) We have ax = axa and x = xa for all a e C and x e S. The rest is clear 
by (i). • 

1.2. Examples of left distributive semigroups 

2.1 Example. There are (up to isomorphism) precisely four two-element 
LD-semigrops. They are: 

D{1),D{2),D{3),D{4) 

(see A1.IV.4). The first three of them are idempotent; the last one is not. 

2.2 Example. There are (up to isomorphism) precisely sixteen three-element 
LD-semigroups. They are: 

D(7), ..., D(14), £>(20), D(24), ..., D(28), D(36), D(46) 

(see A1.IV. 10). All of them, except D(20) and D(28), are distributive. The 
idempotent ones are D(l), ..., D(14) and D(20). 

2.3 Example. The following table shows the numbers of isomorphism types of 
at most five-element LD-semigroups and LDI-semigroups: 

1 2 3 4 5 

LDS 1 4 16 93 682 
LDIS 1 3 9 38 179 

2.4 Example. Consider the following five-element groupoid S: 

S 0 1 2 3 4 

0 1 1 3 4 4 
1 1 1 4 4 4 
2 2 2 2 2 2 
3 3 3 3 3 3 
4 4 4 4 4 4 

This groupoid is an LDRrsaemigroup; it is not an LDT-semigroup and it does not 
satisfy the identity xyx x2yx. 
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2.5 Example. Consider the following four-element groupoid S: 

S 0 1 2 3 

0 2 3 2 2 
1 1 1 1 1 
2 2 2 2 2 
3 3 3 3 3 

This groupoid is an LDRrsemigroup; it is not an LDT-semigroup; it is subdirectly 
irreducible and satisfies x2 7 

x У-

2.6 Example. Consider the following two three-element LD-semigroups: 

D(20) 0 1 2 

0 0 0 0 
1 1 1 1 
2 0 1 2 

D(28) 0 1 2 

0 0 0 0 
1 0 1 2 
2 0 0 0 

D(20) is an idempotent LDRrsemigroup; it is not medial. D(28) is an 
LDT!-semigroup; it is medial and satisfies xy2 « yx2. Moreover, Id(D(28)) is not 
an ideal and D (28) is not an LDR-semigroup. 

2.7 Example. Let f be a transformation of a nonempty set S and define 
multuplication on S by xy = f(y) for all x,yeS. Then S becomes a D-semi-
group. 

2.8 Proposition. Let S be an LD-semigroup and e$S. Then: 
(i) S [e] is an LD-semigroup. 

(ii) S [e\ is an LD-semigroup. 
(iii) S \e} is an LD-semigroup iff S is an LZ-semigroup. 
(iv) S [e] is an LD-semigroup iff S is an idempotent LDRj-semigroup. 

Proof. Easy (see Al.IV.1.9). • 

2.9 Proposition. Let S be a D-semigroup and e$S. Then: 
(i) S \e\ is a D-semigroup. 

(ii) S{e\ (resp. S\e}) is a D-semigroup iff S is an RZ-semigroup (resp. 
LZ-semigroup). 

(iii) S {e} is a D-semigroup iff S is a semilattice. 

Proof. Use 2.8. D 
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1.3 Basic facts on subdirectly irreducible left distributive semigroups 

3.1 Proposition. Let S be a subdirectly irreducible LD-semigroup. Then just 
one of the following two cases takes place: 

(i) #/(S) 7* 0, qs = ids and S is an LDTrsemigroup. 
(ii) #,(S) = Qandqs # ids. 

Proof. Suppose first #/(S) = 0. Then, for every xe S,LX is not injective, so that 
&>s --- qx,s'i but then cos c qs. On the other hand, if #/(S) ^ 0, then (i) is true by 
1.22(ii).' • 

3.2 Proposition. Let S be a subdirectly irreducible LD-semigroup such that 
C = #/ (S) 7-- 0; put D = S — C. Then just one of the following five cases takes 
place: 

(i) S - D ( l ) . 
(ii) S - D(2). 

(iii) S a. D(10). 
(iv) S ls neither idempotent nor an LDR-semigroup and card(D) > 2 (then 

Ps T* idsJ 
(v) S w an idempotent LDRrsemigroupf card(D) > 2, ps = ids, C = {e]for 

a neutral element e of S, D is subdirectly irreducible and pD = idD ^ 4D-

Proof. By 3.1, qs = ids and S is an LDTrsemigroup. By 1.22, either D = 0 or 
D is a prime ideal of S. Let (a,fe) ea>s, a ^ b. Obviously, D = {xe S : xa = xfc}. 
If D = 0, then S is a RZ-semigroup by 1.22(ii) and one can readily see that 
S ~ D (2) in that case. 

Next assume that D = {0} is a singleton. Then 0 is an absorbing element of S, 
C is an RZ-semigroup and it is easy to see that s u ids is a congruence of S for 
any congruence s of C. If card(C) = 1, then S ~ D(l). If card(C) > 2, then 
a,beC , C - D(2)andS ~ D(10). 

Finally, assume that card (D) > 2. Since D is an ideal, = D is a congruence of 
S and thus a, b both belong to D. Then aa = ab and ba = ftb. 

Let ps # ids. Then (a, b) e ps, ab = bb, and therefore aa = bb. It follows that 
either aa ^ a or bb ^ b and we see that S is not idempotent. Suppose that S is an 
LDR-semigroup. Then Id (S) is an ideal and, since either a $ Id (S) or ft ^ Id (S), we 
must have card (Id (S)) = 1 by the subdirect irreducibility. Then by 1.21, S is an 
A-semigroup and thus C = 0, a contradiction. 

Let ps = ids. Then, by 1.8, S is an LDRrsemigroup; S is idempotent by 1.22(ii) 
and 1.17(iii). Thhe rest is clear from 1.22(iv). • 

3.3 Proposition. Let S be a subdirectly irreducible delightful LD-semigroup 
(see 1.16). Then just one of the following four cases takes place: 

0) S~Z>(2). 
(ii) S -D(10) . 
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(iii) S is an idempotent LDRrsemigroup with ps = ids. 
(iv) S is an A-semigroup. 

Proof. With respect to 1.16(iii) and 1.17(iii), we can assume that S is idempotent. 
Further, with respect to 3.1 and 3.2, we can assume that qs 7-= ids. Let (a,b) e cos, 
a 7* b. We have (a, b) e qs, so that a = aa = ab abd b = bb = ba. Thus ab # btf 
and (a,fe) £ ps. But then ps = ids and S is an LDRrsemigroup by 1.8(ii). • 

3.4 Proposition. Let S be a subdirectly irreducible D-semigroup. Then just one 
of the following two cases takes place: 

(i) S is idempotent and S is isomorphic to one of the five distributive 
semigroups D(l), D(2), D(3), D(9) and D (10). 

(ii) S is an A-semigroup. 

Proof. With respect to 3.3, we can assume that S is an idempotent 
LDRrsemigroup, i.e., S satisfies xy « xyx. Dually, using the right hand form of 
3.3, we can assume that S satisfies xy % yxy. However, then S is commutative, i.e., 
it is a semilattice. A subdirectly irreducible semilattice is isomorphic to D (1). • 

3.5 Remark. Let S be a subdirectly irreducible LD-semigroup. We have either 
ts # ids or ts = ids. 

If ts =£ ids, then ts = cos = {(a,b),(b,a)} for some a, be S, a ^ b. Then a2 = 
= ab = ba = b2, and so either a $ Id(S) or b $ Id(S). 

If t = ids, then either ps = ids and S is an LDRrsemigroup, or else qs = ids 

and S is an LDTrsemigroup. In the latter case, 3.2 applies. 

3.6 Proposition. The groupoids D(l), D(2), D(3) and D(4) are (up to 
isomorphism) the only (congruence) simple LD-semigroups. 

Proof. The result follows easily from Al.II.7.4. • 

1.4 Comments and open problems 

The results of this section are of introductory character and are based on the 
paper [Kep,81]. The main open problems concern a more detailed description of 
subdirectly irreducible LD-semigroups. In particular, their subsemigroups are not 
known (cf III.4 and IV.3,4,5). 

II. Free left distributive semigroups 

II.1 Construction of free left distributive semigroups 

1.1 Construction. Let X be a nonempty set. Denote by F the (absolutely) free 
semigroup over X. Denote by F the union of the following four pairwise disjoint 
subset A, B, C, D of F: 
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A = {^: x e X, 1 < i < 3} 
B = {xf'y: x,y e X, x ?- y, 1 < i, j < 2} 
C = {xix2... xn_iX;

n: xb..., xn G K pairwise different, n > 3, 1 < i,j < 2} 
D = {xfiX2... xn_ix„xfc: xb . . . , xn G X pairwise different, n > 2, 1 < k < n, 

1 < i < 2} 

For every element u of F, (uniquely) expressed as u = Xin... xn
n where n > 1, 

x, G X, /c, > 1 and xxi^ x2± ... ^ x„, we define an element f(w) of F as follows: 
(i) If n = 1, let f(u) = x* where k = min(3,ki). 

(ii) If n = 2, let f(u) = x\xl
2 where k = mm(2,k{) and / = min(2,/c2). 

(iii) If n > 3 and x„ £ {xb..., x„_i}, let f(u) = x ^ j . . . ymxj, where k = 
= min (2, ki), / = min (2, /c„) and (by induction on 0 yt is the first member 
of x1?..., x„_! not contained in {xuyi,... y,_i}. 

(iv) If n > 3 and xne {xb..., xn_2}, let f(w) = Xiyi... ymx„ where k = 
= min(2,ki) and (by induction on i) yt is the first member of xl5..., x„_i 
not contained in {xbyi,..., y,_i}. 

It is easy to see that f(u)eF in any case. Also, it is easy to see that f(u) = u for 
u e F. Let us define a binary operation * on F in this way: u * v = f(uv) for any 
u,v e F. We are going to prove that F(*) is a free LD-semigroup over X. 

1.2 Lemma. Let ueY. The identity u ~ f(u) is satisfied in any LD-semigroup. 

Proof. It is easy; use I.LI, 1.1.2 and, of course, the left distributive law. • 

1.3 Lemma. Let u,ve F and u ^ v. Thhen there is an LD-semigroup not 
satisfying u « v. 

Proof. Suppose that u « v is satisfied in all LD-semigroups. Since every 
LZ-semigroup is left distributive, the words u, v have the same first letters. 
Similarly, every RZ-semigroup is left distributive and hence u, v have the same 
last letters. Furthermore, every semilattice is distributive and we conclude that the 
set of letters occurring in u coincides with the set of letters occurring in v. Now, 
we distinguish the following cases. 

Case 1: u = x' and v = xj. The LD-semigroup D(28) (see 1.2.6) satisfies 
neither x « x2 nor x « x3. The LD-semigroup D(46) (see Al.IV.8.1) does not 
satisfy x2 « x3. Using these observations, we conclude that i = j . Hence u = v, 
a contradiction. 

Case 2: u = x'y7 and v = xkyl. The LD-semigroup S from 1.2.4 satisfies none 
of the identities xy % x2y, xy « x2y2, xy2 « x2y2 and xy2 « x2y. The 
LD-semigroup D(28) satisfies neither xy « xy2 nor x2y « x2y2. Consequently, 
1 = k,j = / and u = v, a contradiction. 

Case 3: u = x'ix2... x„_ixi e C and v = xj^x^)... x^_i)X^„) e C for a permuta­

tion p of {l,...,n} with p(l) = 1 and p(n) = n. If n > 4, then every idempotent 

LD-semigroup satisfying u « v is medial. However, D(20) (see 1.2.6) is a non-
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medial LDI-semigroup. Consequently, n = 3. It is easy to see that either xy2 « x^y2 

or x2y % x V is a consequently of u « v, and we get a contradiction by Case 2. 

Case 4: u = x tx2... x„_ix{, e C and i? = xj^x^)... x^.^x^jx^) e D for a per­
mutation p of {1,..., n} with p(l) = 1 and p(k) = n. One can easily check that 
every LDI-semigroup satisfying u « v is distributive. However, D(20) is not 
distributive, a contradiction. 

Case 5: u = xix2... xn_xxnxkeD and y = x^2)...xp(„.1)xp(n)Xp(,)eJ) for 
a permutation p of {1,..., n} with p(l) = 1 and p(l) = k. Since D(20) is not middle 
semimedial, we have p(2) = 2,...,p(n) = n. However, the LD-semigroup from 
1.2.4 does not satisfy xyx « x2yx. Thus i = j and u = v, a contradiction. • 

1.4 Theorem. For a nonempty set X, the groupoid F(*) constructed in 1.1 is 
a free LD-semigroup over X. 

Proof. Denote by ~ the set of the ordered pairs (u, v) of elements of F such that 
the equation u « v is satisfied in all LD-semigroups. So, ~ is a (fully invariant) 
congruence of F and F / ~ is a free LD-semigroup over X. We know (by 1.2) that 
f(u) ~ u for any u e F, so that (by 1.3) u ~ v iff f(u) = f(v) for any u, v e F and 
~ is just the kernel of /. Now, f is a homomorphism of F onto F (*): if u, v e F, 
then both f(uv) and f(w) * f(v) belong to F and are congruent modulo ~ with uv. 
The result follows from the homomorphism theorem. (In particular, the operation 
* is associative; this is not immediate from the definition.) • 

1.5 Corollary. Every finitely generated LD-semigroup is finite. The variety of 
LD-semigroups is locally finite. • 

1.6 Remark. Proceeding similarly, one can construct free LDI-semigroups. In 
that case we get words of two types only: words of the form x2... x„ for n > 1 
and words of the form XiX2... xnxk for n > 2 and 1 < k < n, where (in both cases) 
xb . . . , xn are pairwise distinct letters. 

1.7 Remark. By 1.1.20, every D-semigroup is a medial LDRT-semigroup. The 
words in a free D-semigroup are of the following types only: x, x2, x3, xy, x2y, 
xyx, XiX2... xw and XiX2... xwXi (m > 3). Of course, 

Xi... xw ~ XiXp(2)... x^w_i)Xw and X!X2... xwXi ~ XiXq(2)... xq(mjXi 

for any permutation p of {x^,..., xw_!} and any permutation q of {x^,..., xw}. 

II.2 Auxiliary results on number-theoretic functions 

2.1 Definition. Put 
(i) a(n,m) = n(n — 1)... (n — m), 

(ii) a(n) = £w=0a(n,m), 
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(Hi) b(n) = Y^=0ma(n,m) 
for all nonnegative integers n, m. 

2.2 Lemma. Let n, m > 0. Then: 
(i) a(n + l,m + 1) = (n + l)a(n,m). 

(ii) a(n + 1) = (n + l)(a(n) + 1). 
(iii) b(n + 1) = (n + l)(a(n) + b(n)). 
(iv) fc(n) = (n - 2)a(n) + n. 

Proof. By induction on n. • 

2.3 Lemma. For every n > 1, a(n) + c(n) + 1 = n!e, w/iere (n + l ) - 1 < 
< c(n) < n"1 and e = £ £ . , V(fc!). 

Proof. Indeed, n!e - 1 = 2n! + 3-4-... n + 4-5*... n + ... + (n - l)n + 
+ n + c(n) = a(n) + C(n), where c(n) = l/(n + 1) + l/(n + l)(n + 2) + 
l/(n + l)(n + 2)(n + 3) + ... . Clearly, l/(n + 1) < c(n) < 1/n. • 

2.4 Lemma. For every n > 1, na(n) = [nn!e] — n (here, for a positive real 
number r, [r] means the entire part of r). 

Proof. By 2.3, na(n) = [nn!e] — n — nc(n) + w, where 0 < u < 1. Then 
— 1 < u — nc(n) < (n + 1)_1 and, since w — nc(n) is a whole number, we must 
have u — nc(n) = 0. • 

II.3 The number of elements of a free left distributive semigroup 

3.1 Theorem. The cardinality f (n) of the free LD-semigroup of rank n and the 
cadinality f2 (n) of the free LDI-semigroup of rank n are given by 

f(n) = 2[n!ne] - n, 
/2(n) = [ n ! ( n - l ) e ] + l. 

Proof. By 1.4, 2.1 and 2.2 we have f(n) = 4a (n) + 2b (n) - n = n + 2na(n). 
In order to compute f (n), it remains to use 2.4. The other formula is clear from 
1.6. • 

3.2 Remark. 
(i) f(n) = e(n)(n + 1)!, where s(n) -• 2e. Moreover, f(n)/ f2(n) -* 2. 

(ii) Let S be a finitely generated LD-semigroup and n = a(S) (see A 1.1.1.5). If 
n = 0, then card (5) = 1. If n > 1, then 

n < card(S) < 2 [nine] - n. 

3.3 Remark. 
(i) The cardinality f3 (n) of the free idempotent LDRrsemigroup of rank n is 

given by 

f3(n) = [n!e] - 1. 
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(ii) The cardinality f4(n) of the free Dl-sernigroup of rank n is given by 

f4(n) = n(n + l)2"-2. 

(iii) The cardinality f5(n) (resp. f6(n)) of the free LDI-semigroup satisfying 
xyz « xzy (resp. xyz « yxz) of rank n is given by 

fs(n)=f6(n) = n2'-i. 

(iv) The cardinality /7 (n) of the free semilattice of rank n is given by 

fi(n) = 2" - 1. 

(v) The cardinality /8 (n) of the free idempotent semigroup satisfying x « xyx 
of rank n is given by 

f8(n) = n\ 

(vi) The cardinality f9(n) (resp. / 0(n)) of the free LZ-semigroup (resp. 
RZ-semigroup) of rank n is given by 

/>(") =fio(n) = n. 

3.4 Remark. Denote by fn (n) the cardinality of the free D-semigroup of rank 
n. According to 1.7, fn(n) = 3n + 2n(n - 1) + n(n - 1)(("72) + ... + (:z$)) + 
+ ^((V) + ... + ("I})). After easy calculation, we find that 

/n(«) = n ( n + 1)(1 + 2 " " 2 ) . 

3.5 Remark. Denote by f12(n) (resp. /13(n), /14(n), /15(n), /16(n) the cardinality 
of the free A-semigroup (resp. free unipotent A-semigroup, free commutative 
A-semigroup, free unipotent commutative A-semigroup, free Z-semigroup) of rank 
n. Then 

f2(n) = n2 + n + 1, 
/ 1 3(M) = M 2 + 1 

/i4(«) = K + 3.n + 2)/2, 
Z 5(") = ("2 + n + 2)/2, 

f16(n) = n + 1. 

3.6 Table. 

1 2 3 4 5 6 7 8 

/.(») 3 18 93 516 3255 23478 191793 1753608 

f(») 1 6 33 196 1305 9786 82201 762208 

fз(«) 1 4 15 64 325 1956 13694 109600 

Л(») 1 6 24 80 240 672 1792 4608 

f5.б(«) 1 4 12 32 80 192 448 1024 

fs(») 1 4 9 16 25 36 49 64 
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1 2 3 4 5 6 7 8 

m 1 3 7 15 31 63 127 255 

f9,ю(и) 1 2 3 4 5 6 7 8 

/..(») 3 12 36 100 270 714 1848 4680 

f.2(n) 3 7 13 21 31 43 57 73 

/»(») 2 5 10 17 26 37 50 65 

ш 3 6 10 15 21 28 36 45 

ш 2 4 7 11 16 22 29 37 

ш 2 3 4 5 6 7 8 9 

II.4 Comments and open problems 

The description 1.4 of free LD-semigroups is taken from [Mar,79] and [Zej,89b]. 
The numbers of elements of finitely generated free LD-semigroups (3.1) were 
computed in [KepZ,89]. 

An open problem is a characterization of subsemigroups of free LD-semigroups 
(LDI-semigroups, etc.). 

III. A-semigroups and their varieties 

III.l Basic properties of A-semigroups 

1.1. An A-semigroup is a groupoid satisfying x • yz « uv • w. It is apparent that 
A-semigroups are nothing else than semigroups nilpotent of class at most 3. Thus 
every A-semigroup S contains an absorbing element 0 (= 0S) such that xyz — 0 
for all x,y,ze S. 

1.2 Proposition. Let S be an A-semigroup and Z(S) = {ae S : Sa = 0 = aS}. 
Then: 

(i) 0, S2 and Z (S) are ideals of S. 
(ii) Id(S) = Int(S) = {0} = S3 c S2 ^ Z(S) ^ S. 

(iii) S2, Z (S), S/S2 and S/Z (S) are Z-semigroups. 
(iv) Z(S) x Z(S) c= ts. 
(v) a(S) = card(S - S2). 

Proof. Easy. • 

III.2 Varieties of A-semigroups 

2.1 Notation. Denote by s/Q the variety of trivial groupoids, by s/x the variety 
of Z-semigroups, by stf2 the variety of commutative unipotent A-semigroups, by 
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s/3 the variety of commutative A-semigroups, by s/4 the variety of unipotent 
A-semigroups and by si = s/5 the variety of A-semigroups. 

2.2 Theorem. The varieties S/Q, s/h s/^ s/3, s/4, and s/5 are pairwise different 
varieties of A-semigroups and there are no other varieties of A-semigroups. We 
have 

s/0 a s/x <= s/2 a s/3 c: s/5, s/2 a s/4 a s/5 

and there are no other inclusions except those which follow by transitivity. The 
lattice of varieties of A-semigroups is given in Fig. 1. 

Proof. Let V by a variety of ^-semigroups determined by an identity u « v, 
where w, v are two semigroup words of lengths k and /, respectively. If k > 3 and 
/ > 3, then V = s/5. If k > 3 and / = 2, then V is either s/4 or s/x. If k > 3 and 
/ = 1, then V = s/0. If k = / = 2, then V is either J*/- or s/4 or <£/3 or s/x. If fc = 2 
and / = 1, then V = j3/0. Finally, if k = / = 1, then V is either .£/5 or s/0. Hence 
every one-based variety of A-semigroups can be found among s/0, ..., s/5. Since 
this collection is closed under intersection (we have s/3 n s/4 = s/2), it follows 
that there are no other sub varieties of s/. 

29 



All the inclusions are clear. The groupoid T given by 

T 0 1 2 3 

0 0 0 0 0 
1 0 0 3 0 
2 0 3 0 0 
3 0 0 0 0 

is in stf2 but not in srfx. The groupoid D (46) see ALIV.8.1) is in s/3 but not in s/4, 
and the groupoid S given by 

S 0 1 2 3 4 

0 0 0 0 0 0 
1 0 0 3 0 0 
2 0 4 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 

is in sѓл but not in s/,. D 

III.3 Free A-semigroups 

3.1 Construction. Let X be a nonempty set and let f: X x X -* Y be 
a bijective mapping, where X n Y = 0. Let 0 be an element not belonging to 
X u Y Define a multiplication on F = X u Y u {0}by xy = f(x, y) for x j e l 
and .xy = 0 otherwise. Then F becomes a free A-semigroup over the set X. 

3.2 Proposition. An A-semigroup S is a free A-semigroup if and only if it 
satisfies the following four conditions: 

(i) S is nontrivial; 
(ii) If x,y,u,ve S are such that xy = uv #0, then x = u and y = v; 

(iii) Ifx,yeS- Z(S), then xy # 0; 
(iv) Z(S) = S2. 

Proof. Easy. • 

3.3 Proposition. An A-semigroup S is a subsemigroup of a free A-semigroup if 
and only if it satisfies the conditions 3.2(H) and 3.2(iii). 

Proof. The direct implication is clear from 3.2 (if S c f , then S - Z(S) _= 
=• F - Z(F)). Now, assume that S satisfies both 3.2(ii) and 3.2(iii) and put 
A = S - Z(S) and £ = Z(S) - S2. It follows from 3.2(iii) that S = A u £ u 
u X2 u {0} is a disjoint union. Further, let C be a set such that C n S = 0 and 
card (C) = card (£), and let g : B -• C be a bijection. Put X = A u C and define 
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a mapping h: S -> F (where F is as in 3.1) as follows: h(a) = a for every a e A; 
h(b) = g (b)2 for every be B; h (xy) = xy for all x,ye A; h (0) = 0. It follows 
from 3.2(H) that h is well defined and, by 3.2(iii), h is an injective homomorphism 
of S onto the free A-semigroup F. • 

3.4 Corollary. Every Z-semigroup is a subsemigroup of a free A-semigroup. 

• 
3.5 Remark. The A-semigroup T from the proof of 2.2 is not a subsemigroup 

of any free A-semigroup. 

3.6 Remark. The number of elements of a free semigroup in any subvariety of 
si has been computed in II.3.5. 

III.4 Subdirectly irreducible A-semigroups 

4.1 Proposition. Let S be an A-semigroup containing at least three elements. 
Then S is subdirectly irreducible if and only if the subsemigroup T = S2 contains 
precisely two elemnts and ts = (T x T) u ids. 

Proof. Let S be subdirectly irreducible. As one can see easily, every subdirectly 
irreducible Z-semigroup contains only two elements. Consequently, S is not 
a Z-semigroup and card(T) > 2. On the other hand, every nonempty subset M of 
T is an ideal of S, (M x M) u ids is a congruence, and it follows easily that 
card(T) = 2 and cos = (T x T) u ids. Clearly, c0s != ts. Conversely, if (a,b) e ts 

and a ?- b, then ({a,b} x {a,b})u ids is a congruence of S. Thus cos = ts = 
= (TxT)u ids. 

Now assume that T = {0,a} where a # 0, and that ts = (T x T) u ids. Let 
r # ids be a congruence of S and let (.x,y)er,x ^ y. If xy 7-= yz for some zeS, 
then the elements xz and yz belong to T and we see that (a, 0) e r. Similarly, 
zx 7-= zy implies (a, 0) e r. If xz = yz and zx = zy for all zeS, then (x, y) e ts = 
= (T x T) u ids. This proves (a,0)er in any case, so that S is subdirectly 
irreducible. • 

4.2 Corollary. Let S be a subdirectly irreducible A-semigroup containing at 
least three elements. Then Z(S) = S2, cos = ts, <r(S) = card(S) — 2 and every 
proper homomorphic image of S is a Z-semigroup. • 

4.3 Theorem. An A-semigroup S is a subsemigroup of a subdirectly irreducible 
A-semigroup if and only if S2 contains at most two elements. 

Proof. The direct implication follows from 4.1. Let S be an A-semigroup such 
that S2 != {0,1}, where 0 is the absorbing element of S (and 1 is some other 
element); let S be not subdirectly irreducible. Put K = S — {0,1}. Let / be 
a bijection of K onto a set M with S r\ M = 0. Put G = S u M and define 
multiplication on G in the following way: 

31 



(i) S is a subsemigroup of G; 
(ii) x -f(x) = f(x) • x = 1 and f(x) -f(x) = 0 for all xeK; 

(iii) f(x)' y = y -f(x) = 0 and f(x) -f(y) = 1 for all x,y e K, x # y; 
(iv) z • 0 = 0 • z = z • 1 = 1 • z = 0 for all z e G. 

It is easy to check that G is an A-semigroup. Of course, S is a subsemigroup of G. 
We have G2 = {0,1}, so that, according to 4.1, it remains to show that tG = 
= ({a,b} x {a,b})uidG. 

Let (a, b) etG,a^ b. We are going to show that a, b e {0,1}. If a, b e M, then 
0 = aa = ab = 1, a contradiction. Therefore, we can assume that ae S. 

Suppose aeK. If b$M, then 1 = a f(a) = b -f(a) = 0, a contradiction. 
Thus b e M and we have b = f(c) for some c e X. If there exists an element d of 
K different from both a and c, then 0 = a- f(d) = b • f(d) = 1, a contradiction. 
Thus X = {a,c}. If a = c, then ft = f(a) and 1 = a • f(a) = b • f(a) = 0, a con­
tradiction. If ac = 0, then 0 = ac = be = 1, which is not true; if ca = 0, we get 
a contradiction similarly. Thus ac = 1 = ca. Similarly aa = 0, and S is subdirec-
tly irreducible by 4.1, a contradiction. 

This proves that a e {0,1}. In this case, xb = 0 = bx for every xeG and 
b e {0,1}. The rest is clear. • 

4.4 Corollary. Every Z-semigroup is a subsemigroup of a (commutative and 
unipotent) subdirectly irreducible A-semigroup. • 

4.5 Remark. The subdirectly irreducible A-semigroup G constructed in the 
proof of 4.3 is commutative (resp. unipotent), provided that S is commutative (resp. 
unipotent). Hence, the analogue of 4.3 remains true for commutative (resp. 
unipotent) A-semigroups. 

III.5 Comments 

The theory of A-semigroups (i.e., semigroups nilpotent of class at most 3) is 
more or less of folklore character. Anyway, the results presented here are taken 
from [JezKN,81]. 

IV. Idempotent left distributive semigroups and their varieties 

IV. 1 Basic properties of idempotent left distributive semigroups 

1.1 Proposition. The following conditions are equivalent for an idempotent 
semigroup S: 

(i) S is middle semimedial. 
(ii) S is medial. 

(iii) S is distributive. 
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Proof, (i) implies (ii). We have abed = abed • abed = a • b- cd- a • bed = 
= a • cd- b • a • feed = a • c • d • bab • c • d = a • c • bob • d • c • d -= a • c • ba- bd-
• c- d = a • c-bd-ba- c d = acft -d-b-ac d = acb • d- ac-b- d = acbd • acbd = 
= acbd for all a, b,c,de S. 

(ii) implies (iii). We have abc = aabc = abac and cfta = cbaa = cafca for all 
a,b,ce S. 

(iii) implies (i). We have abca = abeba = acfea for all a,b,ce S. • 

1.2 Proposition. The five pairwise nonisomorphic Dl-semigroups -0(1), -9(2), 
-0(3), D(9) and D(10) are (up to isomorphism) the only subdirectly irreducible 
Dl-semigroups. Moreover, .0(9) is right but not left permutable and -0(10) is left 
but not right permutable. 

Proof. See 1.3.4. • 

1.3 Proposition. Let S be a rectangular band, i.e., an idempotent semigroup 
satisfying the identity x « xyx. Then: 

(i) S is a Dl-semigroup. 
(ii) S/ps is an LZ-semigroup and S/qs is an RZ-semigroup. 

(iii) S ~ S/ps x S/qs. 

Proof, (i) We have abed = aca • bed -= a • cabc • d = acd = a • cbc • d = ac-
• bdb • cd = acb • dbed = acbd for all a, b,c,de S. Thus S is medial, and hence 
distributive by 1.1. 

(ii) By (i), xy = xzxy = xzy for all x,y,zeS and it follows that (y,zy)eqs 

and S/qs in an RZ-semigroup. Quite similarly, S/ps is an LZ-semigroup. 
(iii) Since S is idempotent, we have ts = ps n qs = id5. On the other hand, by 

(ii), a/p = ab/p and b/q = ab/q for all a, b e S. • 

1.4 Proposition. Let S be a subdirectly irreducible LDI-semigroup. Then either 
S is a Dl-semigroups (and so S is isomorphic to one of D(l), -0(2), D(3), D(9), 
.0(10)) or S is an idempotent LDRx-semigroup such that ps = id5. 

Proof. See 1.3.3 and 1.2. • 

IV.2 Varieties of idempotent LD-semigroups 

2.1 Notation. Consider the following varieties of idempotent semigroups: 
Jo ... trivial semigroups; 
Jx ... semigroups satisfying xy « x; 
J2 ... semilattices; 
«/3 ... semigroups satisfying xy « y\ 
JA... left permutable idempotent semigroups; 
Js ... rectangular bands (idempotent semigroups satisfying x « xyx); 
J$ ... right permutable idempotent semigroups; 

33 



Jn ... normal bands (idempotent medial semigroups or Dl-semigroups, see 1.1); 
«/8 ... idempotent LDRrsemigroups (idempotent semigroups satisfying xy « 

« xyx)\ 
J9 = J ... LDI-semigroups. 

2.2 Theorem. The ten pairwise different varieties J0, ..., J9 are just all 
subvarieties of the variety J of LDI-semigroups. We have 

So 
So 

and there are no other inclusions (except those that follow by transitivity). The 
lattice of subvarieties of J is given in Fig. 2. 

Jrү CZ JPĄ CZ tУg CZ Jr9) j l ^ i i C Jъ Л<=Л 
J^2 *-— J^Ą ^— J^l ^— J^9> Л C ^ З C «-V5- л<=л 

Fig. 2 
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Proof. All the non-sharp versions of the indicated inclusions are clear (use 1.1 
and 1.3). 

No nontrivial RZ-semigroup is in «/8. Therefore, J3 £ J%. 
No nontrivial semilattice is in J5. Therefore, J2 £ J5. 
No nontrivial LZ-semigroup is in J6. Therefore, Jx £ J6. 
We have D (20) e Js — J7. This completes the inclusions part of the proof. 
Now let V be a variety of LDI-semigroups determined (in J) by a single 

indentity u « v. 
Assume first that V c J7. The variety V is generated by its subdirectly 

irreducible members. Using 1.2, we easily conclude that V is one of the varieties 
^ 0 > «-M> ^ 2 » --*3> ^ 4 ? ^ 5 » ^ 6 ? ^ 7 -

Let F c «/8. We can restrict ourselves to the case when u = x{ ... xn and 
v = yY ... ym where x b ..., xn are pairwise different and also yi,..., ym are pairwise 
different. If var(w) 7-= var(i>), then V ^ J5 and, in fact, V is either J0 or ^ 
So, assume that var(w) = var(v). Then n = m and there is a permutation p of 
{1,2,..., n) such that y,- = x^ . If p(l) ?-= 1, then Vis either </0 or J2. Let p(l) = 1, 
p 7* id, and let 2 < fc < n — 1 be the smallest number with p (fc) 7-= fe. Using the 
substitution xb ..., xfc_i -> x, xk -> y and xfc+1, ..., x„ -• z, we can show that the 
identity xyz « xzy is satisfied in V, and so V ^ «/4. Thus V is either ./Q or Jx or 
-/2 or </4. 

Assume, finally, that V £ «/7 and V £ J%. By 1.4, every subdirectly irreducible 
member of V is either in Jn or in Js. Consequently, V = J9. • 

IV.3 Subdirectly irreducible idempotent LDR,-semigroups 

3.1 Remark. According to 1.4, there exist (up to isomorphism) only two 
subdirectly irreducible LDI-semigroups that are not LDRrsemigroups, namely, 
D (2) and D (10). 

3.2 Proposition. Let S be a subdirectly irreducible LDRjI-semigroup such that 
qs = ids. Then just one of the following two cases takes places: 

(i) S*D(1); 
(ii) S possesses at least three elements, among them a neutral element e, such 

that T = S — [e] is a subsemigroup of S, qT 7-= idT and T is a subdirectly 
irreducible LDR ̂ -semigroup possessing no neutral element. 

Proof. See 1.3.2. • 

3.3 Proposition. Let T be a nontrivial semigroup and e be an element not 
belonging to T. Then T [e]is a subdirectly irreducible LDRjI-semigroup if and only 
if T is a subdirectly irreducible LDRjI-semigroup possessing no neutral element. 

Proof. See I.2.8(iv). • 
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3.4 Proposition. Let T be a nontrivial semigroup and o be an element not 
belonging to T. Then T[o] is a subdirectly irreducible LDR^-semigroup if and only 
if T is a subdirectly irreducible LDR J-semigroup possessing no absorbing element. 

Proof. Easy. • 

3.5 Proposition. Let S be a subdirectly irreducible LDRjI-semigroup posses­
sing an absorbing element o. Then just one of the following two cases takes place: 

(i) S^D{\); 
(ii) S contains at least three elements, T = S — {o} is a subsemigroup of S, 

T is a subdirectly irreducible LDRJ-semigroup and T contains no absorb­
ing element. 

Proof. Assume that card (S) > 3 and that (a, b) e cos, a 7-= b, a ^ o. Let ueT\ 
put I = {x e S: xu = 0} and J = Su. Then both I and J are ideals of S and 
card (J) > 2; we have o,ueJ. Consequently, a>s _= (J x J) u id5 and a = vu for 
some v e S. We have a = vu = vuu = au9 and so a $ I. Thus cos £ (/ x I) u ids, 
card(I) = 1 and I = {o}. We have proved that T is a subsemigroup of S and the 
rest is clear from 3.4. • 

3.6 Definition. A subdirectly irreducible LDRJ-semigroup S will be called 
primary if S contains no neutral element and no absorbing element either. 

3.7 Theorem. Let S be a subdirectly irreducible LDRjI-semigroup. Then just 
one of the following five cases takes place: 

(i) S r* D(l). 
(ii) S is primary. 

(iii) S contains at least three elements, among them a neutral element e, no 
absorbing element, T = S — {e} is a subsemigroup of S = T {e} and T is 
a primary subdirectly irreducible LDRjI-semigroup. 

(iv) S contains at least three elements, among them an absorbing element o, no 
neutral element, T = S — {0} is a subsemigroup of S = T[o\ and T is 
a primary subdirectly irreducible LDRjI-semigroup. 

(v) S contains at least four elements, among them both a neutral element e and an 
absorbing element o, T = S — {e, 0} is a subsemigroup ofS = (T{e}) [o] = 
= (T[o]) {e}and T is a primary subdirectly irreducible LDRjI-semigroup. 

Proof. Combine 3.2, 3.3, 3.4 and 3.5 • 

3.8 Notation. For a semigroup S, let LA(S) denote the set of left absorbing 
elements of S, i.e., LA(S) = {ae S: aS = {a}}.lf L = LA(S) is nonempty, then 
L is an ideal of S and L = Int (S). Moreover, L is equal to the intersection of all 
left ideals of S and every nonempty subset of L is a right ideal of S. 

3.9 Lemma. Let S be an idempotent semigroup and I be a right ideal of S. 
Then I _= LA (S) iff I is an LZ-semigroup. 
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Proof. If I is an LZ-semigroup and if a e I and xeS, then axe I and 
ax = a- ax = a. • 

IV.4 Subdirectly irreducible semigroups in J% 

4.1 Remark. Recall that J% is the variety of LDRJ-semigroups, i.e., the variety 
of idempotent semigroups satisfying xyx « xy. The aim of this section is to prove 
that every semigroup from J% can be embedded into a subdirectly irreducible 
semigroup from J%. This is a special case of a more general result by Goralcik and 
Koubek [GorK,82]. The proof contained in [GorK,82] contains several inaccura­
cies, making it almost unreadable. 

4.2 Definition. We fix two distinct elements a,/?. A semigroup S e / 8 will be 
called admissible if {a,/?} c LA(S) and sa = sj? e {a,/?} for all s e S — LA(S). 

An admissible semigroup SeJ% will be called reductive if for every pair u, v of 
distinct elements of S there exists an element s e LA (S) with us =£ vs. 

4.3 Proposition. Every semigroup SeJ>% containing neither a nor /? can be 
extended to an admissible semigroup in J%. 

Proof. Put T = S u {a,/J} and define multiplication on T as follows: S is 
a subsemigroup of T; as = a and /Js = /? for all s e T; sa = s/? = a for all seS. 
It is easy to see that T e J%, LA(T) = {a,/?} and T is admissible. • 

4.4 Proposition. Every admissible semigroup S e J% can be extended to a re­
ductive admissible semigroup in J%. 

Proof. Take an element e $ S and put R = S {e}.Let x -• x' be a bijection of 
/? onto a set R' with /? n R' = {a,£}, such that a' = a and /P = )3. Put 
T = S u -R' and define multiplication on T as follows: 

(i) S is a subsemigroup of T; 
(ii) st' = (st)' for s,teS', 

(iii) se' = s' for se S; 
(iv) s'w = s' for s e S, w e T; 
(v) e'w = e' for W G T . 

It is easy to see that the multiplication is correctly defined, T e J%, LA(T) = R', 
and T is admissible. It remains to prove tat T is reductive. Let s, t e T, s ^ t. If 
s,teS, then se' = s' # £' = te\ If s, r 6 1?', then ss = s ^ t = ts. Finally, if s e S 
and teR' — {a,/?}, then sa 9-= £ = ta. • 

4.5 Notation. In the next lemmas we suppose that S e J% is a given admissible 
reductive semigroup and c, d is a pair of distinct elements of LA(S) with 
d${«,P}. 

Take two distinct elements x, y not belonging to S and denote by Z the 
LZ-semigroup with the underlying set {x,y}. Denote by F the free product of S and 
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Z in e/8, so that S and Z are disjoint subsemigroups of F, F is generated by S u Z 
and for any A e J%, any pair of homomorphism S -> A, Z ^> A can be extended 
to a homomorphism F -> A. 

By a canonical form of an element u e F we mean an expression u = ux ... un, 
where 

(i) 1 < n < 3, 
(ii) if n = 2, then either uxe Z, u2e S or ut e S, u2 e Z, 

(iii) if n = 3, then i^ e S, u2e Z, u3e S and w ^ 9-= Wi-
Observe that for n = 3, ux e S — LA(S) (in particular, if n = 3, then wt ^ {a,/J}). 

4.6 Lemma. Fvery element of F can be expressed in a canonical form. 

Proof. As this is clear for the elements of S u Z, it is sufficient to show that 
the set of the elements expressible in a canonical form is a subsemigroup of F. For 
this sake, it is certainly sufficient to show that if u = ux ... un canonically, then 
each of the elements ux, uy and us (for se S) also has a canonical form. This can 
be done easily by considering the possible cases. For example, xsy = xsxy = 
= xsx = xs. Also, if st = s, then sxt = sxst = sxs = sx. • 

4.7 Lemma. Let u = ux... un andu = vx... vw &e two canonical expressions of 
the same elements ueF. Then n = m and either ux = vh...,un = vn or else n = 3, 
u{ = v1? u2 = v2 and uxu3 = vxv3. 

Proof. Denote by hx the homomorphism of F onto the two-element semi-
lattice {0,1} (where 0 1 = 0 ) such that hx(S) = {1} and hx(Z) = {0}; de­
fine h2 similarly, but setting h2(S) = {0}and h2(Z) = {1}.Clearly, hx(ux... un) = 0 
iff Z n n {ux,..., w„} 7-= 0; also, h2(ux... un) = 0 iff S n n {wl9..., un} 7-- 0. 
From this it follows that it is sufficient to consider the case when n > 2 and 
m > 2. 

For every e e LA (S) denote by he the homomorphism of F into S extending the 
identity on S and the constant homomorphism of Z onto {e}. If ux e S, then 
he(u!... u„) = uxe. If vj G Z, then /^(fi... t>m) = e. So, if uj e S and vx e Z, then 
uie = e for any e e LA(S); in particular, uxcc = a and ux(5 = /}, contradicting the 
admissibility of S. We conclude that ux, vx either belong both to S or belong both 
to Z. In the case when ux, vx e S, we get uxe = vxe for all e e LA (S), so that ux = vx 

by the reductivity of S. 
Denote by h3 the homomorphism of F into Z{1} extending the constant homo­

morphism of S onto {l}and the identity on Z. If ux = vxe S, then h3 (ux... un) = u2 

and h3(vx... vm) = v2, so that u2 = v2. If uhvxeZ, then ^ (M! . . . wn) = ux and 
^(v!... t;m) = vx, so that u! = vx. 

So far we have proved that ux = vx and if ux = vxe S, then u2 = v2. 
Denote by hA the homomorphism of F into S {1} extending the identity on S and 

the constant homomorphism of Z onto {1}. If ux = vxe Z, then h4(u!... wn) = u2 

and /z4(*;!... vm) = v2. So, w2 = 2̂-
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Let s, t, t' be elements of S. If sx = sxt, then xsx = xsxt, i.e., xs = xst and 
hence s = st, so that sxt is not a canonical form. If sxt = sxt', then (similarly) 
st = st'. • 

4.8 Notation. We have seen that every element u e F can be expressed 
canonically, u = ux... un, and ux is uniquely determined by u; we say that u begins 
with ux. 

Denote by R the relation, containing the following pairs of elements of F: 

(oc,xc),(p,yc), (xa,x£), (yoc,y/}), (a, ax), (a, ay), (j?,j3x), (jt?,/ty), (xd,yd). 

Denote by Q the congruence of F generated by R. 
Put Aa = {se S : sa = a} and ^ = {se S : sjS = /?}. 
Put Ba = {a}u {xs: s e S - {d}}u 4aZS (notice that 4 aZ ^ AaZS). 
Put B^ = {£}u \ys:seS - {d}}u ApZS. 
For s e LA(S) — {a,/?} put Bs = {s,sx,sy}. 
For s e S - LA(S) put Bs = {s}. 

4.9 Lemma. Let (v,w)eR\j R~l and let p, q be two elements of F {1} such 
that pvq e Ba (or pvq e Bp). Then pwq e Ba (or pwq e B$, respectively). 

Proof. Let pvq e Ba (the other case is similar). Consider first the case pvq = a. 
Then clearly p,qeS{l},ve {a,/?},w e {xc,yc,ax, ay}.If p 9-= 1, then a = pv = pa, 
so that pe Aa and pwq e AaZS. If p = 1, then a = vq = v, so that w e {xc,ax} and 
we have either pwq = xcq = xc or pwq = ocxq = ax; in both cases, pwq e Ba. 

Let pvq e {xs: se S — {d}}u AaZS. If p $ S {1}, it follows easily from 4.7 that 
p, and then also pwq belong to {xs: se S — {d}}u AaZS. So, let p e S{1}. 

Let p e S. Then pvq e AaZS; since v either begins with an element of Z or 
belongs to {oc,P,ocx,ocy,Px,Py}, we get p e Aa. If w either begins with an element 
of Z or is one of the elements ax, ay, /?x, /?y, we get pwq e AaZS. So, let w e {a,/?}. 
Then pw = a. If g G S {l},we get pwq = a e Ba. Otherwise, pwq = ccqe AaZS ^ 
= Ba. 

Finally, let p = 1. Then pvq = vq, so that v does not begin with y and v$ 
$ {xd,p,Px,Py}. Hence both v and w belong to {a,xc,xa,x/?,ax,aj;}. But then 
pwq = wqe Ba. • 

4.10 Lemma. Let (v,w)e Ru R'1 and let p,q be two elements of F{1}such 
that pvq e Bs, where seS — {a,j8}. Then pwq e Bs. 

Proof. Consider first the case pvq = s. Then p,v,qeS{\}, ve{a,f}}, s = 
= pv $ {OL,0}, so by the admissibility of S we get p = s e LA(S) — {a,/?}. Hence 
pwq = swq e {s,sx,sy} = Bs. 

It remains to consider the case s e LA(S) — {a,/?}, pvq e {sx,sy}. 
Let p £ S {1}. It follows easily from 4.7 and from s e LA(S) that p = pvq. Then 

pw<? = pvq e Bs. 

39 



Let pєS{l}.Ifi; begins with either x or y, then from pvq e {sx,sy} we get p = s 
and then pwq = swq e {sђsx, sy}. So, let v e {a,/?, ax, ay, ßx, ßy}. Then either pa or 
pß does not belong to {a,/?}, so pєLA(S) and we again obtain p = s and 
pwq = swq e {s,sx,sj>}. • 

4.11 Lemma. Let (s, Í)ЄQ n(S x S). Then s = t. 

Pгoof. Since (s,ř) є Q, there is a finite sequence s0,... sn of elements of F such 
that s0 = s, sn = t and for every i = 1, ..., n we have s,_! = pvq, s, = pwq for 
some p,qe F{1}and (v,w)eRKJ R~K It remains to use 4.9 and 4.10. • 

4.12 Lemma. Every congruence ofF containing Q and containing the pair (c, d) 
contains (a, ß). 

Pгoof. Let ~ be a congruence containing Q and (c,d). We have a ~ xc ~ 
~ xd ~ yd ~ yc ~ ß. • 

4.13 Proposition. Let S be a reductive admissible semigroup from J% and let 
c,de S, c ф d. Then S can be extended to an admissible semigroup Г є Ą such 
that (a, ß) e ф where Cjd is the congruence of T generated by (c, d). 

Pгoof. Since S is reductive, it is sufficient to consider the case {c,d} 91 LA(S). 
If {c,á} = {a,/?}, we can put T = S. So, we can assume that d ф {a,/?}. 

Let us keep the notation introduced in 4.5 and 4.8. Denote by T the semigroup 
F/Q9 in which we identify (or replace) every element S/Q (for s є S) with s (this is 
possible according to 4.11). So, T is an extension of S. We have Г e / 8 , since 
FeJ . 

We have {a,/?} 9\ LA (T): this follows from (ax, a) є Q, (ay, a) є g, (ßx, ß)e Q and 
(ßУ,ß)єQ. 

Let sєLA(S). Then (a,ax)єg implies (sa,sax)є^, i.e., (S,SX)ЄQ. Similarly, 
(s, sy) e Q. From this it follows that (s, sř) є Q for any t e Ғ, so that s є LA (7). This 
proves LA(S) 91 LA(Г). Now it is easy to see that LA(T) also contains all the 
elements SX/Q, syІQ, XS/Q and ys/Q with s є LA (S). 

Let u = щ... un (canonically) be an element of F such that U/QЄT— L(T). We 
have щ ф LA (S) for all i. 

We have (a,xc)єg, so that (xa,xxc)єt0, i.e., (xa,xc)є^ and hence (a,xa)є 
є^. Hence also ((x,xß)eQ. Similarly, (ß,yoí)eQ and (ß,yß)eQ. This shows 
that if UiЄ{x,y}9 then (ufl)ІQ = (uß)ІQe{oi,ß}. If щeS — LA(S), then UjЏ = 
= uф e {a,/?} by the admissibility of S. Now it is easy to see that (UOC)/Q = 
= (uß)/Qe{0L,ß}. 

We see that T is admissible. The rest follows from 4.12. • 

4.14 Propositíon. Let S be an admissible semigroup from J%. Then S can be 
extended to an admissible semigroup TeJ% such thatfor any cydeS with c Ф d, 
the congruence of Tgenerated by (c,á) contains (a,/J). 
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Proof. By 4.4 and 4.14, for every admissible semigroup SeJ% and every 
c,de S with c ^ d there exists an admissible semigroup Tc4 e Js such that (a,/?) 
belongs to the congruence of Tc4 generated by (c,d). The result follows by 
a standard argument using transfinite construction; observe that the union of 
a chain of admissible semigroups from J% is an admissible semigroup from 
J* • 

4.15 Theorem. Every semigroup S e J8 can be extended to a subdirectly 
irreducible semigroup from Js. 

Proof. By 4.3, it is enough to consider the case when S is admissible. Define 
a countable chain of admissible semigroups S0,Si,... as follows: S0 = 5; Si+i is 
an extension of S, claimed by 4.14. The union of this chain is the desired 
semigroup. • 

IV.5 Comments and open problems 

The first three sections of the chapter are based on [Kep,81]. The main result of 
the last section (4.15) is a special case of a more general result by Goraldik and 
Koubek [GorK,82]. The original proof contained in [GorK,82] is rather inaccurate 
and almost unreadable. 

According to 1.4 and 4.15, a semigroup 5 is a subsemigroup of a subdirectly 
irreducible LDI-semigroup if and only if either S is an LDRJ-semigroup (i.e., 
S satisfies xx « x and xyx « xy) or 5 is isomorphic to either D(2) or D(10). It 
is an open problem to determine which semigroups are available as subsemigroups 
of finite subdirectly irreducible LDI-semigroups. 

V. The lattice of varieties of left distributive semigroups 

V.l The subvarieties of ZT n 01 

1.1. Notation. We denote by j£? the variety of LD-semigroups, by J the 
variety of idempotent LD-semigroups (so that J = J9), by ^ the variety of 
LDR-semigroups and by & the variety of LDT-semigroups. 

1.2 Lemma. & n ^ = si v J and every subvariety of 2T n $ is equal to 
s/t v Jjfor some 0 < i < 5 and 0 < j < 9. 

Proof. By 1.1.17, every semigroup in 3~ n 01 is a subdirect product of an 
A-semigroup and an idempotent LD-semigroup. Now, use Theorems III.2.2 and 
IV.2.2. • 

1.3 Lemma. For j$ {0,2} we have s/2 v Jj = s/4 v Jj and s/3 v Jj = 
= s/5 v Jj. 
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Proof. Let G be the free semigroup in s/3 v J} over two generators x and y. 
Clearly, xy 7-= yx in G and xy yx $ Id(G). From this it follows that G/Id(G) £ s/3 

and hence (J^ 3 v J}) n s/5 £ s/3. Consequently, (s/3 v J}) n s/5 = s/5, which 
means that s/3 v Jj = = s/5 v Jj. One can prove s/2v J} = s/4v Jj similar­
ly. • 

1.4 Lemma. Let either i$ {2,3} or j e {0,2}. Then a semigroup S belongs to 
s/t v Jj if and only ifSe^rsM, Id(5) G JJ and S/Id(S) G s/t. 

Proof. Denote by Vthe class of all semigroups 5 with this property. It is easy 
to see that Vis a variety, and hence V = s/t v Jj. • 

1.5 Lemma. Let (ij) and (k,l) be two ordered pairs from {0,..., 5} x {0,..., 9}. 
Then s/{ v J} c= s/k v Jx if and only if J-} c= Jx and one of the following three 
cases takes place: either s/t _= s/k or I $ {0,2}, i = 4, k = 2 or 1$ {0,2}, i = 5, 
k = 3. 

Proof. Apply 1.2, 1.3 and 1.4. • 

1.6 Lemma. The variety ST n 0t has the following 44 subvarieties: 
L0 = s/0 v J0 = s/0 = J0, 
Lx = s/0 v Jx = Jl9 

L9 = s/0 v J9 = J9, 
L10 = s/x v J0 = s/l9 

Ln = s/x v Jx, 

L19 = s/x v J9, 
L20 = s/2 v Jo, 
L2X = s/2v Jx = s/4 v Jl9 

L22 = s/2 v J2, 
L23 = s/2 v J3 = s/4 v J3, 

L29 = s/2 v J9 = s/4 v J9, 
L30 = s/3 V J0, 
L31 = s/3 v Jx = s/5 v Jl9 

L32 = s/3 v J2, 
L33 = s/3 v J3 = s/5 V J3, 

L39 = s/3 v J9 = s/5 v J9 = ST n 01, 
L40 = s/4 v J0, 
L41 = s/4 v J2, 
L42 = s/5 v J0, 
L43 = s/5 v J2. 
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Proof. It follows from 1.5. • 

V.2 The varieties SlV, RQ and TQ 

2.1 Notation. We denote by M(ux % vu...) the variety of LD-semigroups 
satisfying u{ « vu... Put 

Si = M (x2 « x3, xy2 a xyx), 
52 =M(x 2 « x3), 
53 = M(xy2 a xyx), 
54 = if (the variety of all LD-semigroups), 
Sy = {Se Si: Id(S) e Sj} for 1 < i < 4 and 0 < j < 9, 
iRj = M(xy « xyx), 
/?2 = M(xy « xy2), 
i?3 = M (x2 « x3, xy2 « xyx, x2y « x2y2) = & r\ Sh 

R4 = M(x2 « x3,x2y « x2y2) = « n S 2 , 
i?5 = M (x2y « x2y2, xy2 « xyx) = I n S3, 
R6 = M(x2y « x2y2) = 01, 
R.. = fl. n S4j for 1 < i < 6 and 0 < j < 9, 
7j = M(xy « x2y), 
T2 = M(x2 % x3, xy2 « x2y2) = ST n S2, 
T3 = M(xy2 « x2y2) = 3~, 
Ttj = Ttn S4J for 1 < i < 3 and 0 < j < 9. 

2.2 Lemma. The following are true: 
(i) Stj/ rs a subvariety of 5£ and StJ n J = ^ . 

(ii) Si = S2 n S3 and S2 v S3 ^ S4. 
(iii) ^ 5 c S3J <= S4j-, ^ 5 £ S u and ^ 5 £ S2j, 
(iv) S{J = S2J n Sy, S1)0 = S2,0 = s/4 and S3)0 = S4>0 = s/5. 
(v) /?! = R2 n R3, R3 = R4 n R5, /?2 r= R4 and R4 v i?5 c R6. 
(vi) r ^ ^ c r3. 

Proof. It is easy. D 

V.3 Auxiliary results 

3.1 Notation. Let X be a countably infinite set of variables. As before, we 
denote by F the free semigroup over X; the elements of F will be called words. 
Recall that F is a subset of F, and every word is equivalent to a unique word from 
F with respect to the equational theory of LD-semigroups. 

We denote by Wx the set of the words t such that f (t)E Id (S) for all 
LD-semigroups S and all homomorphisms f of F into S. Denote by W2 the 
subsemigroup of F generated by {x*: xe X). Clearly, W2 ^ Wx. 
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The first variable in a word t will be denoted by o(t). Denote by var(t) the set 
of variables occurring in t. 

3.2 Lemma. Let r, s be two words with o(r) 7-= o (s) and let x be a variable such 
that x # o (r). Then M (xr « xs) _= «̂ ". 

Proof. Let y be a variable not occurring in xrs. Denote by yx the first variable 
in s. Consider the substitution / with f(x) = f(y{) = x and f(z) = y for 
all variables Z £ {x,yi}. Applying / to the equation xry « xsy (which is 
a consequence of xr « xs), it is easy to see that either xy2 a x2y or xy2 « 
« x2y2 is a consequence of xr « xs. However, M (xy2 « x2y) = ST r\0t and 
M(xy2 « x2y2) = «f. D 

3.3 Lemma. Let r, s be two words. 
(i) //o(r) # o(s), tten M(r « s) c «T. 

(ii) If o(r) # o(s) = x and s starts w/tA x2 (i.e., either s = x2 or s = x2t for 
some t), then M (xr « s) .= y . 

(iii) //* x, y, Z are variables and y ^ z, then M (xyr « xZs) c= ^ 

Proof, (i) Let x be a variable not occurring in rs. Then M(r % s) c 
c M ( x r « xs) c ^ b y 3.2. 

(ii) This follows from 3.2. 
(iii) Let u be a variable not occurring in xyzrs. Consider the substitution / with 

f(x) = f(z) = x and f(v) = y for all variables v$ {x,Z}. Applying / to the 
equation xyru « xZsw, it is easy to see that either xy2 « x2y or xy2 « x2y2 is 
a consequence of xyr « xZs. • 

3.4 Lemma. Let r, s Z?e two words. 

(i) If x is a variable not occurring in r and if s $ {x,x2} and s ^ tx for any 
word t with x $ var (t), then M (rx « s) c 0t. 

(ii) If var (r) 7-= var(s), then M(r « s) c git. 

Proof, (i) Consider the substitution / with f(x) = y and f(v) = x for all 
variables v 7-= x. Applying / to rx « s, we see that the equation rx & s has 
a consequence t « u, where 

t e {xy,x2y} 

and 

M e {x,x2, x3, y3, xyx, x2yx, xy2, x2y2, yx, yx2, y2x, y2x2}. 

Every one of these 24 equations implies x2y = x2y2. 
(ii) By symmetry, we can assume that there is a variable x G var(s) — var(r). If 

s = x, then M (r « s) is the trivial variety. In the opposite case we have sx £ {x,x2} 
and M(r « s) c M(rx « sx) c ^ by (i). • 
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3.5 Lemma. Let V be a variety of LD-semigroups. If Vn J _= J6, then 
V^^.IfVnJ^ J5, then F _ i 

Proof. First, let Vn J _=*/6. Then abc = bac for all a, b, c e Id(S), for any 
SeV Conseqeuntly, K g M(x2yz2 ~ y2**2) = & by 3.3(i). 

Now, let K n / c Js. Then F _ M(x3 « x2yx2) c: ^ by 3.4(H). • 

3.6 Lemma. Tfte following are true: 
(i) Let r,s fee two words sucft tftat o(r) ?- o(s) and var(r) ^ var(s). rften 

M(r « s ) g f n i 
(ii) Let V be a variety of LD-semigroups such that Vn J _= J3. Then V_= 

=• .T n0t. 

Proof. Use 3.3(i), 3.4(H) and 3.5. • 

3.7 Lemma. Let r, s be fwo words. 
(i) Ifr,se W2, then M(r « s) = S4Jfor some j . 

(ii) Ifr,se Wh then M(r « s) n ^" = T3Jfor some j . 
(Hi) If reWh then either M (r « s) n ^ _= ̂ ? or M (r « s) n ^" = T3j or 

M(r « s) n ^ = T2Jfor some j . 

Proof. Put V = M(r « s) and let Vn J = Jj. Then F _ S4i/ and Vn ^ s F3J. 
(i) Let S e S4i/ and let / be a homomorphism of F into S. Then f(W2) c Id(S) 

and hence/(r) = /(s). Thus S e Vand V = S4j/, 
(ii) Let S G 7 -̂ and let / be a homomorphism of F into S. Denote by g the 

substitution with g (x) = x3 for all variables x. Put h (a) = a3 for all a e S, so that 
ft is an endomorphism of S. We have g(F) = W2 and ft(S) = Id(S). Moreover, 
Id(S) e J*, _: VnST and/g(F) c Id(S). Consequently, /g (r) = /g(s). On the other 
hand, it is easy to see that/g = ft/ Therefore ft/(r) = ft/(s). But both f(r) and /(s) 
belong to Id(S), and so f(r) = f(s). 

(Hi) By the construction of free LD-semigroups given in II. 1.1 we can assume 
that s = xix2... xn where n > 1, xx,...,xn are pairwise different variables and 
i < 2. Put U = M(s « s3). Clearly, VnF = U n ST n M(r « s3). Since the 
words r and s3 belong to FVb we have M (r « s3) n ^~ = Txk for some fc. If n = 1 
and i = 1, then f/ = . / and Vn ^ = Jk. If « = 1 and i = 2, then U = S2 and 
F n J = T2?/c. Let n > 2. Then 

U = M(XiX2... X„ « x[x2... X„_!X )̂ _= ^ 

by 3.4(i). D 

3.8 Lemma. Let x, y be two variables and r, s be two words with x $ var (rs). 
l£t V = M (xyr « xys). If either V ^ 0t or xyr, xys e Wh then either V = S4J or 
V= R6J for some j . 

Proof. Put r = «!... un and s = vx... vm (u^Vi e X). 
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Let V c 01. It is enough to show that a semigroup S e 01 satisfies xyr « xys if 
and only if Id(S) satisfies xyr « xys. The direct implication is clear. Let Id(S) 
satisfy xyr « xys. In S we have 

xyr = xy2r = (xyfr = (xy)2r2 = (xy)3y3r3 = (xy)3y3w3... w3 

= (xyfy3v\... v3
m = xys. 

Let xyr,xyse Wx. Then V = M(xyu\... u3
n « xyv?... v3„). If x = y, then the 

result follows from 3.7(i). Hence suppose that x ^ y and put J} = Vn J'. Then 
Jj satisfies yux... un & yvx... vm and V_\ S4J. Conversely, let SeS4J. Then 
S satisfies y3w3... u3 « y3f3... ujj, and hence SeV. • 

3.9 Lemma. Let ij < 2 < ny let x1?..., x„ fee pairwise different variables and 
let p be a permutation of {l,..., n} such that p(l) ^ 1. Pwf 

r = xliX2... x„, s = x ^ x ^ ) . . . x^n) 

and V = M (r « s). 77WTI e/ther Vc«rn^c?rV= F36. 

Proof. By 3.3(i), V _\ iT. If p(n) ^ n, then V c 0t by 3.4(i). So, we can assume 
tat p(n) = n. Then n > 3, Jx £ V,VnJ = J6zmdv/egetV_\ T3j6. Conversely, 
let S e 7]6 and ab..., a„ E S. Then 

and 

ai... an_ia„_i = a^x)... a^n_x)an_x 

ax... an = a\a2... an = a\a\... a3
n_xa

3
n_xan = a*m... a ^ . ^ a 3 . ^ 

= a^i)... ap(n_x)an_xan = a^x)... ap{n_x)an. • 

3.10 Lemma. Lef r,s fee two words swch f/iar o(r) ^ o(s) and /ef 
V= M(r « s). Then either V_\Fc\0torV= T2J or V = T3Jfor some j . 

Proof. By 3.3(i) we have V _\ ST and by 3.6(i) we can assume that 
var(r) = var(s). Taking into account 3.7(iii), we may restrict ourselves to the case 
r,se F — Wx. Then r = x'iX2... x„ and s = yiy2... ym. We have n = m and there 
is a permutation p of {1,..., n) with p(\) 7-- 1, such that yx = x^i),..., yn = x^n). 
The result now follows from 3.9. • 

3.11 Lemma. Let i < 2, 3 < n, let xx,..., xn be pairwise distinct variables and 
let p be a permutation of {2,..., n) such that p(2) # 2. Put r = xxx2... xn, 
s = x ix^) . . . x^n) and V = M(r « s). F1z^n: 

(i) F c ; f . 
(ii) Ifp(n) ^ n, t/ien V_l iT n @. 

(iii) Ifp(n) = ny then V = T37. 

Proof, (i) Use 3.3(iii). 
(ii) Use (i) and 3.4(i). 
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(iii) It is easy to see that V r\ J = Jn and V _= T3J. Conversely, let S e T3J and 
let au..., an be elements of S. Then 

ax... an = a\... a^^fa = afc^... a^^afa 
= a\a^2)... ap(n_i)a„. • 

3.12 Lemma. Let n > 3, /ef xl5..., x„ fee pairwise different variables and let 
p be a non-identical permutation of {l,...,w} such that p(l) = 1. Put V = 
= M(x!X2... xn « xlx^)... Xpj,,)). T/w?/2: 

(i) 7/" p (n) ^ n, t/z^ V = R6A. 
(ii) If p(n) = ny then V = S4J. 

Proof. If p(n) ^ n, then V_= 0t according to 3.4(i). The rest is similar to 
3.11. • 

3.13 Lemma. Let i,k,q,t < 2 < n, let x1?..., xn be pairwise distinct variables 
and let p be a permutation of {1,..., n}. Put 

V = M (x \ X2 . . . X„_ xXn « X^)Xp(2)... Xp(„_ i)Xp(„)) . 

r/ẑ w e/t/ier V _\ 3~ r\ $ or V = SAj or V = TmJ or V = Rejfor some m and j . 

Proof. The result can be put together from the following nine cases, 
(i) Let p(l) 7-= 1. Then we can apply 3.10. 

(ii) Let p(l) = 1, k = t = 1 and i = q = 2. This case is clear from 3.12. 
(iii) Let p(l) = 1, p(2) 7-= 2, k = t = 1 and i + q < 3. In this case we can 

use 3.11. 
(iv) Let p(l) = 1, p(2) = 2, k = t = 1 and i = q = 1. If p is the identical 

permutation, then V = <&?. Hence assume that p is non-identical. Then n > 4. If 
p(n) 7- n, then F g ^ y 3.4(i), Vn . / = ./4 and it is easy to see that V= R6A. 
Now, let p(n) = n. Then Vn J = Jn and V _\ S4J. Conversely, if S e S4>7 and if 
au...,an are elements of S, then 

a-... a„ = a ^ . . . a\_xa\a\ = axa\a\3)... a\n_x)a\an 

= 0102^3) ••• Qp{n-l)an 

a n d S e V 
(v) Let p(l) = 1, p(2) = 2, k = t = 1, i = 1 and 4 = 2. We have 

K _ , f by 3.3(ii). If p(n) ^ n, then K e f n ^ follows from 3.4(i). Let 
p(n) = n and n > 3. Then it is easy to see that V = 3T n M(xiX2... xn « 
« xfx2Xp(3)... Xp(„)). If p is non-identical, then V= T37 by 3.12; if p is the identity, 
then V= T39. 

(vi) Let p(l) = 1, k = t = 2, 1 = 2 and q = 1. Then K g ^ by 3.3(h) and 
we can use 3.7(h). 

(vii) Let p(l) = 1, k = t = 2 and i = q = 1. If p(2) = 2, then the result 
follows from 3.8. If p(2) # 2, then n > 3, V _\ F by 3.3(iii) and the result 
follows from 3.7(h). 
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(viii) Let p(l) = 1, k = t = 2 and i = q = 2. In this case, it is possible to use 
3.7®. 

(ix) Let p(l) = 1, k = 2 and t = 1. If p(n) * n, then V_= & by 3.4(i). If 
p (n) = n, then the inclusion V _= 3t is obvious. Hence we have 

V= & n M(xix2... x^xl « x?xM2)... X^.^X^)). 

The result is now clear from (vi), (vii) and (viii). • 

3.14 Lemma. Let r,s be two words and let V = M(r « s). Then either V_= 

Proof. According to 3.4(ii) and 3.7(iii), we can assume that var(r) = var(s) and 
r,se F — Wx. However, then 3.13 can be applied. • 

V.4 The lattice of subvarieties of & 

4.1 Lemma. The following are true: 
(i) TXj n$4 = .a/-, T2j ns4 = stf^ Ty n s/ = s/5 and Tw nJ= T2JnJ = 

= T3J nJ = Jjfor every 0 < j < 9. 
(ii) Tu = s/{v Jp T2j = ^ 4 v Jj and T3J = st5 v Jjforje {0,1,3,5}. 

Proof. Use 1.5 and 3.5. • 

4.2 Lemma. Let 1 < ij < 3 and 0 < p,q < 9. 77**?n 7]p n 7^ = Trsfor some 
r, s. Moreover, TUp _= Tjq if and only if i < j and Jp _= Jq. 

Proof. It is easy. • 

4.3 Lemma. The varieties Ttj (1 < i < 3, 0 < j < 9) are pairwise distinct. 

Proof. Use 4.2. Q 

4.4 Lemma. Let V be a subvariety of ST. Then either Vis contained in 3~ n & 
or V = %j for some i and j . 

Proof. If V_= m, then V_= 2T n 0t. So, let V£ 01. Then, by 3.14, Vis the 
intersection of some varieties 7̂ -, so that V = TtJ for some ij by 4.2. • 

4.5 Proposition. The variety 2T has the following 62 subvarieties: 
7-o-..«? 7,43, 

7-44 = 7i ) 2 , 

7-45 = 7̂ ,2? 

7-46 = 732, 

T--47 = 7i>4, 

7>48 = 72,4 J 

7-49 = 7^,4, 

7̂ 50 = 7 ] , 6 , 
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-^51 = T26, 

-^52 = ^3,6 5 

-£-53 = T\j9 

L54 = 7.2,7 > 

L55 = ^3,7 ? 

-f-56 = ^1,8-

L57 = T2$, 
-^58 = ^3,8? 

---59 = -H,9» 

---60 = ^2,9? 

-^61 = ^3,9 = «^"« 

We have L^,..., L61 £ L43 = /T n ^ . We Aav* 7J,P c 7^ if and only ifi < j and 
Jp _= Jq. We have $4m v Jn _= 7 ŝ 1/ and tfnty i/ Jn _= ./s and either r = 3 or 
r = 2, me {0,1,2,4} or r = 1, me {0,1}. 

Proof. Let Fbe a subvariety of F such that V _: ^ . By 4.4 and 4.1(H), V = Ty 

where i e {1,2,3} and j e {2,4,6,7,8,9}. Converserly, if i and j are such numbers, 
then TX2 g: Tg- and hence Ty $_ ^ . The rest is easy. • 

V.5 Auxiliary results 

5.1 Lemma. Let i,j,k < 2, n > 0, x, xl5..., xn be pairwise distinct variables 
and let p be a permutation of {1,..., n}. Put 

V= M(x%... xn_ixi « XfcXp(i)... Xp^x). 

Then either Vr_= 9~ or V' = Sr>s or V = RUqfor some Tand q. 

Proof. We distinguish six cases, 
(i) n = 0. Then either S = Se or V= S2,9 or V= J. 

(ii) n > 1 and i = j = k = 2. Then 3.7(i) can be applied, 
(iii) n > 1, i = k = 2 and; = 1. By 3.4(i), K_ & and then clearly V= & n U 

where 
1/ = M(xlXi... xn_xxn « x x^i)... x^x) . 

But C7 = S4s for some s and K = JR6S. 

(iv) n > 1 and i + fc = 3. By 3.3(ii), V _= F. 
(v) n > 1, i = k = 1 and; = 2. If p(l) 9-= 1, then K_: ^ due to 3.3(iii). Now 

we can assume that p(l) = 1. Consider first the case when p is the identity. Then 
it is easy to see that V_= S38. Conversely, if S e S38 and a,bx,...9bne S, then 

abx... b\ = a(6i... bn)2 = abx... bna 

and S e K Now, let p be non-identical. Using similar arguments as in the last case, 
we see that V = S3>4. 

(vi) n > 1 and i = j = k = 1. Then V c <#, 
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V= ^? n M(xx1... x^.iX^ « xx^i)... x^x) 

and either V = i?5 8 or V = i?5 4 by (v). • 

5.2 Lemma. Let ij < 2, n > 0, x,xl5..., xn bepairwise distinct variables and 
let p be a permutation of {\,...,n\. Put 

V = M(x%... x„x « x^! ) . . . x^x). 

Then either V ' c 3~ or V= S4,9 or V = S4J. 

Proof. It is similar to the proof of 5.1. • 

5.3 Lemma. Let i,j,k < 2 < n, 1 < q < n, x,xb . . . , xn be pairwise distinct 
variables and let p be a permutation of {1,..., n}. Put 

V= M(x%... xn_t4 % x**^)... x^x^). 

Then either V <^ £T or V = S4r or V = R6r for some r. 

Proof. We distinguish five cases. 
(i) i = j = k = 2. In this case we can use 3.7(i). 

(ii) i = k = 2 and j = 1. Clearly, V_= 01 and we can use 3.8. 
(iii) i + k = 3. Then K_ J . 
(iv) i = k = 1 and p(l) # 1. Then F _ 2T by 3.2. 
(v) i = k = 1 and p(l) = 1. If j = 2, then we can use 3.8. If j = 1, then 

V _= 0t and we can again use 3.8. • 

5.4 Lemma. Let ij < 2 < n, 1 < r, s < n, x,xb..., xn be pairwise distinct 
variables and let p be a permutation of {l,...,n}. Put 

V= M(x%... xnxr « x;xp(1)... x^x^)). 

Then either V _: 3~ or V = Su or V= S6qfor some q. 

Proof. It is similar to the proof of 5.3. 

5.5 Lemma. Let ij < 2 < n, 1 < k < n, x,xu...,xn be pairwise distinct 
variables and let p be a permutation of {\,...,n\. Put 

V= M(x'x1... xnx « xjxM... x^x^)) . 

Then either V' _= 2T or V' = Srsfor some r, s or V = Rts for some t, s. 

Proof. Clearly, F n / = / 8 and 

V_= M^x^) . . . x ^ x ^ ) % Xp(/c)... Xp(M)). 

Consequently, V _= U where 

U = M(xIx1... xnx « xJxM... Xp(„)) 

and V = U n S48. The result now folows from 5.1. • 
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5.6 Lemma. Let r,s be two words such that var(r) = var(s) and o(r) = o(s). 
Put V= M(r « s). Then either Kg: f n 0t or V= TtJ or V= RM or V = S„,m 

for some i,j,p,q,n,m. 

Proof. We can assume that r,se F. The result then follows from 3.13 and 5.1, 
...,5.5 • 

5.7 Lemma. Let r,s be two words such that var(r) # var(s) and let V = 
= M (r « s). Then either V = 2T n & or V = R6Jor V = R4Jfor some j . 

Proof. By 3.4(H), V ^ 0t and we can assume that o(r) = o(s)', denote this 
variable by x. Recall that o (w) is the first variable in a word w. The last variable 
in w will be denoted by o(w). We distinguish nine cases. 

(i) r = x2p and s = x2q where p, q are two words with o(p) # x ^ 0(4). 
Then V= R6jby 3.7(i). 

(ii) r = x'p and s = x2q where p, g are two words with o (p) 7-- x ^ 0 (g) and 
i + j = 3. Then V c ^ n ^ by 3.3(h). 

(iii) r = xp and s = xq where p, g are two words with 0 (p) = o (g) ^ x and 
o(p) 7̂  x 7-- o(q). Then we can assume that x £ var (pq) and the result follows from 
3.8. 

(iv) r = xp and s = xq where p, 4 are two words with x 7-= 0 (p) 7-= 0 (4) # x. 
Then K g «T n ^ by 3.3(iii). 

(v) r = xp and s = xq where p, g are two words with 0 (p) = 0 (g) 9̂  x and 
0(p) ¥" x = o(q). We can assume that p = Xj... xn, x^var(p), q = yj... ymx, 
Xi = yi, x ^ yt. Then V n J = Jx and it is easy to see that V = R6tl. 

(vi) r = xp and s = xq where p, g are two words with o(p) = o(q) 7-= x = 
= o(p) = o(q). We can assume that p = x{... xnx, q = y{... ymx, xx = y{. Then 
VnJ = J5and V= R65. 

(vii) r = x. Then V^ J. 
(viii) r = x3 and s = xl# where q is a word with o(q) # x. If i == 1, then 

K g J n f by 3.3(h). If 1 = 2, then 3.7(i) can be used. 
(ix) r = x2 and s = xlq where g is a word with o(q) ^ x. Then K g S 2 and 

V = M (x3 « s) n S2- The result now follows from (viii). • 

5.8 Proposition. Let r, s be two words and let V = M(r « s). 7%en e/ffor 
V c ^ n «T or V = RtJ or V = TQ or V = StJfor some i, j . 

Proof. Apply 3.3, 5.6 and 5.7. • 

V.6 The lattice of subvarieties of & 

6.1 Lemma. The following are true: 
(i) Ru ns/ = R2Jns/ = s/x, R3J n s/ = R4Jns/ = s/4, R5J n s/ = R6J n 

ns/ = s/5, RXJ nJ = R3JnJ = R5J nJ = J}nJ% and R2J nJ = 
= R4J nJ = 0l6^ nJ = Jj for every 0 <j <9. 
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(ii) R2J = stx v J*,-, R4j = st4 v J*,, R6J = s45 v Jj for every; 6 {0,2,3,6}. 
(iii) Rl0 = Rl3 = s/{ v J0, RU2 = Rl6 = six v J2, Rxo = H3f3 = j / 4 v J^, 

#3,2 = ^3,6 = ^ 4 v y2 , £5,0 = -R5,3 = s/5 v SQ and R52 = I?56 = 
= s/5 V J2. 

(iv) H w = R2j, Ry = R4j and R5J = R6Jfor every j e {1,4,8}. 
(v) Ruk = ^. for iG{l,3,5}and(fcj)G{(l,5),(4,7),(8,9)}. 

Proof, (i) is easy. In order to prove (ii), it is sufficient to show that R66 e 2T n 0t. 
Let S e R66. We have x2y = x2y2 and efg = feg for all elements x,y e S and all 
idempotents e,fge S. Hence x2y2 = xx3y3y3 = xy3x3y3 = xy2. 

(iii) follows from (ii). In order to prove (iv), it is sufficient to show that 
R58 = R68. Let 5 6 R6%. We have x2y = x2y2 and efe = ef for all elements 
x, y e S and all idempotents e,feS. Hence xyx = xy3x3 = xy3x3y3 = xy2. 

In order to prove (v), it is sufficient to show that R58 = U5f9. Let 5 e R59. We 
have x2y = x2y2 and xy2 = xyx for all elements x, y e S. Then efe = ef2 = ef 
for all idempotents e,feS. • 

6.2 Lemma. Let 1 < ij < 6 and 0 < r, s < 9. Then RUr n -R;,s = £ M for 
some p and q. 

Proof. It is easy. • 

6.3 Proposition. We have the following inclusions between the varieties Rtj: 
(i) RQ c Rpq if Rt cz Rp and J} c Jq; 

(ii) RlV c Rpq if R.j = | J M as described in 6.1. 
There are no other inclusions except those that follow by transitivity from these 
two cases. 

Proof. The other inclusions would imply incorrect inclusions between subvarie-
ties of ST n & (intersect bot sides with $~). • 

6.4 Proposition. The variety $ has the following 62 subvarieties: 
L0,..., L43, 

-^62 = -Rl.l = -^2,1 = ^ 1 , 5 J 

-^63 = ^3 ,1 = -^4,1 = ^3,5? 

-^64 = -^5,1 = -^6,1 = ^ 5 , 5 > 

---65 = -^1,4 = -*?2,4 = -Rl,7> 

---66 = -^3,4 = ^4 ,4 = -^2,7 > 

L67 = i?54 = i?64 = .R57, 
---68 = ^ 2 , 5 J 

-^69 = -^4,5 -

L70 = i?6)5, 
L 7 1 = iv2,75 

L72 = -R47, 
L73 = -R67, 
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L 7 4 = Rlts = R2# = Iv 1,9, 

L75 = i?38 = i?4>8 = -R3>9, 
L76 = i?58 = R6fg = R59, 
L77 = i?29, 
L78 = R49, 
L79 = i?69 = 3%. 

Proof. Let Vbe a subvariety of 0t such that V£ « \̂ It follows from 5.8 and 
6.2 that V= Rij for some 1 < i < 6 and 0 < j < 9. According to 6.1, Vis one 
of the varieties L62,..., L79. Example 1.2.5 shows that L62 <£ 3~. D 

V.7 The lattice of subvarieties of & 

7.1 Lemma. The following are true: 
(i) Si,- ns/ = S2Jns/ = s/4, Sy n si = S4J n s/ = si* StJ nJ = S3J n 

nJ = JjnJSi S2J n J = S4J n J = Jjfor every 0 < j < 9. 
(ii) Si>0 = S2,0 = S u = s/4 v J0, Sxo = S4,0 = S3>3 = s/5 v J0, S2>3 = s/4 v 

v ./3 and S4>3 = s/5 v J3. 
(iii) S3 n «T = T3,8. 
(1V) -5i,2 = $2,2 = ^1,6 = ^,25 *->3>2 = S4 ) 2 = S3>6 = 7 ^ , S2,6 = -̂ 2,6 a w ^ S4,6 = T3,6. 

(v) «->i,i = S2,i = /?3>i, S3>i = S4>i = R5ti, Si>5 = i?3,i, S3,5 = i?5,i, S2,5 = i?4,5 

and S45 = R65. 

Proof. It is easy. • 

7.2 Lemma. Let 0 < i < 9 and Jj = Jtn J%. Then Su = Sw and S3l = 
= % 

Proof. It is easy. • 

7.3 Lemma. Let i e {0,1,2,4,8}. Then Su = S2,, and S34 = S4>1. 

Proof. It is easy. • 

7.4 Lemma. Let 1 < 1,7 < 4 and 0 < r,s < 9. Then SUr n S,5 = Spqfor some 
p and q. 

Proof. It is easy. • 

7.5 Proposition. We have the following inclusions between the varieties Stj: 
(i) Sij s SM if Si s Sp and Jj s ^ ; 

(ii) S/V _= SM if StJ = Sm according to 7.1, 7.2 or 7.3. 
There are no other inclusions except those that follow by transitivity from these 
two cases. 

Proof. It is easy. • 
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7.6 Theorem. The variety !£ has the following 88 subvarieties: 
L0,..., L79, 
L*80 = ^1,4? 

---81 = -J3,4> 

-^82 = S 2 j , 

-^83 = -?4,7> 

-^84 = S 1 ? 8 , 

-^85 = S 3 > 8 , 

L%6 = S 2 ,9 5 

L 8 7 = S 4 9 = «=.£. 

Proof. Apply 5.8 and 7.1, ..., 7.5. • 

The lattice of varieties of LD-semigroups is pictured in Fig. 3. An element 
labeled i in the picture represents the variety L, (i = 0,..., 87). 

V.8 Comments and open problems 

The main result of this chapter (Theorem 7.6), i.e., description of the lattice of 
varieties of LD-semigroups, is adopted from [Kep,81]. Now, given a property 
defined for a semigroup variety, an open problem may be to determine which of 
the varieties L, (i = 0,..., 87) enjoy this property. 

List of symbols 

«(») П.2.1 
a (n, m) П.2.1 
s4 Ш.2.1 
S4Q,...,SŚS IП.2.1 
b(n) П.2.1 
fif.f fiб Ш.З.l-Ш.3.5 
F II.l.l 

ғ П.1.1 
J IV.2.1 
JQ,..., J9 IV.2.1 
Lo,..., L43 V.1.6 
L44,•••, L 6 1 

V.4.5 
Lб2, ••-, Í-Ч9 V.6.4 
LвO, •••, I-«7 V.7.6 
LA(5) IV.3.8 
M(M! K, Vь...) V.2.1 
Rt 

V.2.1 
Ru V.2.1 
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Fig. 3 
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я V.l.l 

Si V.2.1 

S.v V.2.1 

т, V.2.1 

TІJ V.2.1 
g- V.l.l 
Җ,Щ V.3.1 
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