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Abstract. Let G ⊂ SU(2, 1) be a non-elementary complex hyperbolic Kleinian group. If
G preserves a complex line, then G is C-Fuchsian; if G preserves a Lagrangian plane, then
G is R-Fuchsian; G is Fuchsian if G is either C-Fuchsian or R-Fuchsian. In this paper, we
prove that if the traces of all elements in G are real, then G is Fuchsian. This is an analogous
result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in
the setting of complex hyperbolic isometric groups. As an application of our main result, we
show that G is conjugate to a subgroup of S(U(1)×U(1, 1)) or SO(2, 1) if each loxodromic
element in G is hyperbolic. Moreover, we show that the converse of our main result does
not hold by giving a C-Fuchsian group.
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1. Introduction

It is known that a Kleinian group G is Fuchsian if there exists a G-invariant disc D

in the Riemann sphere Ĉ = C ∪∞. If we regard D as H2, then G is a subgroup of

SL(2,R). The following result due to Maskit is from Theorem V.G. 18 of [5].

Theorem A. Let G ⊂ SL(2,C) be a non-elementary Kleinian group in which

tr2(f) > 0 for all f ∈ G. Then G is Fuchsian.

The research was partly supported by NSFs of China (No. 11071063) and Shaoxing
College of Arts and Sciences (No. 20125009), NSF of Hunan (No. 10JJ4005), Hunan
Provincial Education Department (No. 11B019) and the con- struct program of the key
discipline in Hunan province.
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This result shows that if the traces of all elements in G are real then G preserves

a hyperbolic plane which is totally geodesic in H3. In this note, we will prove a similar

result in the setting of complex hyperbolic Kleinian groups of SU(2, 1). Our result

is as follows, whose proof will be given in Section 3.

Theorem 1.1. Let G ⊂ SU(2, 1) be a non-elementary complex hyperbolic

Kleinian group in which tr(f) ∈ R for all f ∈ G. Then G is Fuchsian.

Note that a loxodromic element in SU(2, 1) is hyperbolic if and only if its trace is

real. The proof of Theorem 1.1 easily yields

Corollary 1.2. Let G ⊂ SU(2, 1) be a non-elementary group. If each loxodromic

element in G is hyperbolic, then G is conjugate to a subgroup of S(U(1) × U(1, 1))

or SO(2, 1).

As an application of Theorem 1.1, in Section 4, two Fuchsian groups are con-

structed: one is C-Fuchsian and the other is R-Fuchsian. We also give a C-Fuchsian

group which shows that the converse of Theorem 1.1 is not true.

2. Complex hyperbolic geometry

2.1. Complex hyperbolic space. Let C2,1 be the complex vector space of di-

mension 3 equipped with a non-degenerate, indefinite Hermitian form 〈., .〉 of signa-

ture (2, 1) defined to be

〈z, w〉 = w∗Jz = z1w3 + z2w2 + z3w1

with the matrix

J =




0 0 1

0 1 0

1 0 0



 .

We consider the subspaces

V− = {z ∈ C
2,1 : 〈z, z〉 < 0},

V0 = {z ∈ C
2,1 − {0} : 〈z, z〉 = 0}

and the canonical projection

P : C
2,1 − {0} → CP 2
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onto the complex projective space. The complex hyperbolic space H
2
C
is defined to

be P(V−) and its boundary ∂H
2
C
is P(V0). That is,

H
2
C = {(z1, z2) ∈ C

2 : 2ℜ(z1) + |z2|
2 < 0}

and

∂H
2
C − {∞} = {(z1, z2) ∈ C

2 : 2ℜ(z1) + |z2|
2 = 0}.

Given a point z ∈ C2 ⊂ CP 2, we can lift z = (z1, z2) to a point z in C2,1, called

the standard lift of z, where

z =




z1

z2

1



 .

There are two distinguished points in V0 which are denoted by 0 and∞, respectively.

They are

0 =




0

0

1



 and ∞ =




1

0

0



 .

2.2. Isometries. Denote by U(2, 1) the group of unitary matrices for the Hermi-

tian product 〈., .〉. Each such matrix A satisfies the relationA−1 = JA∗J , where A∗ is

the Hermitian transpose of A. The full group of holomorphic isometries of H2
C
is the

projective unitary group PU(2, 1) = U(2, 1)/U(1), where U(1) = {eiθI : θ ∈ [0, 2π)}

and I is the 3×3 identity matrix. In this paper, we shall consider the group SU(2, 1)

of matrices which are unitary with respect to 〈., .〉 and have determinant 1. Follow-

ing [3], holomorphic isometries of H2
C
are classified as follows.

(1) An isometry is elliptic if it fixes at least one point of H2
C
;

(2) an isometry is parabolic if it fixes exactly one point of ∂H
2
C
;

(3) an isometry is loxodromic if it fixes exactly two points of ∂H
2
C
.

See [1], [3], [4], [7] for more details about complex hyperbolic geometry and com-

plex hyperbolic Kleinian groups.

2.3. Totally geodesic manifolds and Fuchsian groups. Unlike the real hy-

perbolic space, there are two kinds of totally geodesic manifolds with codimension 2

in H
2
C
. In the first place there are complex lines which have constant curvature −1.

Every complex line L is the image of the complex line

L0 = {(z1, z2) ∈ H
2
C : z2 = 0}

under some element of SU(2, 1). The subgroup of SU(2, 1) stabilizing L is thus

conjugate to the subgroup S(U(1) × U(1, 1)) ⊂ SU(2, 1). Secondly, we have totally
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real Lagrangian planes which have constant curvature − 1

4
. Every Lagrangian plane

is the image of the standard real Lagrangian plane

RR = {(z1, z2) ∈ H
2
C : zi = xi ∈ R, 2x1 + x2

2
< 0}

under some element of SU(2, 1). The group stabilizing RR is denoted by SO(2, 1),

which is the subgroup of SU(2, 1) comprising elements with real entries. We say

a group G is non-elementary if there are two loxodromic elements in G with distinct

fixed points. Following [2], for any non-elementary complex hyperbolic Kleinian

group G ⊂ SU(2, 1),

(1) G is called C-Fuchsian if it preserves a complex line;

(2) G is called R-Fuchsian if it preserves a Lagrangian plane;

(3) otherwise, G is called non-Fuchsian.

We call a non-elementary Kleinian group G Fuchsian if G is either C-Fuchsian or

R-Fuchsian.

2.4. Cartan’s angular invariant and the cross-ratio variety. Let z1, z2, z3

be three distinct points in ∂H
2
C
with lifts z1, z2, z3, respectively. Cartan’s angular

invariant A is defined to be

A(z1, z2, z3) = arg(−〈z1, z2〉〈z2, z3〉〈z3, z1〉).

It is known that A is invariant under the elements of SU(2, 1). The following is

a useful property of A which was proved by Goldman, see Section 7.1 of [3].

Theorem B. Let z1, z2, z3 be three distinct points of ∂H
2
C
and let A =

A(z1, z2, z3) denote their angular invariant. Then

(1) A ∈ [− 1

2
π, 1

2
π];

(2) A = ± 1

2
π if and only if z1, z2, z3 all lie on a chain;

(3) A = 0 if and only if z1, z2, z3 all lie on an R-circle.

Here we call the boundary of a complex line a chain and the boundary of a La-

grangian plane an R-circle.

Proposition 2.1. Let G ⊂ SU(2, 1) be a non-elementary complex hyperbolic

Kleinian group. Then G is C-Fuchsian (R-Fuchsian) if and only if the fixed points

of all loxodromic elements in G are contained in a chain (an R-circle).

P r o o f. First, it is obvious that if G is C-Fuchsian (R-Fuchsian) then any lox-

odromic element U in G must preserve the invariant complex line (the Lagrangian
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plane) and so its fixed points must be on the boundary chain (the R-circle). Con-

versely, suppose G is non-elementary and contains loxodromic elements U and V

with distinct fixed points. Suppose the fixed points of all loxodromic elements of G

lie on a chain (an R-circle). In particular, there is a unique complex line L (a unique

Lagrangian plane R) such that the fixed points of U and V lie in ∂L (∂R). Let A be

any element of G. Then the fixed points of AUA−1 and AV A−1 lie on the boundary

of the complex line A(L) (the Lagrangian plane A(R)). By hypothesis, they also

lie on the boundary of L (R). Since four distinct points lie on at most one chain

(R-circle), we see that A sends L (R) to itself (as a set). This is true for all elements

of G, and so G is C-Fuchsian (R-Fuchsian). �

Let z1, z2, z3, z4 be four distinct points of ∂H
2
C
and z1, z2, z3, z4 their correspond-

ing lifts in V0 ⊂ C2,1, respectively. Then their complex cross ratio is defined to

be

X = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉

〈z4, z1〉〈z3, z2〉
.

It is easy for us to know that X is neither 0 nor ∞. By changing the order of the

four points we can define the following three different cross-ratios:

X1 = [z1, z2, z3, z4], X2 = [z1, z3, z2, z4] and X3 = [z2, z3, z1, z4].

The following lemma which is crucial for us follows from Propositions 5.12, 5.13 and

5.14 of [6].

Lemma 2.2. Let z1, z2, z3, z4 be four distinct points of ∂H
2
C
. Then all zi

(i = 1, 2, 3, 4) lie on a chain or an R-circle if and only if all Xj (j = 1, 2, 3) are real.

P r o o f. It follows from

X1 = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉

〈z4, z1〉〈z3, z2〉
=

〈z1, z2〉〈z2, z3〉〈z3, z1〉|〈z2, z4〉|2

〈z1, z2〉〈z2, z4〉〈z4, z1〉|〈z2, z3〉|2

that

arg(X1) = arg(−〈z1, z2〉〈z2, z3〉〈z3, z1〉) − arg(−〈z1, z2〉〈z2, z4〉〈z4, z1〉)

= A(z1, z2, z3) − A(z1, z2, z4).

Since all zi (i = 1, 2, 3, 4) lie on a chain or an R-circle, by Theorem B we know that

X1 is real. Similar discussions yield that X2 and X3 are real.

Now we prove the sufficiency. It suffices to consider the case that all Xj (j = 1, 2, 3)

are positive since if one of Xj is negative, then by [6, Proposition 5.1] we know that

all zi lie on a chain. It follows that

A(z1, z2, z4) = A(z1, z2, z3), A(z1, z3, z2) = A(z1, z3, z4)
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and

A(z2, z3, z4) = A(z2, z3, z1).

According to the definition of Cartan’s angular invariant, we have

A(z1, z2, z3) = −A(z1, z3, z2).

By [3, Lemma 7.1.10] and Theorem B, it is easy for us to prove that all zi lie on an

R-circle. �

3. The proof of theorem 1.1

We prove this result by contradiction. Suppose that G is non-Fuchsian. Since G is

non-elementary, by Proposition 2.1 we can find two loxodromic elements U , V ∈ G

such that Au, Av, Ru and Rv lie neither on a chain nor an R-circle and

{Au, Ru} ∩ {Av, Rv} = ∅,

where Aw, Rw denote the attracting and repelling fixed points of the loxodromic

element W ∈ G, respectively. Without loss of generality, we may assume that

U =




r 0 0

0 1 0

0 0 1/r





and

V =




a b c

d e f

g h j








s 0 0

0 1 0

0 0 1/s








j̄ f c̄

h̄ ē b̄

g d̄ ā



 ,

where

(
a b c

d e f

g h j

)
∈ SU(2, 1), ajgc 6= 0, r, s > 1 and r 6= s (if r = s, we can use V 2

instead of V ). Applying Lemma 2.2, we know that at least one of Xj (j = 1, 2, 3) is

not real, where

X1 = [Av, Au, Ru, Rv], X2 = [Av, Ru, Au, Rv] and X3 = [Au, Ru, Av, Rv].

By [6, Proposition 6.4], we have

tr(UV ) = r + s + r−1 + s−1 + X1(r
−1 − 1)(s−1 − 1) + X1(r − 1)(s − 1)

+ X2(r − 1)(s−1 − 1) + X2(r
−1 − 1)(s − 1) − 1
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and

tr[U, V ] = 3 −ℜ[(X1 + X2)(r − 1)(r−1 − 1)(s − 1)(s−1 − 1)]

+ [1 − 2ℜ(X1 + X2)][(r − 1)2(s − 1)2 + (r−1 − 1)2(s−1 − 1)2]

+ |X1(r − 1)(s − 1) + X1(r
−1 − 1)(s−1 − 1)

+ X2(r
−1 − 1)(s − 1) + X2(r − 1)(s−1 − 1)|2

+ (|X2|
2 − |X1|

2
X3)(r

2 − 2r + 2r−1 − r−2)(s2 − 2s + 2s−1 − s−2).

Now, we divide our proof into four cases.

Case I. X3 is not real.

By computation, we have

ℑ(tr[U, V ]) = |X1|
2(r − r−1)(r + r−1 − 2)(s − s−1)(s + s−1 − 2)ℑ(X3),

which implies that tr[U, V ] is not real.

Case II. X1 is real and X2 is not real.

In this case,

ℑ(tr(UV )) = (r−1 − s−1)(r − 1)(s − 1)ℑ(X2).

Since r, s > 1 and r 6= s, ℑ(tr(UV )) 6= 0. Therefore tr(UV ) is not real.

Case III. X2 is real and X1 is not real.

Then

ℑ(tr(UV )) = (r−1s−1 − 1)(r − 1)(s − 1)ℑ(X1).

It follows that tr(UV ) is not real.

Case IV. Neither X1 nor X2 are real.

If ℑ[X1(r − 1) + X2(r
−1 − 1)] = 0, then ℑ(X2) = rℑ(X1). So

ℑ(tr(UV )) = (r − 1)(s − 1)r−1s−1(1 − r2)ℑ(X1) 6= 0.

Hence tr(UV ) is not real.

If ℑ[X1(r − 1) + X2(r
−1 − 1)] 6= 0, according to the definition of the cross-ratio

variety, we know that Xj (j = 1, 2, 3) is independent of the value of s and r. Then

there must exist a sufficiently large integer m such that

ℑ[X1(r
−1 − 1)(s−m − 1) + X2(r − 1)(s−m − 1)]

+ ℑ[X1(r − 1)(sm − 1) + X2(r
−1 − 1)(sm − 1)] 6= 0.

This implies that tr(UV m) is not real. �
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4. Three examples

Example 4.1. Let

G1 =

〈
A =




1 0 i

0 1 0

0 0 1



 , B =




0 0 i

0 1 0

i 0 1




〉

.

Then G1 is C-Fuchsian and each element in G1 has real trace.

P r o o f. It is obvious that G1 is a C-Fuchsian group which keeps the complex

line L0 = {(z1, z2) ∈ H
2
C
: z2 = 0} invariant. We only need to show that every

element in G1 has real trace. Let M be an element having the following form

M =




a 0 ib

0 1 0

ic 0 d



 ,

where a, b, c, d ∈ Z. Since the generators of G1 and their inverses have this form it is

clear that this form is preserved under matrix multiplication. This implies that each

element in G1 has real trace. �

Example 4.2. Let

G2 = SO(2, 1;Z).

Then G2 is R-Fuchsian and each element in G2 has real trace.

It is known that the converse to Maskit’s theorem is clearly true (the trace of every

element in a Fuchsian subgroup of SL(2,C) is real), the converse to Theorem 1.1

is true for R-Fuchsian groups, but false for C-Fuchsian groups. The following is

a C-Fuchsian group but does not comprise only matrices with real trace.

Example 4.3.

G3 =

〈
A =




−i 0 1

0 −1 0

0 0 −i



 , B =




0 0 i

0 1 0

i 0 1




〉

.
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