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Abstract. We prove the ultimate boundedness of solutions of some third order nonlinear
ordinary differential equations using the Lyapunov method. The results obtained generalize
earlier results of Ezeilo, Tejumola, Reissig, Tunç and others. The Lyapunov function used
does not involve the use of signum functions as used by others.
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1. Introduction

Motivation for this paper comes from the generalization of the works by Reissig

[18] and Tejumola [21] by Ezeilo in [13], the recent works of Afuwape and Omeike

[6] and Ademola et al [1].

In exciting work, Ezeilo [13] investigated the equation of the form

...
x + {ϕ1(ẋ) + ϕ2(x, ẋ)}ẍ + g1(ẋ) + h(x) = p(t, x, ẋ, ẍ)

for ultimate boundedness generalizing the works of Reissig [18] on

...
x + ϕ2(x, ẋ)ẍ + g1(ẋ) + h(x) = p(t, x, ẋ, ẍ)

and that of Tejumola [21] on

...
x + ϕ1(ẋ)ẍ + g(ẋ) + h(x) = p(t, x, ẋ, ẍ).

This research was supported by University of Antioquia Research Grant through SUI
No. IN10132CE.

355



We shall consider here the equation

(1.1)
...
x + {f1(ẍ) + f2(ẋ, ẍ)} + g(x, ẋ) + h(x) = p(t, x, ẋ, ẍ)

where f1, f2, g, h, p depend on the arguments displayed. Our assumptions on f1,

f2, g, h, and p shall allow us to generalize the results of Ademola et al [1], Afuwape

[2], [3] and a particular case of Afuwape and Omeike [4] concerning

...
x + f1(ẍ) + g1(ẋ) + h(x) = p(t, x, ẋ, ẍ);

and Qian [17] and a particular case of Tunç [22] concerning

...
x + f2(x, ẋ)ẍ + g(x, ẋ) = p(t).

The assumptions will also give us an opportunity to discuss the ultimate bounded-

ness results which generalize the earlier ones. A good record of ultimate boundedness

results of these types is recorded in the book [19], and the papers Hara [16], Afuwape

and Omeike [6] and references therein. Also, the recent excellent book of Hadddad

[15] includes a good summary of the theoretical works on the subject.

Consider the third order nonlinear ordinary differential equation of the form (1.1),

or its equivalent system form

ẋ = y,

ẏ = z,(1.2)

ż = −{f1(z) + f2(y, z)} − g(x, y) − h(x) + p(t, x, y, z),

where f1, f2, g, h and p are continuous in their respective arguments, and the dots

denote differentiation with respect to t.

The object of this paper is to discuss the ultimate boundedness of solutions of

Eq. (1.1). It is well known that the ultimate boundedness is a very important prob-

lem in the theory and applications of differential equations. An effective method

for studying the ultimate boundedness of nonlinear differential equations is still

Lyapunov’s direct method (see [1]–[11]). In [13], incomplete Lyapunov functions

augmented with signum functions and with certain restrictive conditions on the non-

linear functions were used. Our aim in this paper is to study a more general Eq. (1.1)

for ultimate boundedness of solutions, using a complete Lyapunov function with less

restrictive conditions on the nonlinear functions f1, f2, g, h and p. In the process,

we shall be able to generalize earlier results of [1], [2], [3] and a particular case of [4],

[17], [22].
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2. Main results

Our main result is the following theorem.

Theorem 2.1. In addition to the basic assumptions on the functions f1, f2, g,

h and p, assume that the following conditions are satisfied (a, b, c, ν and A being

some positive constants):

(i) (f1(z) + f2(y, z))/z > a for all y, z 6= 0,

(ii) g(x, y)/y > b for all x, y 6= 0,

(iii) h(x)/x > ν for all x 6= 0,

(iv) h′(x) 6 c,

(v) ab > c,

(vi) |p(t, x, y, z)| 6 A < ∞ for all t > 0 and for all x, y, z.

Then every solution x(t) of (1.1) ultimately satisfies

(2.1) |x(t)| 6 D, |ẋ(t)| 6 D, |ẍ(t)| 6 D

where D is a constant depending only on a, b, c, ν and A.

R em a r k 2.1. Theorem 2.1 generalizes the results of Ademola et al [1], if we set

f2(ẋ, ẍ) = 0.

R em a r k 2.2. In using Lyapunov’s theory, Theorem 2.1 gives a different method

of discussing the works of Afuwape [2], [3] who used the frequency domain methods,

with f2(ẋ, ẍ) ≡ 0.

R em a r k 2.3. Theorem 2.1 generalizes the results of Qian [17] and Tunç [22]

if f1(ẍ) ≡ 0. This becomes obvious if we carry out some differentiations of f2(ẋ, ẍ)

and g(x, ẋ) with respect to their variables x, ẋ, ẍ to obtain the equivalent equation

to that of [17] and [22]. However, the p(t) will be replaced by p(t, x, y, z), with the

appropriate conditions on it.

3. Preliminaries

It is convenient here to consider, in place of Eq. (1.1), the system (1.2). In order

to prove Theorem 2.1, we need to show that every solution (x(t), y(t), z(t)) of (1.2)

satisfies

(3.1) |x(t)| 6 D, |y(t)| 6 D, |z(t)| 6 D
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for all sufficiently large t, where D is a suitable constant. Set (x, y, z) ≡ (x(t),

y(t), z(t)).

Our proof of (3.1) rests entirely on two properties (stated in the lemma below) of

the function V (t) ≡ V (x, y, z) defined by

(3.2) 2V (x, y, z) = β(1 − β)b2x2 + b(β + αa−1)y2 + αa−1z2 + [z + ay + (1 − β)bx]2

with 0 < β < 1, and α > 0.

Lemma 3.1. Subject to the conditions of Theorem 2.1, V (0, 0, 0) = 0 and there

is a positive constant D1 depending only on a, b, c, α and δ such that

(3.3) V (t) ≡ V (x, y, z) > D1(x
2 + y2 + z2)

for all x, y, z.

Let us set V (t) ≡ V (x(t), y(t), z(t)).

Furthermore, there are finite constants D2, D3 dependent only on a, b, c, A, ν, δ

and α such that for any solution (x(t), y(t), z(t)) of (1.2),

(3.4)
d

dt
V ≡

d

dt
V (x(t), y(t), z(t)) 6 −D2

provided that x2 + y2 + z2 > D3.

P r o o f of Lemma 3.1. Clearly, V (0, 0, 0) = 0. Also, by rearranging (3.2) and

choosing

D1 > min{β(1 − β)b2; b(β + αa−1); αa−1}

we have (3.3).

To prove (3.4), we find that the derivative of V with respect to t along the solution

path of (1.2), (after simplifications) gives

(3.5)
d

dt
V (t)|(1.2) = − b(1 − β)xh(x) − {abβy2 + a[yg(x, y) − by2]}

− {(αa−1 + 1)z(f1 + f2) − az2}

+ {b2(1 − β)xy − ayh(x) − b(1 − β)xg(x, y)}

+ {[b(αa−1 + 1) + a2]yz − (αa−1 + 1)zg(x, y)− ay(f1 + f2)}

+ {ab(1 − β)xz − (αa−1 + 1)zh(x) − b(1 − β)x(f1 + f2)}

+ {[b(1 − β)x + ay + (αa−1 + 1)z]p(t, x, y, z)}.

A rearrangement of this shows that for x 6= 0; y 6= 0; z 6= 0 we have

(3.6)
d

dt
V (t)|(1.2) = −W1 − W2 − W3 − W4 − W5 − W6 − W7 + Wp
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where

W1 = γ1b(1 − β)x2
[h(x)

x

]

+
{

δ1a
[g(x, y)

y
− b

]

y2 + η1abβy2
}

+
{

ξ1(αa−1 + 1)
[f1 + f2

z
− a

]

z2 + µ1αz2
}

,

W2 =
{

γ2b(1 − β)x2
[h(x)

x

]

+ axy
[h(x)

x

]

+ η2abβy2
}

,

W3 =
{

γ3b(1 − β)x2
[h(x)

x

]

+ b(1 − β)
[g(x, y)

y
− b

]

xy + δ2a
[g(x, y)

y
− b

]

y2
}

,

W4 =
{

δ3a
[g(x, y)

y
− b

]

y2 + (αa−1 + 1)
[g(x, y)

y
− b

]

yz + µ2αz2
}

,

W5 =
{

η3abβy2 + a
[f1 + f2

z
− a

]

yz + ξ2(αa−1 + 1)
[f1 + f2

z
− a

]

z2
}

,

W6 =
{

γ4b(1 − β)x2
[h(x)

x

]

+ b(1 − β)
[f1 + f2

z
− a

]

xz

+ ξ2(αa−1 + 1)
[f1 + f2

z
− a

]

z2
}

,

W7 =
{

γ5b(1 − β)x2
[h(x)

x

]

+ (αa−1 + 1)xz
[h(x)

x

]

+ µ3αz2
}

,

Wp = {[b(1 − β)x + ay + (αa−1 + 1)z]p(t, x, y, z)}

with
5

∑

i=1

γi = 1;
3

∑

i=1

δi = 1;
3

∑

i=1

ηi = 1;
3

∑

i=1

ξi = 1;

γi > 0, δj > 0, ηj > 0, ξj > 0, i = 1, 2, 3, 4, 5; j = 1, 2, 3.

We note that for any two real numbers, u, v, and for s ∈ {−1, +1} there exists a

constant k > 0 such that

(su)v =
(

ksu +
1

2k
v
)2

−
(

k2u2 +
1

4k2
v2

)

> −
(

k2u2 +
1

4k2
v2

)

.

Moreover, this inequality is retained when multiplied by any positive term.

By virtue of the conditions of the theorem on the nonlinear functions, we have a

constant k2 > 0 such that

W2 =
{

γ2b(1 − β)x2
[h(x)

x

]

+ axy
[h(x)

x

]

+ η2abβy2
}

> {γ2b(1 − β)νx2 + aνxy + η2abβy2}

>

{

ν[γ2b(1 − β) − k2
2a]x2 + a

[

η2bβ −
ν

4k2
2

]

y2
}

> 0, ∀x, y, z whenever
ν

4η2bβ
6 k2

2 <
γ2b(1 − β)

a
.
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In a similar manner, we have constants ki > 0, i = 3, 4, . . . , 7, such that

W3 >

{

b(1 − β)
[

γ3ν − k2
3

[g(x, y)

y
− b

]]

x2 +
[g(x, y)

y
− b

][

δ2a −
b(1 − β)

4k2
3

]

y2
}

> 0, ∀x, y, z, whenever
b(1 − β)

4δ2a
6 k2

3 <
γ3ν

[g(x, y)/y − b]
;

W4 >

{[g(x, y)

y
− b

]

[δ3a − k2
4(αa−1 + 1)]y2 +

[

µ2α −
(αa−1 + 1)[g(x, y)/y − b]

4k2
4

]

z2
}

> 0, ∀x, y, z, whenever
(αa−1 + 1)[g(x, y)/y − b]

4µ2α
6 k2

4 <
δ3a

(αa−1 + 1)
;

W5 >

{

a
[

η3bβ − k2
5

[f1 + f2

z
− a

]]

y2 +
[f1 + f2

z
− a

][

ξ2(αa−1 + 1) −
a

4k2
5

]

z2
}

> 0, ∀x, y, z, whenever
a

4ξ2(αa−1 + 1)
6 k2

5 <
η3bβ

[(f1 + f2)/z − a]
;

W6 >

{

b(1 − β)
[

γ4ν − k2
6

[f1 + f2

z
− a

]]

x2

+
[f1 + f2

z
− a

][

ξ3(αa−1 + 1) −
b(1 − β)

4k2
6

]

z2
}

> 0, ∀x, y, z, whenever
b(1 − β)

4ξ3(αa−1 + 1)
6 k2

6 <
γ4ν

[(f1 + f2)/z − a]
.

Moreover,

W7 >

{

ν[γ5b(1 − β) − k2
7(αa−1 + 1)]x2 +

[

µ3α −
(αa−1 + 1)ν

4k2
7

]

z2
}

> 0, ∀x, y, z, whenever
(αa−1 + 1)ν

4µ3α
6 k2

6 <
γ5b(1 − β)

(αa−1 + 1)
.

Also, we have that

W1 > γ1b(1 − β)νx2 + δ1abβy2 + µ1αz2 > D4(x
2 + y2 + z2)

where 0 < D4 6 min{γ1b(1 − β)ν; δ1abβ; µ1α}.

Moreover,

Wp 6 {[b(1 − β)|x| + a|y| + (αa−1 + 1)|z|]|p(t, x, y, z)|} 6 D5(|x| + |y| + |z|)

where D5 = Amax{b(1 − β); a; (αa−1 + 1)}.

Hence, using (3.6) we have

(3.7) V̇ 6 −D4(x
2 + y2 + z2) + D6(x

2 + y2 + z2)
1

2

where D6 = 3
1

2 D5.
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If we choose (x2 + y2 + z2)
1

2 > D7 = 2D6D
−1
4 , inequality (3.7) implies that

V̇ 6 −
1

2
D4(x

2 + y2 + z2).

We see at once that

V̇ 6 −D8,

provided that x2 + y2 + z2 > 2D8D
−1
4 ; and this completes the verification of (3.4),

(with D2 ≡ D8).

R em a r k 3.1. We note that in the work of Tunç [22], using the Lyapunov method

only ended up with

V̇ 6 −D(y2 + z2) + D(|y| + |z|)|p(t)|

which gave an incomplete nature of the function.

4. Proof of theorem 2.1

Let (x(t), y(t), z(t)) be any solution of (1.2). Then there is evidently a t0 > 0 such

that

x2(t0) + y2(t0) + z2(t0) < D3,

where D3 is the constant in the lemma; for otherwise, that is if

x2(t) + y2(t) + z2(t) > D3, t > 0,

then, by (3.4),

V̇ (t) 6 −D2 < 0, t > 0,

and this in turn implies that V (t) → −∞ as t → ∞, which contradicts (3.3). Hence

to prove (3.4) it will suffice to show that if

(4.1) x2(t) + y2(t) + z2(t) < D9 for t = T,

where D9 > D3 is a finite constant, then there is a constant D10 > 0, depending on

a, b, c, δ, α, ξ and D9, such that

(4.2) x2(t) + y2(t) + z2(t) 6 D10 for t > T.

Our proof of (4.2) is based essentially on an extension of an argument in the

proof of [8; Lemma 1]. For any given constant d > 0, let S(d) denote the surface
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x2+y2+z2 = d. Because V is continuous in x, y, z and tends to +∞ as x2+y2+z2 →

∞, there is evidently a constant D11 > 0, depending on D9 as well as on a, b, c, δ,

ξ and α, such that

(4.3) min
(x,y,z)∈S(D11)

V (x, y, z) > max
(x,y,z)∈S(D9)

V (x, y, z).

It is easy to see from (4.1) and (4.3) that

(4.4) x2(t) + y2(t) + z2(t) < D11 for t > T.

For suppose on the contrary that there is a t > T such that

x2(t) + y2(t) + z2(t) > D11.

Then, by (4.1) and by the continuity of the quantities x(t), y(t), z(t) in the argument

displayed, there exist t1, t2, T < t1 < t2 such that

x2(t1) + y2(t1) + z2(t1) = D9,(4.5)

x2(t2) + y2(t2) + z2(t2) = D11(4.6)

and such that

(4.7) D9 6 x2(t) + y2(t) + z2(t) 6 D11, t1 6 t 6 t2.

But, writing V (t) ≡ V (x(t), y(t), z(t)) , since D9 > D3, (4.7) obviously implies [in

view of (3.4)] that

V (t2) < V (t1),

and this contradicts the conclusion [from (4.3) and (4.6)]

V (t2) > V (t1).

Hence (4.4) holds. This completes the proof of (3.4), and the theorem now follows.

�
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