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1. Introduction and main results

We first provide a series of definitions of dependence structures.

Definition 1.1. A finite family of random variables {Xk, 1 6 k 6 n} is said

to be negatively associated (abbreviated to NA) if for any disjoint subsets A and B

of {1, 2, . . . , n} and any real coordinatewise nondecreasing functions f on RA and g

on RB,

Cov(f(Xi, i ∈ A), g(Xj , j ∈ B)) 6 0,

whenever the covariance exists. An infinite family of random variables is NA if every

finite subfamily is NA. This concept was introduced by Joag-Dev and Proschan [8].

*This work was partially supported by Humanities and Social Sciences Foundation for
The Youth Scholars of Ministry of Education of China (No. 12YJCZH217) and the Anhui
Province College Excellent Young Talents Fund Project of China (No. S 2011SQRL143).
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Definition 1.2. The random variablesX1, . . . , Xk are said to be negatively upper

orthant dependent (NUOD) if for all real x1, . . . , xk,

P (Xi > xi, i − 1, . . . , k) 6

k∏

i=1

P (Xi > xi),

and negatively lower orthant dependent (NLOD) if

P (Xi 6 xi, i = 1, . . . , k) 6

k∏

i=1

P (Xi 6 xi).

Random variables X1, . . . , Xk are said to be negatively orthant dependent (NOD)

if they are both NUOD and NLOD. This concept was introduced by Ebrahimi and

Ghosh [4].

Definition 1.3. Two random variables X and Y are said to be negatively quad-

rant dependent (NQD) if

P (X 6 x, Y 6 y) 6 P (X 6 x)P (Y 6 y) for all x and y.

A sequence of random variables {Xn, n > 1} is said to be pairwise NQD if every

pair of random variables in the sequence are NQD. This concept was introduced by

Lehmann [9].

For a triangular array of rowwise independent random variables {Xnk, 1 6 k 6 n,

n > 1}, let {an, n > 1} be a sequence of positive real numbers with an ↑ ∞ and

{Ψ(t)} a positive, even function such that

(1.1)
Ψ(|t|)

|t|p
↑ and

Ψ(|t|)

|t|p+1
↓ as |t| ↑,

for some nonnegative integer p. We introduce conditions

EXnk = 0, 1 6 k 6 n, n > 1,(1.2)
∞∑

n=1

n∑

k=1

EΨ(Xnk)

Ψ(an)
< ∞,(1.3)

∞∑

n=1

( n∑

k=1

E
(Xnk

an

)2
)2k

< ∞,(1.4)

where k is a positive integer.

Hu and Taylor [7] proved the following theorems:
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Theorem A. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise independent

random variables and let {Ψ(t)} satisfy (1.1) for some integer p > 2. Then (1.2),

(1.3), and (1.4) imply

(1.5)
1

an

n∑

k=1

Xnk → 0 a.s.

Theorem B. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise independent

random variables and let {Ψ(t)} satisfy (1.1) for p = 1. Then conditions (1.2), (1.3)

imply (1.5).

A sequence of random variables {Un, n > 1} is said to converge completely to a

constant a if for any ε > 0,

∞∑

n=1

P (|Un − a| > ε) < ∞.

In this case we write Un → a completely. This notion was used for the first time by

Hsu and Robbins [6].

Let {Zn, n > 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If

(1.6)

∞∑

n=1

anE{b−1
n |Zn| − ε}q

+ < ∞ for some or all ε > 0,

then (1.6) was called the complete moment convergence by Chow [3].

Gan and Chen [5] extended and improved Theorem A and Theorem B to the case

of NA random variables. They studied the complete convergence and convergence in

probability under some general and weaker conditions. Wu and Zhu [12] extended

and improved Theorem A and Theorem B to the case of NOD random variables.

They studied the complete convergence, the complete moment convergence, and the

L1 convergence under the same conditions as Gan and Chen [5]. However, according

to our knowledge, no one has discussed the subject for arrays of rowwise pairwise

NQD random variables. The goal of this paper is to study the complete convergence,

the complete moment convergence, and the Lq convergence for rowwise pairwise

NQD random arrays.

Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise pairwise NQD random

variables and let {an, n > 1} be a sequence of positive real numbers with an ↑ ∞.

Let {Ψn(t), n > 1} be a sequence of nonnegative even functions satisfying

(1.7)
Ψn(|t|)

|t|q
↑ and

Ψn(|t|)

|t|p
↓ as |t| ↑
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for some 1 6 q < p 6 2. We introduce conditions

∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞,(1.8)

∞∑

n=1

log2 n

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞.(1.9)

Now we will present the main results of the paper. The proofs will be detailed in

the next section.

Theorem 1.1. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise pairwise

NQD random variables, and let {an, n > 1} be a sequence of positive real numbers

with an ↑ ∞. Let {Ψn(t), n > 1} be a sequence of nonnegative even functions

satisfying (1.7) for q = 1. Then conditions (1.2) and (1.8) imply

(1.10)
1

an

n∑

k=1

Xnk → 0 completely.

Theorem 1.2. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise pairwise

NQD random variables, and let {an, n > 1} be a sequence of positive real numbers

with an ↑ ∞. Let {Ψn(t), n > 1} be a sequence of nonnegative even functions

satisfying (1.7) for q = 1. Then conditions (1.2) and (1.9) imply

(1.11)
1

an
max

16j6n

∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣ → 0 completely.

Theorem 1.3. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise pairwise

NQD random variables, and let {an, n > 1} be a sequence of positive real numbers

with an ↑ ∞. Let {Ψn(t), n > 1} be a sequence of nonnegative even functions

satisfying (1.7) for 1 6 q < p 6 2. Then conditions (1.2) and (1.8) imply

(1.12)

∞∑

n=1

a−q
n E

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ − εan

}q

+

< ∞ ∀ ε > 0.
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Theorem 1.4. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise pairwise

NQD random variables, and let {an, n > 1} be a sequence of positive real numbers

with an ↑ ∞. Let {Ψn(t), n > 1} is a sequence of nonnegative even functions

satisfying (1.7) for 1 6 q < p 6 2. Then Conditions (1.2) and (1.9) imply

(1.13)

∞∑

n=1

a−q
n E

{
max

16j6n

∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣ − εan

}q

+

< ∞ ∀ ε > 0.

Theorem 1.5. Let {Xnk, 1 6 k 6 n, n > 1} be an array of rowwise pairwise

NQD random variables with (1.2), and let {an, n > 1} be a sequence of positive

real numbers with an ↑ ∞. Let {Ψn(t), n > 1} be a sequence of nonnegative even

functions satisfying (1.7) for 1 6 q < p 6 2.

(1) If

(1.14)

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞,

then

(1.15)
1

an

n∑

k=1

Xnk
Lq

→ 0.

(2) If

(1.16) log2 n

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞,

then

(1.17)
1

an
max

16j6n

∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣
Lq

→ 0.

R em a r k 1.1. Since an independent random variable sequence is a special pair-

wise NQD sequence, Theorem 1.1 and Theorem 1.2 hold for arrays of rowwise inde-

pendent random variables. So Theorems 1.1 and 1.2 are extensions and improvements

of Theorem B. It is worth pointing out that our conclusions are much stronger and

conditions are more general and much weaker.
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R em a r k 1.2. Wang and Zhao [10] investigated the complete moment conver-

gence for NA random variable sequences. Compared with the paper of Wang and

Zhao [10], we consider pairwise NQD random variables instead of NA random vari-

ables. Since both NA and NOD imply pairwise NQD, Theorems 1.1–1.5 remain true

for NA or NOD random variables.

R em a r k 1.3. The proofs in this paper are based on the following famous in-

equality:

(1.18) E

( n∑

k=1

Xk

)2

6 C

n∑

k=1

EX2
k ,

which was established by Wu [11]. According to our knowledge, the following se-

quences of mean zero random variables satisfy (1.18) with the indicated value of C,

such as Martingale difference (C = 1, Adler, Rosalsky, and Volodin [1]), ϕ-mixing

random variables with
∞∑

n=1

ϕ1/2(n) < ∞ (C = 1+4
∞∑

n=1

ϕ1/2(n), Yang [13]), ̺-mixing

random variables with
∞∑

n=1

̺(n) < ∞ (C = 1 + 4
∞∑

n=1

̺(n), Yang [13]), ̺∗-mixing

random variables with ̺∗ < 1 for some integer s > 1 (C = 64s(1 − ̺∗(s))−2, Bryc

and Smoleński [2]).

Therefore, following the methods of this paper, we can easily get similar results

for the above sequences.

In this paper, the symbol C always stands for a generic positive constant which

may differ from one place to another.

2. Proofs

We need the following lemmas (cf. Lehmann [9], Wu [11]).

Lemma 2.1. Let {Xn, n > 1} be a sequence of pairwise NQD random variables.

Let {fn, n > 1} be a sequence of increasing functions. Then {fn(Xn), n > 1} is a

sequence of pairwise NQD random variables.

Lemma 2.2. Let {Xn, n > 1} be a pairwise NQD random variable sequence

with mean zero and EX2
n < ∞, and let Tj(k) =

j+k∑
i=j+1

Xi, j > 0. Then

E(Tj(k))2 6 C

j+k∑

i=j+1

EX2
i , E max

16k6n
(Tj(k))2 6 C log2 n

j+n∑

i=j+1

EX2
i .
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P r o o f of Theorem 1.1. For any 1 6 k 6 n, n > 1, let

Ynk = − anI(Xnk < −an) + XnkI(|Xnk| 6 an) + anI(Xnk > an),

Znk = Xnk − Ynk = (Xnk + an)I(Xnk < −an) + (Xnk − an)I(Xnk > an).

To prove (1.10), it suffices to show

1

an

n∑

k=1

Znk → 0 completely,(2.1)

1

an

n∑

k=1

(Ynk − EYnk) → 0 completely,(2.2)

1

an

n∑

k=1

EYnk → 0 as n → ∞.(2.3)

First, we prove (2.1). If Xnk > an, 0 < Znk = Xnk − an < Xnk. If Xnk < −an,

Xnk < Znk = Xnk + an 6 0. So |Znk| 6 |Xnk|I(|Xnk| > an). Consequently, by (1.7)

and (1.8), we have

∞∑

n=1

P

(∣∣∣∣
n∑

k=1

Znk

∣∣∣∣ > anε

)

6 C
∞∑

n=1

n∑

k=1

E|Znk|

an
6 C

∞∑

n=1

n∑

k=1

E|Xnk|I(|Xnk| > an)

an

6 C

∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞.

Secondly, we prove (2.2). By Lemma 2.1 we know that {Ynk − EYnk, 1 6 k 6 n,

n > 1} is an array of rowwise pairwise NQD mean zero random variables. Note that

|Ynk| 6 |Xnk| and 1 < p 6 2. By the Markov inequality, Lemma 2.2, (1.7), and (1.8),

we have

∞∑

n=1

P

(
1

an

∣∣∣∣
n∑

k=1

(Ynk − EYnk)

∣∣∣∣ > ε

)

6 C
∞∑

n=1

n∑

k=1

a−2
n E(Ynk − EYnk)2 6 C

∞∑

n=1

n∑

k=1

EY 2
nk

a2
n

6 C

∞∑

n=1

n∑

k=1

E|Ynk|
p

ap
n

6 C

∞∑

n=1

n∑

k=1

EΨk(|Ynk|)

Ψk(an)

6 C
∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞.
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Finally, we prove (2.3). For 1 6 k 6 n, n > 1, EXnk = 0, we haveEYnk = −EZnk.

By an argument similar to that in the proof of (2.1), we have

1

an

∣∣∣∣
n∑

k=1

EYnk

∣∣∣∣ =
1

an

∣∣∣∣
n∑

k=1

EZnk

∣∣∣∣

6

n∑

k=1

E|Znk|

an
6

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

The proof is complete. �

P r o o f of Theorem 1.2. Following the notation and by an argument similar to

that in the proof of Theorem 1.1, we can easily prove Theorem 1.2. Therefore, we

omit the details. �

P r o o f of Theorem 1.3. We have

∞∑

n=1

a−q
n E

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ − εan

}q

+

=

∞∑

n=1

a−q
n

∫
∞

0

P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ − εan > t1/q

}
dt

=

∞∑

n=1

a−q
n

(∫ aq

n

0

P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > εan + t1/q

}
dt

+

∫
∞

aq

n

P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > εan + t1/q

}
dt

)

6

∞∑

n=1

P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > εan

}
+

∞∑

n=1

a−q
n

∫
∞

aq

n

P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > t1/q

}
dt

=̂ I1 + I2.

By Theorem 1.1, we have I1 < ∞. To prove (1.12), it suffices to prove I2 < ∞. Let

Ynk = − t1/qI(Xnk < −t1/q) + XnkI(|Xnk| 6 t1/q) + t1/qI(Xnk > t1/q),

Znk = Xnk − Ynk = (Xnk + t1/q)I(Xnk < −t1/q) + (Xnk − t1/q)I(Xnk > t1/q).

Since Xnk = Ynk if |Xnk| 6 t1/q, we get

P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > t1/q

}
6 P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > t1/q,
n⋃

k=1

{|Xnk| > t1/q}

}

+ P

{∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > t1/q,

n⋂

k=1

{|Xnk| 6 t1/q}

}

6

n∑

k=1

P{|Xnk| > t1/q} + P

{∣∣∣∣
n∑

k=1

Ynk

∣∣∣∣ > t1/q

}
.
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Hence,

I2 6

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

aq

n

P{|Xnk| > t1/q} dt

+

∞∑

n=1

a−q
n

∫
∞

aq

n

P

{∣∣∣∣
n∑

k=1

Ynk

∣∣∣∣ > t1/q

}
dt

=̂ I3 + I4.

Clearly, for t > aq
n we have

I3 =

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

aq

n

P{|Xnk|I(|Xnk| > an) > t1/q} dt

6

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

0

P{|Xnk|I(|Xnk| > an) > t1/q} dt

=

∞∑

n=1

n∑

k=1

E|Xnk|
qI(|Xnk| > an)

aq
n

6

∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞.

Now we prove I4 < ∞. By (1.2), (1.7), and (1.8), we have

max
t>aq

n

∣∣∣∣t
−1/q

n∑

k=1

EYnk

∣∣∣∣

= max
t>aq

n

∣∣∣t−1/q
n∑

k=1

EZnk

∣∣∣ 6 max
t>aq

n

t−1/q
n∑

k=1

E|Xnk|I(|Xnk| > t1/q)

6

n∑

k=1

E|Xnk|I(|Xnk| > an)

an
6

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0.

Therefore, while n is sufficiently large, for t > aq
n,

∣∣∣∣
n∑

k=1

EYnk

∣∣∣∣ 6 t1/q/2.

Then

(2.4) P

{∣∣∣∣
n∑

k=1

Ynk

∣∣∣∣ > t1/q

}
6 P

{∣∣∣∣
n∑

k=1

(Ynk − EYnk)

∣∣∣∣> t1/q/2

}
.
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Let dn = [an] + 1, by (2.4), Lemma 2.2, and Cr-inequality, we have

I4 6 C

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

aq

n

t−2/qEY 2
nk dt

= C

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

aq

n

t−2/qEX2
nkI(|Xnk| 6 dn) dt

+ C

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

aq

n

t−2/qEX2
nkI(dn < |Xnk| 6 t1/q) dt

+ C
∞∑

n=1

n∑

k=1

a−q
n

∫
∞

aq

n

P (|Xnk| > t1/q) dt

=̂ I41 + I42 + I43.

By an argument similar to that in the proof of I3 < ∞, we can prove I43 < ∞.

For I41, by q < 2, (an + 1)/an → 1 as n → ∞, and (1.8), we have

I41 = C

∞∑

n=1

n∑

k=1

a−q
n EX2

nkI(|Xnk| 6 dn)

∫
∞

aq

n

t−2/q dt

6 C

∞∑

n=1

n∑

k=1

EX2
nkI(|Xnk| 6 dn)

a2
n

6 C

∞∑

n=1

n∑

k=1

(an + 1

an

)2 EX2
nkI(|Xnk| 6 dn)

d2
n

6 C

∞∑

n=1

n∑

k=1

E|Xnk|
pI(|Xnk| 6 dn)

dp
n

6 C

∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(dn)
6 C

∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞.

For I42, since

C

∞∑

n=1

n∑

k=1

a−q
n

∫ dq

n

aq

n

t−2/qEX2
nkI(dn < |Xnk| 6 t1/q) dt = 0,

we have

I42 = C
∞∑

n=1

n∑

k=1

a−q
n

∫
∞

dq

n

t−2/qEX2
nkI(dn < |Xnk| 6 t1/q) dt.
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Let t = uq. By q > 1, (1.7), and (1.8), we have

I42 = C

∞∑

n=1

n∑

k=1

a−q
n

∫
∞

dn

uq−3EX2
nkI(dn < |Xnk| 6 u) du

= C

∞∑

n=1

n∑

k=1

a−q
n

∞∑

m=dn

∫ m+1

m

uq−3EX2
nkI(dn < |Xnk| 6 u) du

6 C

∞∑

n=1

n∑

k=1

a−q
n

∞∑

m=dn

mq−3EX2
nkI(dn < |Xnk| 6 m + 1)

6 C

∞∑

n=1

n∑

k=1

a−q
n

∞∑

m=dn

mq−3

m∑

s=dn

EX2
nkI(s < |Xnk| 6 s + 1)

6 C
∞∑

n=1

n∑

k=1

a−q
n

∞∑

s=dn

EX2
nkI(s < |Xnk| 6 s + 1)

∞∑

m=s

mq−3

6 C

∞∑

n=1

n∑

k=1

a−q
n

∞∑

s=dn

sq−2EX2
nkI(s < |Xnk| 6 s + 1)

6 C

∞∑

n=1

n∑

k=1

a−q
n E|Xnk|

qI(|Xnk| > dn)

6 C
∞∑

n=1

n∑

k=1

E|Xnk|
qI(|Xnk| > an)

aq
n

6 C
∞∑

n=1

n∑

k=1

EΨk(Xnk)

Ψk(an)
< ∞.

The proof is complete. �

P r o o f of Theorem 1.4. Following the notation and by an argument similar to

that in the proof of Theorem 1.3, we can easily prove Theorem 1.4. Therefore, we

omit the details. �

P r o o f of Theorem 1.5. We follow the notation in the proof in Theorem 1.3. To

start with, we prove (1.15). For all ε > 0,

E

(
a−1

n

∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣

)q

= a−q
n

∫
∞

0

P

(∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > t1/q

)
dt

6 ε + a−q
n

∫
∞

aq

nε

P

(∣∣∣∣
n∑

k=1

Xnk

∣∣∣∣ > t1/q

)
dt

6 ε + a−q
n

∫
∞

aq

nε

n∑

k=1

P{|Xnk| > t1/q} dt

+ a−q
n

∫
∞

aq

nε

P

{∣∣∣∣
n∑

k=1

Ynk

∣∣∣∣ > t1/q

}
dt

=̂ ε + I5 + I6.
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Without loss of generality we may assume 0 < ε < 1. By the Markov inequality,

(1.7), and (1.14), we have

I5 6

n∑

k=1

a−q
n

∫
∞

aq

nε

P{|Xnk|I(anε1/q < |Xnk| 6 an) > t1/q} dt

+

n∑

k=1

a−q
n

∫
∞

aq

nε

P{|Xnk|I(|Xnk| > an) > t1/q} dt

6

n∑

k=1

a−q
n E|Xnk|

pI(|Xnk| 6 an)

∫
∞

aq

nε

t−p/q dt

+

n∑

k=1

a−q
n

∫
∞

0

P{|Xnk|I(|Xnk| > an) > t1/q} dt

= Cε1−p/q
n∑

k=1

E|Xnk|
p

ap
n

I(|Xnk| 6 an) +
n∑

k=1

a−q
n E|Xnk|

qI(|Xnk| > an)

6 (Cε1−p/q + 1)

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

Then we prove I6 < ∞. By an argument similar to that in the proof of (2.4), we

have

max
t>aq

nε

∣∣∣∣t
−1/q

n∑

k=1

EYnk

∣∣∣∣

= max
t>aq

nε

∣∣∣∣t
−1/q

n∑

k=1

EZnk

∣∣∣∣ 6 a−1
n ε−1/q

n∑

k=1

E|Xnk|I(|Xnk| > anε1/q)

6 ε−1/q
n∑

k=1

E|Xnk|

an
I(|Xnk| > an)

+ ε−p/q
n∑

k=1

E|Xnk|
p

ap
n

I(anε1/q < |Xnk| 6 an)

6 (ε−1/q + ε−p/q)

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

Therefore, while n is sufficiently large, for t > aq
nε, we have

(2.5) P

{∣∣∣∣
n∑

k=1

Ynk

∣∣∣∣ > t1/q

}
6 P

{∣∣∣∣
n∑

k=1

(Ynk − EYnk)

∣∣∣∣ > t1/q/2

}
.
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Let dn = [an] + 1. By (2.5), Lemma 2.2, and the Cr-inequality, we have

I6 6 C

n∑

k=1

a−q
n

∫
∞

aq

nε

t−2/qE(Ynk − EYnk)2 dt

6 C
n∑

k=1

a−q
n

∫
∞

aq

nε

t−2/qEY 2
nk dt

= C

n∑

k=1

a−q
n

∫
∞

aq

nε

t−2/qEX2
nkI(|Xnk| 6 dn) dt

+ C
n∑

k=1

a−q
n

∫
∞

aq

nε

t−2/qEX2
nkI(dn < |Xnk| 6 t1/q) dt

+ C

n∑

k=1

a−q
n

∫
∞

aq

nε

P (|Xnk| > t1/q) dt

=̂ ε + I7 + I8 + I9.

By an argument similar to that in the proof of I5 → 0, we can prove I9 → 0. By an

argument similar to that in the proof of I41 < ∞, we can prove

I7 6 Cε1−2/q
n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

For I8, since

C

n∑

k=1

a−q
n

∫ dq

n

aq

nε

t−2/qEX2
nkI(dn < |Xnk| 6 t1/q) dt = 0,

we have

I8 = C

n∑

k=1

a−q
n

∫
∞

dq

n

t−2/qEX2
nkI(dn < |Xnk| 6 t1/q) dt.

Therefore, by an argument similar to that in the proof of I42 < ∞, we can prove

I8 6 C

n∑

k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

The proof of (1.17) is similar to that of (1.15), so we omit it. The proof is complete.
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