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Invertibility criterion of composition

of two multiary quasigroups

FEDIR M. SOKHATSKY, IRYNA V. FRYZ

Abstract. We study invertibility of operations that are composition of two opera-
tions of arbitrary arities. We find the criterion for quasigroups and specifications
for T'-quasigroups. For this purpose we introduce notions of perpendicularity of
operations and hypercubes. They differ from the previously introduced notions
of orthogonality of operations and hypercubes [Belyavskaya G., Mullen G.L.,
Orthogonal hypercubes and n-ary operations, Quasigroups Related Systems 13
(2005), no. 1, 73-86]. We establish some relationships between these notions and
give illustrative examples.

Keywords: quasigroup, composition of operations, orthogonal operations, per-
pendicular operations, hypercube, perpendicular hypercubes, orthogonality of
hypercubes, slice, linear quasigroup, T-quasigroup

Classification: 20N05, 05B15

Introduction

It is well known that every n-ary quasigroup operation (i.e., invertible function)
is a composition of permutations and some fixed binary quasigroup operation [1].
Every operation is invertible if it is repetition-free composition of invertible ope-
rations [2]. But if, in the composition, at least one individual variable repeats,
then operation is not always invertible.

For repetition composition the following results were obtained: invertibility
criterion for binary operations which follows from [3], [4]; invertibility criterion
for polyagroups, i.e., for multiary quasigroups which are (4, j)-associative for some
pairs (i, ) [5].

In this article, we study invertibility of operations that are composition of two
operations of arbitrary arities. For this purpose we generalize the notion of or-
thogonality of two binary operations (Definition 3) and call it perpendicularity.
This generalization does not coincide with the previously introduced generaliza-
tion of orthogonality ([6], here Definition 1). We find an invertibility criterion
of composition of two operations (Theorem 5). We consider some specifications
for quasigroup operations (Corollary 6) and for T-quasigroups (Theorem 9, The-
orem 11).
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Combinatorial analogue of perpendicularity of operations is perpendicularity of
hypercubes (Definition 5). We illustrate the notion (Examples 1 and 2) and estab-
lish some relationships between the notions of orthogonality and perpendicularity
of hypercubes (Proposition 12 and Example 3).

1. Preliminaries

Let a:f denote the sequence z;,...,z; if ¢ < j and the empty symbol if i > j.
In this article, all operations have a common carrier set. We denote this set by Q.
Recall that an operation f, defined on a set @, is called i-invertible if for

arbitrary ag,...,a;_1,b,a;_1,...,a, of ) there exists a unique element x € @
such that
(1) f(ao,-.-,(li_l,m,ai+1,-..,(ln):b.

If f is i-invertible for all i € 0,n := {0,...,n}, then it is called invertible or
quasigroup. The i-th division f(¥) of an i-invertible operation f is defined by

f(i)(ﬂ?o,...,wi_l,mi,mﬂ_l,...,ﬂfn) =y = f(wO:'"ami—lay:mi-l-la"'awn) = T

for all zg,...,zn,y € Q.

Two binary operations g and h defined on @ are called orthogonal (g L h)
if every system {g(z;y) = a, h(z;y) = b} has a unique solution for all a,b €
@. To every binary operation there corresponds some square (i.e., unbounded
Cayley table) and to an invertible operation there corresponds a Latin square.
Orthogonality of operations means orthogonality of the corresponding squares,
i.e., their superimposition gives the square containing pairwise different pairs of
elements.

To formulate a binary operations invertibility criterion which follows from [3],
[4] we recall some notions.

Left and right multiplications are defined by equalities:

(9 ® h)(w;y) = g(h(zs)iy). (9@ h)(2;y) = g(a: h(z:y)).
Left and right divisions of operation h are defined by relationships:
W(zy) =z & h(z;y) =z, h(2:2) =y & h(z;y) = 2.

The following theorem is a slight generalization of the corresponding results
from [3] and [4].

Theorem 1. Let g, h be arbitrary binary operations and h be right invertible.
Then

g @ h is left invertible < g Lh".
)

The next statements are evident.
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Proposition 2. The following relationships are true:

(2) gLlh & g°Lh° !
(3) (9@ h)" =g" &M

Similar results hold for multiary operations.

Proposition 3. If multiary operations g and h are orthogonal, then g° and h?
are orthogonal as well, where f° denotes some principal parastroph of f.

Theorem 4. Let g, h be arbitrary binary operations and the operation h be left
invertible. Then

g & h is right invertible & gLht.
I

PROOF: ¢ @ h is right invertible <= (g ® h)® is left invertible & g9° ® h* is left
14 4 r

invertible <= g°Lh®" FON (g°)° L(h*")® <= gLh’. O
Recall the definition of orthogonality of multiary operations in [6].

Definition 1. Two n-ary operations (n > 2) g and h, given on a set @ of order
m, are called orthogonal (g L h) if the system {g(z{) = a, h(z]) = b} has exactly

m"~! solutions for any a,b € Q.

2. Perpendicularity of operations

The study of functional equations, multiplace functions, multiary quasigroups
needs solving some problems. One of them is: under what conditions can a com-
position of operations be invertible? In particular, in what cases can a composition
of invertible operations be invertible?

Here we give an answer concerning composition of two operations. Theorems 1
and 4 give an answer to the question for the binary case and imply that

g @ h® is invertible < gLh®, g @ h® is invertible < gLh".2
r J4
Let an (n + 1)-ary operation f be an arbitrary composition of operations g

and h. Then there exist partial injective transformations 7 and v of 0,n :=
{0,1,...,n} such that

flzo,...,zyn)

= 9(1'7-0, v 7x'r('r_1(m)71)7h($00: e 7xvn): Tr(r=1(m)+1)s+ - 7x'rn)=

(4)

Lo (zy) = fly; o)

2s = ré, rs = Lr.

431
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where m € Im 7.2 We denote
Jo (i) = {r(0),...,7(r (@) = 1)}, i=0,...,n.

Definition 2. Let 7 and v be arbitrary partial injective transformations of the
set 0,n and 0,n = Im7 UImwv. Then a pair of binary operations will be called
(1,v)-respective {m;p}-retracts of g and h if they are defined by terms that are
obtained from

g(x”rOa-"a-T'rn): h(xv()a-":xvn)
in the following way: all the variables of the terms are replaced with some elements
from @), except x,, and z,, where p # m; in addition, if a variable appears in
both terms, then it is replaced with the same element.

Definition 3. Let 7 and v be arbitrary partial injective transformations of the
set 0,n and 0,n = Im7 UImv and m € (Imv NIm7). Operations g and h will
be called perpendicular of the type (r,v;m) if for all p € (Imv NIm7)\{m} every
pair of (7, v)-respective {m; p}-retracts is orthogonal.

Let (4) be valid. If i ¢ Im7 U Imwv, then z,; and z,; are empty symbols,
therefore, the operation f can not be i-invertible. So, for finding a criterion of
i-invertibility of f it is sufficient to consider three disjoint possibilities:

i€Im7m\Imv, i€Imov\Im7, 7€ (ImvNIm7)\{m}.

Theorem 5. Let 7 and v be arbitrary partial injective transformations of 0,n
and let (4) hold. The following assertions are true:
1) if h is J,(m)-invertible and i € Im7\Imwv, then i-invertibility of f is
equivalent to J(i)-invertibility of g;
2) if g is J;(m)-invertible and i € Imuv\Imr, then i-invertibility of f is
equivalent to Jy, (i)-invertibility of h;
3) if his J,(m)-invertible and i € (ImvNIm 7)\{m}, then i-invertibility of f
is equivalent to orthogonality of (7, v)-respective {m,i}-retracts of g and
h(7+(m) " where h(’+(™)) denotes J,,(m)-th division of h.

ProOF: Let assumption of p. 1) be true. Because of (4), the equation (1) is
equivalent to

(5) g(aTO: oy Qr(r=1())=1)s Ty Ar (r=1(i)41) + « +» Ar(7=1(m)—1)>»
h(avg, e ,am), a.,-(.,-—l(m)+1), ey am) =b.
This equation has a unique solution. The operation h is surjective, since h is
Jy(m)-invertible. That is why g is J;(i)-invertible.
Vice versa, let g be J,(i)-invertible for some ¢ € Im 7\ Imv. Let us prove that
(1) has a unique solution for all ag,...,a;—1,a+1,...,a,,b € Q. Suppose that

i < m (the proof is the same if i > m). If we combine i € Im 7, 7 ¢ Imv, (4), (1),

3ay is denoted to be empty symbol if u is empty.
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we get (5). It has a unique solution for all ag,..., arz-13i)—1), A(r=1(i)41) -+ An,
b € @, because g is J.(i)-invertible. This means that (1) has a unique solution
for all ag,...,a;—1,0;41,...,a,,b € Q, therefore, f is i-invertible.

Let assumption of p. 2) be true. Taking into account (4), the equation (1) is
equivalent to

©) 9(aro, .y Qr(r=1(m)—1)s P(@v0, - -+ Gy 133y 1) T,
Ay(v=1(i)+1)> - - - > Qo) Gr(r=1(m)41)s - - - » Grn) = b.
We denote
Bi(z) := f(ag, ..., 0i—1,Z,0i41,...,ay), T=0 ,n
Ym (%) 1= g(@ros - - s Qr(r=1(m)=1)> Ty Qr(r=1(m)41)s - > Grn); M =0,....m,
8i(2) 1= (a0, - - Qy(v=1(3)=1)> T Ay (v=1(i)41)» - - s Qom); & =0,...,m.

Then (6) can be written as 3; = v, d;. The transformations §; and §; are per-
mutations simultaneously, since 7,, is a permutation. So, ¢-invertibility of f is
equivalent to .J, ()-invertibility of h.

Let assumption of p. 3) be true. Then

(7) g(a‘rO: sy Qr(r=1())=1)y Ly A (7=1(i) 1)y - - -5 Ar(7=1(m)—1)>» h(a'UO: ceey
Ay(v=1(i)—1) s L3 Qy(v=1(i)+1)s = +» avn): Ar(r=1(m)4+1)s :a'rn) =b.

We denote

(8) h(a'UO: s :av(v’l(i)—l):m: av(vfl(i)—l—l): s :avn) =Y.

Without loss of generality, we suppose that i < m. The J,,(m)-th division i(/+(m))
exists, because h is J,(m)-invertible, therefore, (8) is equivalent to

h(JU(m)) (av(]a sy Ay (u=1(i)=1)s Ty Ay(v=1(i)+1) 1+ + * s

Ay(v=t(m)=1):Y> Qu(v=1(m)+1)s -+ > avn) = Qm-

Therefore, uniqueness of solution of (7) is equivalent to uniqueness of solution of
the system

AT (g, . Gy (p=1 (i) =1)s Ty Q=1 (i) 41)5 - - -5
Ay(v=1(m)—1): Y5 Qy(v=1(m)+1)s-- > Aun) = G,
g(aTO: s Q=1 =1)y Ty A (7=1()+1) 5+ +»
Ar(r=1(m)=1)s Y5 Qr(r=1(m)41)s -+ s Qrn) = b

which, in turn, means orthogonality of (7,v)-respective {m,i}-retracts of g and
BT (m)) O
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Corollary 6. Let 7, v be an arbitrary partial injective transformations of 0,n;
g, h be invertible operations; (4) be fulfilled. Then the invertibility of operation
f is equivalent to the perpendicularity of the type (t,v;m) of g and h(’+("™)),

PRrROOF: By p. 1) and p. 2) of Theorem 5, the operation f is i-invertible for all
i € (Im7\Imv)U (Imv\ Im7), since g and h are invertible operations. Thus, in-
vertibility of operation f is equivalent to the perpendicularity of the type (7, v;m)
of g and AJv(m) 0

The notions of orthogonality and perpendicularity of the types (g,¢;0) and
(¢,€;1) coincide in binary case. So, Theorem 5 implies Theorem 1, Theorem 4,
Theorem 2 [3], and Corollary 1 [4].

3. Perpendicularity of T-quasigroups

Linear transformation of a group is defined as a composition of its translations
and automorphisms. A multiary quasigroup (@, f) is called an isotope of a binary
group (Q;+) if (Q; f) is isotopic to (@;d), where d(zq,...,2,) ;=20 + - - + Tp.
If, in addition, all components of the isotopism are linear over (Q;+), then (Q; f)
is called linear on (Q;+).

Let 7 be an arbitrary partial injective transformation of the set 0,n. If a
[{r0,...,7n}|-ary quasigroup f is linear on a group (Q); +), then it has decompo-
sition:

(9) g(w‘rO: cee 7an) = QrTr0+ T QrpZrp +a,

where a € @ and arq,...,ar, are automorphisms of (Q;+) but if 7i does not
exist, then a,;z,; is assumed to be the empty symbol. The decomposition (9) is
called 7-canonical and a g, ..., a., are called decomposition automorphisms [7].
A linear isotope of an abelian group is called a T'-quasigroup.

Theorem 7. Let (Q;+) be a group and «,8,v,d be its automorphisms. Then
the system

az + By = a,
(10)

vy +dy =10b

has a unique solution for all a,b € Q if and only if —y~'5+a713 (or B~ta—56"17)
is a permutation of Q.

PRrROOF: The system (10) is equivalent to

{ z+a 'By=ala,

T+ Loy =~ b
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Apply I* to the second equation:
z+a By =ala,
{ Iy 16y + Iz = Iy~ 1b.
Add the first equation to the second one from the right side:
z+a By =ala,
{ In Yy +Iz+z+a'By=Iy"'b+a la
Thus, (10) is equivalent to

z+a By =ala,
(Iv7'%6+a 1By =Iyv"'b+a la.

It is easy to see that the system has a unique solution for all a,b € () if and only
if —y~16 + a7/ is a permutation of Q.

The theorem is true for 3~ 'a — §~ 'y, since =6~ 'y(=y~'6 + a'B)B'a =
B~ ta — 571y, O

Theorem 7 immediately implies the following theorem.

Theorem 8 ([8, Theorem 16]). Let (Q;+) be an abelian group and a, 8,v,0 be
its automorphisms. Then the system (10) has a unique solution if and only if
a~'B — 71§ is an automorphism of (Q;+).

It is natural that the following question arises: under what conditions can a
composition of linear quasigroups be a quasigroup?
An answer is given in the following theorem for T-quasigroups.

Theorem 9. Let f, g, h be linear quasigroups over an abelian group (Q;+)
defined by (4), (9) and

(]-]-) h(xvm-"amvn) = BUOxUO + "'+anxvn +c.

The operation f is invertible if and only if for every p € (Imv NIm7)\{m} the
transformation oy, + a3y is an automorphism of (Q;+).

Proor: By Corollary 6, invertibility of f is equivalent to perpendicularity of the
type (7,v;m) of g and h(/»(™) since g and h are linear quasigroups. This perpen-
dicularity is equivalent to orthogonality of their (7, v)-respective {m, p}-retracts
for every p € (Imv NIm7)\{m} and for all ag,...,a,,b € Q. By Definition 3,
orthogonality of (7, v)-respective {m, p}-retracts means uniqueness of solution of

Az = —2a.
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the corresponding system:

g(arg, e ,a,,.(,,.—l(p),l) , L, aT(T—l(p)+1), ey
Ar(7=1(m)=1)s Y Ar(r=1(m)+1)5 -« +>» aTn) =b,
(12)
h(‘]”( ) (CLUO, <o Qy(u=1(p)—=1)1 L5 Qy(v=1(p)+1)s - - - 5
av(v—1(m),1),y, av(v—l(m)+1), ey avn) = Qm.

By (11), J,(m)-th division of operation h has the following expression:

h(‘]”( ))(Z‘UO ..... Ty(v=1(m)—=1)r Y5 To(v=1(m)+1)s - - > xvn)
= —5;1151;0%0 - B;lﬂv(v—l(m)—l)xv(v—l(m)—l) + 6;11y
=Bt Bu (w1 (m)+ 1) To(o-1(m)+1) =+ — Bm' BonTon — B c.

So, (12) can be written as follows

[ Qr0Gro + - Qr(r=1(p) 1) r(r=i(p) 1) TOPT

q1
T (e (p)+1)Ar(r 1 (p)+1) T Ar(r1(m)=1) Br (71 (m) 1)

vl

q2
+ amy + a'r('rfl(m)+1)a7'(7'*1(m)+1) + -+ Qrplr, +a= b:

a3
Buoayo + -+ + Bv(v—l(p)—l)av(v—l(p)—l) +Bpz

dy
+ Bow=1(p)+1) Go(w=1(p)+1) T = F Bu(o=1(m)—1) Go(v=1(m)—1)

~ v

da
=Y+ Bow-1(m)+1)Go(v-1(m)+1) T+ Bontun + ¢ = =Bmam,

\ ds
i.e., we have
opT + oy =b—q1 — g2 — g3,
{ Bpt —y = =PBmam —di —ds — ds.

According to Theorem 8, existence and uniqueness of the system solution is equiv-
alent to invertibility of the transformation Bp’l + a;lam. This transformation is
invertible if and only if a, 4+ @, 3, is invertible, since

ap + amfp = ap(ﬂ;1 + a;lam)ﬂp.
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Corollary 10. Let, in the condition of Theorem 9, (Q;+) be an additive group
of residues modulo s. Then the operation f is invertible if and only if the number
ap + an By Is relatively prime to s for all p € (Imv NIm7)\{m}.

The question arises: under what conditions can the linear quasigroup be per-
pendicular to a component of its decomposition?

Theorem 11. Let (Q;+) be an abelian group, an operation f and linear quasi-
groups g and h be defined by (4), (9), and (11) respectively. The operation f is
perpendicular of the type (1,v;m) to g if and only if the following two conditions
are true:

1) the mappings a, + am(e — Bm) ™' By and ap + B, are automorphisms of
(Q;+) for all p e ImvNIm7)\{m};
2) the mapping € — B, is an automorphism of (Q;+) for all p € Im 7\ Imv.

PRrOOF: The operation f is linear over (Q; +):

4),(9),(11
F(@o, - ) (4),(9),(11) Q070+ F Qr(r=1(m)=1) L1 (=1 (m)=1)

+am (ﬂvoxvo + -+ anxvn + C)
+a‘r(‘r*1(m)+1)wr(7*1(m)+l) + o+ amTm, ta

By Theorem 9, the transformation ayp + amfp is an automorphism of (Q; +) for
all p € ImvNIm7)\{m}.

The perpendicularity condition of operations f and g means uniqueness of
solution of the system

{ amﬂmy + (amﬂp + ap)x = Co,
amy + apx =do

for some elements ¢y and dy in . According to Theorem 8, the system has a
unique solution if and only if the transformation —a,,' ap+ (@ Bm) ~H (@ By + )
is an automorphism of (Q;+). The transformation a, + am(e — Bm) '3, is an
automorphism of (Q;+) for all p € (Imv NIm7)\{m}, since

—atay + (amBm) HamBy + ap) = —atay, + B tagtamBy + Balanta,
= —aptay + 6. B + Byl antap = (B, —e)ag a, + 65" By
= B B (B =)oy ap + B Bp) = B! (6 = Bm)an' ap + By)

and

(e = Bm)ay, O‘P+BP = (e = Bm)ay, (O‘P"'am(g_ﬁm) 1617)'
Thus, the operation f is perpendicular of the type (7,v;m) to g if and only if
the transformations ayp + am (e — Bm) ™' Bp and o, + a3, are automorphisms of
the group (Q;+) simultaneously for all p € (Imv NIm7)\{m}.
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If p € Im7\Imwv, then perpendicularity of f and g of the type (r,v;m) is
equivalent to uniqueness of the system solution

{ amBmy + apT = Co,
apy + apz = dy.

The system has a unique solution if and only if the transformation —a,'a, +
(@mfBm) ta, is an automorphism of (Q;+), i.e. € — B, is an automorphism of
(Q; +). Really,

-1 -1 -1 1 1 -1 —1
—a ap + (amfbm) " ap = —ay ap + B an ap = B (6 — Bm)ay, ap.

If p € Imv\ Im 7, then {m; p}-retract of g does not exist. O

4. Perpendicularity of hypercubes

It is well known [6] that to every invertible n-ary operation there corresponds
an n-dimensional Latin hypercube and to k-tuple of orthogonal n-ary quasigroup
operations there corresponds a k-tuple of Latin hypercubes of dimension n.

Let p be an arbitrary partial injective transformation of 0,n. If pi is empty
symbol, then in the corresponding hypercube in the direction pi all slices are
empty.

Naturally, the following question appears: what relationship is there between
the hypercubes corresponding to the perpendicular operations of the type (r,v;m)?

To give an answer, we introduce the following notions.

Definition 4. If all coordinates in a hypercube are fixed, except m and p, then
the obtained square will be called {m,p}-slice.

The combinatorial equivalent of Definition 3 is

Definition 5. Two hypercubes H; and H, are called perpendicular of the type
(1,u;m) if for all p € Imv N Im 7 the pair of {m,p}-slices of H; and of H, are
orthogonal.

It is easy to see that every pair of perpendicular operations corresponds to the
pair of respective perpendicular hypercubes of the same type.

Example 1. The following operations f and f;, which are defined on Q := Z5
by

f(xo, 1, m2) := 20 + 21 + 22 and fi(zo, x1,22) := 220 + 321 + 22,

are perpendicular of the type (g,¢;0).

Indeed, according to Corollary 10, the numbers 1 +3 =4, 1+1:1 = 2 are
relatively prime to 5. So, the operations are perpendicular of the type (e, ¢;0).
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To illustrate perpendicularity of the corresponding cubes, we present their
{0, 1}-slices and {0, 2}-slices, since the type of the perpendicularity is equal to
(,€;0).

The cube H is presented by {0, 1}-slices:

0O(112|3(4] (1|/2|3]|4]0 213|14]0]1
11213410 213|14|0(1] [3|4|10]1]2
213(4|0|1] |3(4]0]1|2 41011123
3141012 4101123 01112314
4101|123 0(1(2]|3|4| (12340
3(410(1]2 4101112|3
41011123 0112|334
011234 11213410
1121340 21314|0|1
213(4]0]1 3141012

The cube H; is presented by {0, 1}-slices:

O(3|1]|4|2| [1/4|2]|0]|3 21013114
21013(1]4 3111420 412|031
412(013|1| (0(3|1(4|2] |1(4]2|0|3
114(2(0]3 2(013|1]4 3111420
3111420 412|1013(1] |0]3|1(4]2
3(114(2]|0 4121031
013|142 114(2(0]3
21013114 3(11412]|0
412|031 013142
11412013 21013114

Superimposition of the corresponding {0, 1}-slices of the cubes H and H;:

00| 1321|3442 11124 | 32|40 |03 22130430114
12120 |33 41|04 23131440210 341420013 |21
24132(40|03 | 11 30143 |01 |14 22 41104 |12 (20|33
31(44|02]10 |23 42 1001|1321 | 34 03 |11]24 32|40
43101 |14 (22|30 0412203341 10123 | 31| 44 | 02
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— | O [N |
™M | O [~ |V
(el (=2 [ I s
N | (O |
O AN |<H | [
— | ([N [ |O
[N B Al R B [ B [
O [~ | [en [
<t |—= [N (D |
<t | |- | [
(el [N B s i B )
N | (O |
AN < = | (O
— NN | O
< |~ [N [ |
O (= | [en [
- | O (N
< (D |- [N D
[~ (=R ) B A R
™M | |O | AN

So, the corresponding {0, 1}-slices of H and H; are orthogonal.

The cube H is presented by {0,2}-slices:

™M | O [~ |V
NN (O |
— || N | O
O [~ | [en [
< O |- | [
| N (O |
— | (N [ |O
O [~ | [en [
< (O |— [N [0
™M | O [~ |

— NN | O
O [~ | [en [
H |O© |~ | [
[ 2 Aol [ew i Lo B (e
[ I [ I s L (el
O (= | [en [
< O [— | |
™ | O [~ | AN
[ I [ I s L (el
— || N | O
< O [— | |
[ 2 Aol [ew i Lo B (e
AN (O |
— | (N [ |O
O (= | [en [

The cube H; is presented by {0, 2}-slices:
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Superimposition of the corresponding {0, 2}-slices of the cubes H and Hi:

0011|2233 |44 ||13|24 (3041|0221 |32|43|04]10
1212313414001 ]|1 2031|4203 |14 |(33]44|00]| 11| 22
241304110213 ({32(43|04|10(21|(40|01|12|23]| 34
311420314 (20(|40|00|11(22|33||02|13|24]30]41
431041021 32| 01]12|23(34[40|| 14|20 |31 42|03

34(140(01(12|23|]42|03|14 20|31
4110213243004 |10|21 32|43
0314 ]20|31|42||11|22|33|44 |00
1012113243 |04|(23]|34|40|01] 12
22 (33]144|00|11|]30|41(02]|13 |24

So, the corresponding {0, 2}-slices of H and H; are orthogonal.
Thus, the cubes H and H; are perpendicular of the type (g;¢;0).

Example 2. Operations f and f>, which are defined on Q) := Z5 by
f(:ng,asl,asg) = CUO+CU1+CU2, fQ(CU(],CUQ) = 2$0+CU2,
are perpendicular of the type (¢,v;0), where v1 is empty, v0 = 0, v2 = 2.

Really, according to Corollary 10, the number 14 1-1 = 2 is relatively prime
to 5. So, the operations are perpendicular of the type (e, v;0).

To illustrate perpendicularity of the respective hypercubes, we present them
by their {0, 2}-slices, since the type of the perpendicularity is equal to (e, v;0).

The square Hy

0111234
2131401
4101123
11213410
314|012

corresponds to the operation f> and the following cube H corresponds to the
operation f and is represented by {0, 2}-slices:

0(112(3]|4 1121340 2134|101
11213410 2131401 31410112
2134|101 314|012 4101123
3141012 4101123 0111234
4101|123 0(112(3]|4 1121340
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3141012 41011123
41011123 0112|334
011234 11213410
11213410 213(4]0]1
2134|101 3141012

Superimposition of the square H, on every of the {0,2}-slices of H:

00(11(22|33|44 /10|21 |32|43|04(|20|31|42|03]|14
1212313414001 (223344 (00|11 ||32|43(04]| 1021
24130410213 |[34|40|01|12|23||44|00| 1122|333
31142 (0314204102 |13|24(30||01 12|23 34|40
431041021 32| 03|14 |20(31[42||13|24|30]41]02

30(41102|13]|24|]40|01|12]|23| 34
4210314 (20|31 ]|02|13|24]|30] 41
0410213243 || 14|20 |31|42|03
11122133 (44(00|]|21|32(43|04] 10
23134400112 (|33(44|00| 11|22

Thus, the corresponding {0, 2}-slices of H and H, are orthogonal, therefore, f
and f, are perpendicular of the type (g, v;0).

5. A relationship between the notions of orthogonality and perpendi-
cularity

Let us show relationship between the notions of orthogonality and perpendi-
cularity. For this purpose, suppose that 7 and v are permutations of 0,n. If g
is perpendicular to h of some type, then g is perpendicular to h?, where h? is a
principal parastroph of h. So, it is sufficient to consider the case 7 = v = €.

Let (n 4 1)-ary operations f and g be defined on a finite set @, k := |Q| and
let f and g be perpendicular of the type (g,e;m), i.e., the system

{ flao, - Qm—1,2, Qm41, -, Ap—1,Y, Apt1; ..., 0n) = q,
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has a unique solution for every pair (a;b) € Q2 and for every sequence (aq, ...,

A1y Qmg1s -y Qp1,0pi1s .., 0,) € Q1. The system
{ flzg,..., Tn) =a
g(xo,...,xn) =b

has k"~ ! solutions, since for every pair (a;b) there exist exactly |Q" ! = k"1
sequences. This means that operations f and g are orthogonal according to Def-
inition 1.

Proposition 12. If finite operations are perpendicular of the type (e,e;m), then
they are orthogonal.

A converse proposition is not true. The following example confirms this.
Example 3. The operations f and g, which are defined by
f(zo, 21, 22) = 30 + 1 + 222,  g(T0,21,%2) = T0 + T1 + T2

on the set () = Zg, are orthogonal and are not perpendicular of the type (e,¢;0).

PRrROOF: The operation g is invertible but f is not invertible, since 2 (and 3) is
not relatively prime to 6. Consider the corresponding hypercubes Hy and H,.

The cube Hy is presented by {0, 1}-slices:

01121345 21314|5|0]1 4(5(0(11]12]3
31415(0(1(2 50011123 |4 1(213(4/5]|0
01121345 21314|5|0]1 4(5(0(11]12]3
3(4|15(10]1]2 5101112314 112131450
01112345 21314501 4150123
3(4|15(10]1]2 5101112314 112131450
01121345 21314|5|0]1 4(5(0(11]12]3
3(4|15(10]1]2 5101112314 112131450
01112345 213141501 4150123
3(4|5(10]1]2 5101112314 112131450
01112345 213141501 4150123
3(4|5(10]1]2 5101112314 112131450
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The cube H, is presented by {0, 1}-slices:

01121345 112131450 213141501
112|13(4(5]0 213141501 3/4(5|0]1|2
213|14|5|0]1 314|15|0]1]2 4(5(0(11]12]3
31415(0(1(2 4150123 5001|1234
4(510(11]12(3 5101112314 011123415
5(0(112(3|4 0[1]2]|34]5 1(213(4/5]|0
3(4|15(10]1]2 415011123 510111234
4150123 50011123 |4 0[{1]2|3(4]|5
51012314 01112345 112131450
01112345 11213450 213141501
112|13(4(5]0 213141501 3/4(5|0]1|2
213|14|5|0]1 314|15|0]1]2 4(5(0(11]12]3

Superimposition of the corresponding {0, 1}-slices Hy and H,:

00111223344 |55|(21|32|43(54|05|10||42|53|04|15|20]|31
31142(53|04(15(20||52|03|14|25|30|41||13|24|35|40(51|02
021324354051 |(23|34|{45(50|01|12]|44|55|00|11|22]|33
3344155|00(11(22|(54|05({10(21|32|43||15]20|31|42|53|04
04115(20|31(42|53||25|30{41|52|03|14||40(51|{02|13|24]|35
3540151021324 |(50|01(12(23|34|45||11]22|33|44|55|00

03(14(25|30(41|52||24(35|40|51|02|13||45|50|01|12|23|34
34(45(50|01(12(23||55(00|11|22|33|44||10|21|32|43|54|05
05101213243 |54|(20]|3142(53|04|15||41|52|{03|14|25|30
30(41(52|03(14|25||51(02|13|24(35|40||12|23|34|45|50|01
01]12(23|34|45(50|(22|33[44(55|00|11||43|54|05(10|21]|32
32(43(54|05(10(21||53|04|15|20|31|42||14|25|30|41 (52|03

The operations f and g are not perpendicular of the type (e,¢;0), because the
squares have repeated pairs. However, hypercubes Hy and H, are orthogonal
according to Definition 1, since every pair has six appearances. d
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