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1. INTRODUCTION AND PRELIMINARIES

Let R, Ry and N denote the set of reals, non-negative reals and the set of natural
numbers respectively. Let (G, Y, ) be a o-finite measure space. Denote by L0 =
LY(G) the set of all pu-equivalence classes of complex-valued measurasble functions
defined on G. A function M: G xR — [0, c0) is said to be a Musielak-Orlicz function
if M(-,u) is measurable for each v € R, M(t,u) = 0 if and only if v = 0 and M(¢,-)
is convex, even, not identically equal to zero and M (t,u)/u — 0 as u — 0 for p-a.e.
t € G. Define on L° a convex modular gy by

oni(f) = /G M(t, £(1)) du

for every f € LY. By the Musielak-Orlicz space Lj; we mean

Ly ={f € L°: oam(\f) < oo for some A\ > 0}.
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Its subspace E); is defined as
Ey ={f €L’ oum(\f) < oo for any A > 0}.
The space Lj; equipped with the Luxemberg norm

[fl[ar = inf{A > 0: onr(f/A) <1}

is a Banach space (see [14], [15]). For every Musielak-Orlicz function M we define
the complementary function M*(t,v) as

M*(t,v) = sup{ulv| — M(t,u): v=>0andt€ G a.e.}.
u>0

It is easy to see that M™*(t,v) is also a Musielak-Orlicz function. We say that a
Musielak-Orlicz function M satisfies the Ag-conditions (write M € Ag) if there exists
a constant k£ > 2 and a measurable non-negative function f such that op(f) < oo
and

M(t,2u) < kM (t,u)

for every u > f(t) and for ¢ € G a.e. For more details see ([1], [6], [12], [18]).
Throughout this paper we assume that M satisfies the As-conditions.

We now define the types of spaces considered in this paper. For a Banach space
(X, |l - ||x), denote by L°(X) the family of strongly measurable functions f: G —
X, identifying functions which are equal p-almost everywhere in G. Define a new
modular gy on L°(X) by

oni(f) = / M [ 0)]) e
G
Let
Lu(G.X) = {f € LO(X): [£(0)]l = I (8)]lx € Lar}-

Then Ly (G, X) becomes a Banach space with the norm

1A= [ Ollx[, = inf{X: anr(£/A) < 1}

and it is called a Musielak-Orlicz space of Bochner type, see [4].

If T is a non-singular measurable transformation, then the measure p7'~! is
absolutely continuous with respect to the measure p. Hence by the Radon-
Nikodym derivative theorem there exists a positive measurable function fy such

450



that u(T~'(E)) = [}, fodp for every E € X. The function f, is called the Radon-
Nikodym derivative of the measure u7T~! with respect to the measure p. It is
denoted by fo = duT~t/dpu.

Associated with each o-finite subalgebra ¥y C ¥ there exists an operator E = E>0,
which is called the conditional expectation operator, on the set of all non-negative
measurable functions f or for each f € LY(G, X, 1), and is uniquely determined by
the following conditions:

(1) E(f) is Yp-measurable, and
(2) if A is any Yo-measurable set for which [, fdu exists, we have [, fdu =
[y E(f)dp.

The transfromation F has the following properties:
> E(f-goT)=E(f)-(9oT);

> if f > g almost everywhere, then E(f) > E(g) almost everywhere;
> E(1) =1;
> E(f) has the form E(f) = goT for exactly one o-measurable function g.

In particular, g = E(f) o T~! is a well defined measurable function.

> |E(fg)]? < (E|f|*)(E|g|?). This is the Cauchy-Schwartz inequality for condi-
tional expectation.

> For f > 0 almost everywhere, E(f) > 0 almost everywhere.

> If p is a convex function, then ¢(E(f)) < E(¢(f))u-almost everywhere. For
deeper study of properties of F see [11].

Let T: G — G be a non-singular measurable transformation. Then we can define

a composition transformation
CT: L]\{(G, X) — LM(G, X)

by
(Crh)t) = f(T(t), Ve

If Cr is continuous, we call it a composition operator induced by 7. In the early
1930’s the composition operators were used to study problems in mathematical
physics and especially classical mechanics, see Koopman [5]. In those days these
operators were known as substitution operators. The systematic study of composi-
tion operators has relatively a very short history. It was started by Nordgren in 1968
in his paper [17]. After this, the study of composition operators has been extended
in several directions by several mathematicians. For more details on these operators
we refer to ([7], [13], [16], [19], [20]). In particular, for the study of composition
operators on Orlicz and Orlicz-Lorentz spaces one can refer to ([2], [3], [8], [9], [10])
and references therein.
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2. COMPOSITION OPERATORS

In this section we characterize invertibility, closed range, Fredholmness and com-
pactness of composition operators on Musielak-Orlicz spaces of Bochner type.

Theorem 2.1. Let T: G — G be a measurable transformation. Then Crp:
Ly(G,X) — Ly (G, X) is bounded if and only if there exists k > 0 such that

E[M(IoT™ (t),2))fo(t) < M(t, kx)

for every x € X and for p-almost all t € G.

Proof. Let f € Ly/(G,X). Then

/GM(t’ ”(f]:m(ﬂ')du—/GE[M(IoT—l(t), ”f(t)”)}fo(t)du
<t

Therefore ||Crf|| < k|| f|| for all f € La(G, X). Hence Cr is bounded.

Conversely, suppose that the condition is not fulfilled. Then for every positive

—_

integer k there exists z; € X and a measurable subset Fj such that
E[M(Io T} (), )| fo(t) > M(t, kay)

for almost every ¢ € Ej. Choose a measurable subset Fj of Ej such that xr, €
Ly(G, X). Let fr = zkxF,. Then

k| fr(t) L
uLA4G’&ﬁﬁﬂ)d”zfgﬂ40wkf2ﬁ%“

< /GE[M(I oTL(t), Wﬂf‘)(” d

B I(Crf @)
‘LM@ (Gl )<t

This shows that ||Cr fx|| = k|| fx||, which contradicts the boundedness of Cr. Hence
the condition of the theorem is fulfilled.
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Theorem 2.2. Let T: G — G be a measurable transformation. Then Cr:
Ly (G, X) — Ly (G, X) has closed range if and only if

E[M(IoT ™ (t),2)]fo(t) > M(t, 5x)

for p-almost all t € G\ T(G) and 6 > 0.

Proof. Suppose that the condition of the theorem is fulfilled. Let f € ranCr.
Then there exists a sequence {g,} in ran Cr such that g, — f. Write g, = Crf,.
Then Crf, — f. It follows that {Crf,} is a Cauchy sequence. Then there exists a
positive integer ng such that ||Crf, — Crfml|| < ¢, for all m,n > ng. Hence

/GM(t,énf"(t)_fM(t)')dug/gE[M(IoT_l(t), IIfn(t)—fm(t)H)}fO(t)du

gn — gmll lgn — gmll
Ry RIAGOET 0T
G lgn — gmll
_ llgn(t) — gm(t)]]
= [ an <

This prove that
5an - fm“ < ”gn - gm”v Vm,n 2 ng.

Hence {f,} is a Cauchy sequence in L/(G, X). In view of completeness there exists
g € Ly (G, X) such that f, — g. Thus Crf, — Crg, that is g, — Crf so that
f =Cprg € ran Cp. This proves that ran Cp is closed.

Conversely, suppose Cr has closed range. If the condition of the theorem is not
satisfied, then for every positive integer k there exist a measurable subset Fj and
zr € X such that

EIM(Io T~ (t), 21)]folt) < M(t, zi./k)

for p-almost all ¢ € Ej. Choose a measurable subset Fj of Ej such that yp, €
Ly(G, X) and fr, = kxr,. Now

/GM<t’ k|(C|Tf£T|)(t)|)du < /Fk E[M(Ionl(t)j I|k;k”|)}fo(t)dﬂ

[

This proves that
1
[0z fill < Z 5]

so that Cp is not bounded away from zero. Hence the condition of the theorem must
be satisfied.
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Theorem 2.3. Suppose Cr € B(Ly (G, X)). Then Cr is invertible if and only if
(i) T is invertible a.e.;
(ii) there exists § > 0 such that M (T(t),z) < M(t,dx) a.e

Proof. Suppose that Cr is invertible. We show that T is invertible. If T is
not surjective a.e., then choose a measurable subset £ C G \ T(G) such that xg €
Ly (G, X). Then Crx g = 0 which indicates that Cr has a non-trivial kernel. Hence
T is surjective. If Cp is onto, then Cp has closed range. Therefore the condition (ii)
is satisfied as T(G) = G. We next show that T-1(X) = ¥. Clearly T-1(X) C X.
For the reverse inclusion, let E € X. Since Cr is onto, there exists g € Ly (G, X)
such that Crg = xpg, and it follows that there exists a measurable subset F' such
that g = xp. Hence Crxr = xg or T1(F) = E a.e. Then E € T~1(X). Therefore
T~Y(¥) = ¥ which proves that 7T is invertible.

Conversely, suppose that the conditions of the theorem are satisfied. Let 7' be
the inverse of T. The condition (ii) implies that Cp-1 is a bounded operator as

CTCT—l == CT—l CT = I
Hence C7r is invertible.

Theorem 2.4. Let (G, DI u) be a non-atomic measure space. Then no composi-
tion operator Ct on Ly (G, X) is compact.

Proof. Let for some ¢ > 0, the set
E.={teG: BIM(IoT™'(t),2)fo(t) > M(t,ex)}

be of positive measure. Since p is non-atomic, we can find measurable subsets
E.t1 C E, C E C E. such that u(F.) < oo and u(En41) = %,u(En) Let

en(t) =[xz, O/lIxz,
sequence. Consider

/Jdﬂﬁﬁﬂ)“<éﬂdummﬁ@%ﬂ@
_ 1
<éf@d“T“”mmH@m”h@@

- [ (e My, o,

Hence ||Crey|| > €. This proves that Cr cannot be compact. Hence p(E.) = 0, i.e.

. Then |le,|| = 1. Therefore the sequence {e, } is a bounded

E[M(IoT7Y(t),z)]fo(t) < M(t,ex)
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for every p-almost ¢ € T' and for all z € X. Then

/c;M<t’ |(CTXE)(t)|)dM_/GE[M<IOT1(t)7 IIXE(t)H)]fO(t)dM

ellxell ellxell
t
</ u(t HXE()H)dNgl
G Ixzll
and therefore ||Crxg| < ¢||xe|. Since ¢ is arbitrary, we have |Crxg|| = 0. In

other words Crxg = 0. Since simple functions are dense in L (G, X) it follows
that Cpr = 0, which is again a contradiction. Hence no composition operator Cp on
Ly (G, X) is compact.

Corollary 2.5. If T is non-atomic, then no non-zero composition operator is
compact.

Theorem 2.6. Let Cr € B(Ly (G, X)). Then Cr is Fredholm if and only if Cp
is invertible.

Proof. Suppose Cr is Fredholm. Then Cr has closed range. Therefore, there
exists € > 0 such that

(1) BIM(IoT7H(t), )] fo(t) > M(t,ex)

for p-almost all ¢t € T(G) and for all z € X. If T(G) # G a.e., then there exists
E € ¥ such that E C G\ T(G). Therefore Crxgp = 0 a.e. Hence ker Cr is infi-
nite dimensional because for every subset F' C E, we have Cprxgp = 0. This is a
contradiction as ker Cr is assumed to be finite dimensional. Hence T'(G) = G a.e.,
i.e. T is surjective. Next, if T is injective, then T-*(X) # X, so that the range
Cr is not dense. Hence by the Hahn Banach theorem there exists a bounded linear
functional g* € L},(G, X) such that g*(ranCr) = 0. Let E = suppg*. Partition

E into a sequence of disjoint measurable subsets E,, such that £ = U FE,. Let
g% = g*xg,. Then again (¢*xg,)(ranCr) = 0. But kerC}. = (ranCT) . This
proves that ker C'} is infinite dimensional, which is again a contradiction. Therefore

ranCr = Ly (G, X). We can conclude that Cr is bounded away from zero and
therefore Cr is invertible.

Theorem 2.7. Suppose M (t,z) = M;(t)Mz(x). Then Cr is an isometry if and
only if

E[My (T~ (1)) fo(t) = Ma(2).
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Proof. Suppose that the condition of the theorem is fulfilled. Then for f # 0
in LM (G, X),

LTy LT
LMV ) /M O3 (S ) d

— /GE[Ml(I o T_l(t))Mg(

e

Therefore ||Crf]] < || f]|- In the same way we can easily prove || f|| < ||Crf||. Hence

@l
171l

)| fo)du

ICrfll = || f]l, i-e. Cr is an isometry.
Conversely, suppose Cr is an isometry. Let F' € ¥ be such that xp € Ly (G, X).
Then

[Crxrll = lIxFl

implies that

1 1
[1/ fT )dﬂ] [1/ fF M (t d“]

which further implies that

/T_l(F)Ml(t)dM_/FMl(t)d'u

| B o) a0 an= [ e

This is true for every F such that xr € Lp(G, X). Hence we can conclude that

or

E[M(T~1(1)] fo(t) = Mi(t)

for p-almost all t € G.
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