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Abstract. We consider the weighted space W
(2)
1 (R, q) of Sobolev type

W
(2)
1 (R, q) =

{

y ∈ A
(1)
loc(R) : ‖y

′′‖L1(R) + ‖qy‖L1(R) < ∞
}

and the equation

(1) −y
′′(x) + q(x)y(x) = f(x), x ∈ R.

Here f ∈ L1(R) and 0 6 q ∈ Lloc1 (R).
We prove the following:

1) The problems of embedding W
(2)
1 (R, q) →֒ L1(R) and of correct solvability of (1) in

L1(R) are equivalent;

2) an embedding W
(2)
1 (R, q) →֒ L1(R) exists if and only if

∃a > 0: inf
x∈R

∫ x+a

x−a

q(t) dt > 0.
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MSC 2010 : 46E35, 34B24

1. Introduction

In the present paper, we consider the weighted functional space W
(2)
1 (R, q) of

Sobolev type (see [5]):

(1.1) W
(2)
1 (R, q) = {y ∈ AC

(1)
loc (R) : ‖y′′‖L1(R) + ‖qy‖L1(R) < ∞}
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and the Sturm-Louiville equation

(1.2) −y′′(x) + q(x)y(x) = f(x), x ∈ R.

Here f ∈ L1 (L1(R) := L1, ‖f‖L1
:= ‖f‖1), AC

(1)
loc (R) is the set of functions abso-

lutely continuous together with their first derivative on any finite interval, and

(1.3) 0 6 q ∈ Lloc
1 (R).

Our general goal is to reveal the relationship between the problem of the existence

of an embedding W
(2)
1 (R, q) →֒ L1 (see [5]) and the problem of correct solvability of

the equation (1.2) in the space L1 (see [2]). To be more precise, let us introduce the

following definitions.

Definition 1.1 [5]. We say that the space W
(2)
1 (R, q) is embedded into the

space L1 (and write W
(2)
1 (R, q) →֒ L1) if W

(2)
1 (R, q) ⊆ L1 and

(1.4) ‖y‖1 6 c{‖y′′‖1 + ‖qy‖1}, ∀y ∈ W
(2)
1 (R, q).

Our general convention is to denote by the letter c absolute positive constants

which are not essential for exposition and may differ even within a single chain of

calculations.

Definition 1.2. By a solution of (1.2) we mean any function y ∈ AC
(1)
loc (R)

satisfying the equation (1.2) almost everywhere in R.

Definition 1.3. The equation (1.2) is called correctly solvable in the space L1

if the following assertions hold:

I) for any function f ∈ L1 there exists a unique solution of (1.2) y ∈ L1;

II) for the solution of (1.2) y ∈ L1 we have the inequality

(1.5) ‖y‖1 6 c‖f‖1, ∀f ∈ L1.

We can now formulate our main results.

Theorem 1.4. An embedding W
(2)
1 (R, q) →֒ L1 exists if and only if the equation

(1.2) is correctly solvable in the space L1.
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Corollary 1.5. An embedding W
(2)
1 (R, q) →֒ L1 exists if and only if

(1.6) ∃a > 0: inf
x∈R

∫ x+a

x−a

q(t) dt > 0.

In connection with this corollary, note that under the restrictions (1.3), the con-

dition (1.6) is a minimal requirement guaranteeing the embedding W
(2)
1 (R, q) →֒

Lp(R), p ∈ (1,∞). This assertion will be proved in a forthcoming paper.

Corollary 1.6. Denote

(1.7) D = {y ∈ L1 : y ∈ AC
(1)
loc (R), −y′′ + qy ∈ L1}.

Then under the condition (1.6) we have the equality

D = W
(2)
1 (R, q).

In the monograph [5], a well-known handbook on the theory of weighted Sobolev

spaces, conditions for the embedding of such spaces into the spaces Lp, p ∈ [1,∞],

are expressed in terms different from (1.6). Therefore, to complete the picture,

we reformulate Corollary 1.5 using the language adopted in [5]. Towards this end,

suppose that in addition to (1.3) the following requirement holds:

(1.8)

∫ x

−∞

q(t) dt > 0,

∫

∞

x

q(t) dt > 0, ∀x ∈ R

(see [1], [2]). We now fix x ∈ R and consider the equation in d > 0:

(1.9) d

∫ x+d

x−d

q(t) dt = 2.

It is known (see [1]) that under the conditions (1.3) and (1.8), (1.9) has a unique

finite positive solution. Denote it by d(x), x ∈ R. The function d was introduced by

M. Otelbaev (see [5]). Note that the function

q∗(x) = d−2(x), x ∈ R

is the Steklov average with step d(x) of the function q(t), t ∈ R at the point t = x

(see (1.9)):

q∗(x) =
1

d2(x)
=

1

2d(x)

∫ x+d(x)

x−d(x)

q(ξ) dξ.

In [2] it is shown that the condition (1.6) holds if and only if we have (1.8) and q∗0 > 0

where

q∗0 = inf
x∈R

q∗(x).

Together with Corollary 1.5, this implies the following assertion.
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Corollary 1.7. There exists an embedding W
(2)
1 (R, q) →֒ L1 if and only if the

condition (1.8) and the inequality q∗0 > 0 hold.

Example. It is known (see [2]) that if

(1.10) q(x) = 1 + cos(|x|θ), θ > 0, x ∈ R,

then the equation (1.2) is correctly solvable in L1 if and only if θ > 1. Therefore for

(1.10), Theorem 1.4 implies that W
(2)
1 (R, q) →֒ L1 only for θ > 1.

2. Prelimnaries

Lemma 2.1 [1]. Suppose that (1.3) and (2.1) hold:

(2.1)

∫ x

−∞

q(t) dt > 0,

∫

∞

x

q(t) dt > 0, ∀x ∈ R.

Then there exists a fundamental system of solutions (FSS) {u, v} of the equation

(2.2) z′′(x) = q(x)z(x), x ∈ R

which has the following properties:

u(x) > 0, v(x) > 0, u′(x) 6 0, v′(x) > 0, ∀x ∈ R,(2.3)

v′(x)u(x) − u′(x)v(x) = 1, x ∈ R,(2.4)

lim
x→−∞

v(x)

u(x)
= lim

x→∞

u(x)

v(x)
= 0.(2.5)

Throughout the sequel we reserve the symbol {u, v} for denoting a FSS of (2.2)

with the properties (2.3)–(2.5).

Let us introduce the Green function corresponding to (1.2)

(2.6) G(x, t) =

{

u(x)v(t), x > t,

u(t)v(x), x 6 t.

Lemma 2.2 [1]. Suppose that (1.3) and (2.1) hold. Then

(2.7) sup
x∈R

T (x) 6 1, T (x) =

∫

∞

−∞

q(t)G(x, t) dt, x ∈ R.
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Lemma 2.3 [1]. Suppose that (1.3) and (2.1) hold. Then (2.2) has no solutions

z ∈ L1 except for z ≡ 0.

Theorem 2.4 [2]. Under the condition (1.3), the equation (1.2) is correctly

solvable in L1 if and only if (1.6) holds.

Theorem 2.5 [3]. Suppose that (1.3) and (2.1) hold. Then the equation (1.2) is

correctly solvable in L1 if and only if the Green operator G : L1 → L1 is bounded.

Here

(2.8) (Gf)(x) =

∫

∞

−∞

G(x, t)f(t) dt, x ∈ R, ∀f ∈ L1.

If, in addition, ‖G‖1→1 < ∞, then the solution y ∈ L1 of (1.2) is of the form

y = Gf.

Theorem 2.6 [3]. Suppose that (1.1) is correctly solvable in L1. Then its solution

y ∈ L1 satisfies the inequality

(2.9) ‖y′′‖1 + ‖qy‖1 6 3‖f‖1.

Remark 2.7. The inequality (2.9) was stated as a conjecture by R. Oinarov (see

[5, p. 259]) and proved in [4] under the requirement q > 1, in addition to (1.3). See

[1], [6], [7] for various generalizations of this result from [4]. Theorem 2.6 provides

another assumption for a version of (2.9) to hold, which is especially adjusted to our

terminology. See §3 for the proof of Theorem 2.6. In connection with inequalities of

type (2.9), see also the papers [8], [9].

3. Proofs

Lemma 3.1. Suppose that (1.3) holds and W
(2)
1 (R, q) →֒ L1. Then (2.1) also

holds.

P r o o f. Assume the contrary, say

∫

∞

x0

q(t) dt = 0
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for some x0 ∈ R. Let ϕ be such that ϕ ∈ C∞(R), suppϕ = [x0,∞), 0 6 ϕ 6 1 for

x ∈ R and ϕ(x) ≡ 1 for x > x0 + 1. Clearly, ϕ ∈ AC
(1)
loc (R) and

∫

∞

−∞

|q(t)ϕ(t)| dt =

∫

∞

x0

q(t)ϕ(t) dt = 0

0 <

∫

∞

−∞

|ϕ′′(t)| dt =

∫ x0+1

x0

|ϕ′′(t)| dt = c < ∞.

Hence ϕ ∈ W
(2)
1 (R, q) and since W

(2)
1 (R, q) →֒ L1, we have

∞ > c

{
∫

∞

−∞

|ϕ′′(t)| dt +

∫

∞

−∞

|q(t)ϕ(t)| dt

}

>

∫

∞

−∞

|ϕ(t)| dt >

∫

∞

x0+1

1 dt = ∞,

a contradiction. �

Lemma 3.2. Suppose that (1.3) and (2.1) hold. Set y = Gf where f ∈ L1

(see (2.8)). Then y is a solution of (1.2) which satisfies (2.9). In particular, y ∈

W
(2)
1 (R, q).

P r o o f. Lemma 2.1 implies the inequalities

∫ x

−∞

v(t)|f(t)| dt 6 v(x)‖f‖1,

∫

∞

x

u(t)|f(t)| dt 6 u(x)‖f‖1, x ∈ R.

Hence the function y(x) = (Gf)(x), x ∈ R, is well-defined. Since

(3.1) y(x) = (Gf)(x) = u(x)

∫ x

−∞

v(t)f(t) dt + v(x)

∫

∞

x

u(t)f(t) dt, x ∈ R,

from (3.1) and Lemma 2.1 we immediately obtain

y′(x) = u′(x)

∫ x

−∞

v(t)f(t) dt + v′(x)

∫

∞

x

u(t)f(t) dt, x ∈ R,

y′′(x) = q(x)y(x) − f(x), x ∈ R.

Hence y ∈ AC
(1)
loc (R). Further, by Fubini’s theorem and (2.7), we have

‖qy‖1 =

∫

∞

−∞

q(x)

∣

∣

∣

∣

∫

∞

−∞

G(x, t)f(t) dt

∣

∣

∣

∣

dx 6

∫

∞

−∞

q(x)

∫

∞

−∞

G(x, t)|f(t)| dt dx(3.2)

=

∫

∞

−∞

|f(t)|

(
∫

∞

−∞

q(x)G(x, t) dx

)

dt 6

∫

∞

−∞

|f(t)| dt = ‖f‖1.

From (3.2), (1.1) and the triangle inequality, we obtain (2.9), and hence y ∈

W
(2)
1 (R, q). �
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P r o o f of Theorem 2.6. Since the equation (1.1) is correctly solvable in L1,

y = Gf is a unique solution of (1.1) from the class L1 (see Theorems 2.4 and 2.5).

It remains to refer to Lemma 3.2. �

P r o o f of Theorem 1.4. Necessity. Suppose that W
(2)
1 (R, q) →֒ L1. Since (2.1)

holds due to Lemma 3.1, and Gf ∈ W
(2)
1 (R, q) for f ∈ L1 due to Lemma 3.2, then

by (1.4) and (2.9) we have

‖(Gf‖1 6 c
{

‖(Gf)′′‖1 + ‖qGf‖1

}

6 c‖f‖1, ∀f ∈ L1.

Thus the operatorG : L1 → L1 is bounded, and by Theorem 2.5 the equation (1.1)

is correctly solvable in L1. �

P r o o f of Theorem 1.4. Sufficiency. Suppose that the equation (1.1) is correctly

solvable in L1 and ỹ ∈ W
(2)
1 (R, q). Then from the triangle inequality it follows that

f(ỹ) ∈ L1 where f(ỹ) = −ỹ′′ + qỹ. Denote by y the solution of the equation (1.1)

with f = f(ỹ) from the class L1. It is easy to see that the function z = y − ỹ is

a solution of (2.2), and by (2.9) and (1.1) we have

(3.3) ‖qz‖1 6 ‖qy‖1 + ‖qỹ‖1 6 3‖f(ỹ)‖1 + ‖qỹ‖1 6 3‖ỹ′′‖1 + 4‖qỹ‖1 < ∞.

Since z is a solution of (2.2), it is of the form

(3.4) z(x) = c1u(x) + c2v(x)

(c1, c2 are arbitrary constants). Let us show that c1 = c2 = 0. Assume the contrary,

say, c2 6= 0. From (2.5) it follows that there is x0 ≫ 1 such that for all x > x0 we

have the estimates

(3.5) |z(x)| = |c1u(x) + c2v(x)| > |c2|v(x)
[

1 −
∣

∣

∣

c1

c2

∣

∣

∣

u(x)

v(x)

]

>
|c2|

2
v(x).

Note that from Theorem 2.4 and (1.6) it follows that

(3.6)

∫ 0

−∞

q(t) dt =

∫

∞

0

q(t) dt = ∞.

Therefore by (3.3), (3.4), (3.5), (3.6) and (2.3), we have

∞ >

∫

∞

−∞

q(t)|z(t)| dt >

∫

∞

x0

q(t)|z(t)| dt >
|c2|

2

∫

∞

x0

q(t)v(t) dt

>
|c2|

2
v(x0) ·

∫

∞

x0

q(t) dt = ∞,
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a contradiction. Hence c2 = 0, and, similarly, c1 = 0. Thus ỹ = y ∈ L1 and therefore

by (1.5), we have

‖ỹ‖1 = ‖y‖1 6 c‖f(ỹ)‖1 = c‖ − ỹ′′

1 + qỹ‖1 6 c
{

‖ỹ′′‖1 + ‖qỹ‖1

}

, ∀ỹ ∈ W
(2)
1 (R, q).

�

P r o o f of Corollary 1.5. It follows from Theorems 1.4 and 2.4. �

P r o o f of Corollary 1.6. By Theorem 2.4, the equation (1.2) is correctly solvable

in L1. Let y ∈ D. Then y ∈ L1 and f ∈ L1 where f = −y′′ + qy. Hence y′′ ∈ L1,

qy ∈ L1 (see (2.9)), and therefore y ∈ W
(2)
1 (R, q), i.e., D ⊆ W

(2)
1 (R, q). Conversely,

let y ∈ W
(2)
1 (R, q). Since W

(2)
1 (R, q) →֒ L1, due to Theorem 1.4, we have y ∈ L1, i.e.,

y ∈ D, and therefore W
(2)
1 (R, q) ⊂ D. Thus D = W

(2)
1 (R, q). �

Acknowledgment. The authors thank Prof. Ya.Goltser and Prof. Z. S.Grinsh-

pun for useful discussions. They also thank the anonymous referee for helpful com-

ments and additional references in the literature.

References

[1] N.Chernyavskaya, L. Shuster: Estimates for the Green function of a general Sturm-
Liouville operator and their applications. Proc. Am. Math. Soc. 127 (1999), 1413–1426.

[2] N.Chernyavskaya, L. Shuster: A criterion for correct solvability of the Sturm-Liouville
equation in the space Lp(R). Proc. Am. Math. Soc. 130 (2002), 1043–1054.

[3] N.Chernyavskaya, L. Shuster: A criterion for correct solvability in Lp(R) of a general
Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99–120.

[4] E.Grinshpun, M.Otelbaev: On smoothness of solutions of nonlinear Sturm-Liouville
equation in L1(−∞,∞). Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 5 (1984), 26–29. (In
Russian.)

[5] K.Mynbaev, M.O.Otelbaev: Weighted Functional Spaces and the Spectrum of Differ-
ential Operators. Moskva: Nauka, 1988, pp. 286. (In Russian. English summary.)

[6] R.Ojnarov: Separability of the Schrödinger operator in the space of summable functions.
Dokl. Akad. Nauk SSSR 285 (1985), 1062–1064.

[7] R.Ojnarov: Some properties of the Sturm-Liouville operator in Lp. Izv. Akad. Nauk
Kaz. SSR, Ser. Fiz.-Mat. 152 (1990), 43–47.

[8] M.O.Otelbaev: On coercive estimates of solutions of difference equations. Tr. Mat. Inst.
Steklova 181 (1988), 241–249. (In Russian.)

[9] M.Otelbaev: On smoothness of a solution of a nonlinear parabolic equation. In 10th
Czechoslovak-Soviet Meeting “Application of Fundamental Methods and Methods of
Theory of Functions to Problems of Mathematical Physics”, Stara Gura, 26.09.–01.10.
1988, pp. 37.

Authors’ addresses: N . A . C h e r n y av s k ay a,Department of Mathematics and Com-
puter Science, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel,
e-mail: nina@math.bgu.ac.il; L . A . S hu s t e r, Department of Mathematics, Bar-Ilan
University, 52900 Ramat Gan, Israel, e-mail: miriam@macs.biu.ac.il.

716


		webmaster@dml.cz
	2020-07-03T20:05:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




