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Abstract. In this paper, we are going to characterize the space BMO(Rn) through vari-
able Lebesgue spaces and Morrey spaces. There have been many attempts to characterize
the space BMO(Rn) by using various function spaces. For example, Ho obtained a charac-
terization of BMO(Rn) with respect to rearrangement invariant spaces. However, variable
Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the rea-
sons is that these spaces are not rearrangement invariant. We also obtain an analogue of
the well-known John-Nirenberg inequality which can be seen as an extension to the variable
Lebesgue spaces.
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1. Introduction

The aim of this paper is to obtain characterizations of BMO(Rn). Recently an

attempt has been made to characterize BMO(Rn) through various function spaces.

Throughout this paper |S| denotes the Lebesgue measure and χS means the charac-

teristic function for a measurable set S ⊂ R
n. All cubes are assumed to have their

sides parallel to the coordinate axes. Given a function f and a measurable set S, fS

denotes the mean value of f on S, namely

fS :=
1

|S|

∫

S

f(x) dx.

The research has been supported by Osaka City University Advanced Mathematical
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No. 21740104, Japan Society for the Promotion of Science.
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Recall that the space BMO(Rn) consists of all measurable functions b satisfying

(1.1) ‖b‖BMO(Rn) := sup
Q

1

|Q|

∫

Q

|b(x) − bQ| dx < ∞,

where the supremum is taken over all cubes Q. Recently, given a Banach function

space X , we have been asking ourselves the following question.

Problem 1. Is the norm ‖b‖BMO(Rn) equivalent to

‖b‖∗X = sup
Q : cube

1

‖χQ‖X
‖χQ(b − bQ)‖X?

Here is a series of affirmative results concerning Problem 1.

(1) X = Lp(Rn) with 1 6 p 6 ∞. This is well-known as the John-Nirenberg

inequality (see Lemma 3.1 to follow).

(2) X is a rearrangement invariant function space [7]. By rearrangement invariant

we mean that the X-norm of a function f depends only on the function t ∈

(0,∞) 7→ |{|f | > t}| ∈ (0,∞).

(3) X is a quasi-rearrangement invariant Banach function space with p 6 pY 6

qY < ∞ ([8]).

The aim of this paper is to show that this is the case even when X is not rearrange-

ment invariant. First, we consider the case when X is a Morrey space.

Theorem 1.1. Let 1 6 q 6 p < ∞. If we define the Morrey spaceM p
q (Rn) by

‖f‖M
p
q (Rn) = sup

Q : cube
|Q|1/p−1/q

(
∫

Q

|f(x)|q dx

)1/q

,

then the answer of Problem 1 is affirmative for X = M p
q (Rn).

The second (and main) spaces we take up in this paper are variable Lebesgue

spaces. A measurable function p(·) : R
n → [1,∞] is called a variable exponent.

Variable exponent spaces showed up around 1990s [11]. After 2005 the theory which

is fundamental in harmonic analysis is established very rapidly. For more details we

refer to the recent book [6]. We now recall the definition. Given a variable exponent

p(·), one denotes

Ω∞,p := {x ∈ R
n : p(x) = ∞} = p−1(∞),

̺p(f) :=

∫

Rn\Ω∞,p

|f(x)|p(x) dx + ‖f‖L∞(Ω∞,p).
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The variable Lebesgue space is defined by

Lp(·)(Rn) := {f is measurable: ̺p(f/λ) < ∞ for some λ > 0}.

The variable Lebesgue space Lp(·)(Rn) is a Banach space with the norm

‖f‖Lp(·)(Rn) := inf{λ > 0: ̺p(f/λ) < ∞}.

This is a special case of the theory developed by Luxemburg and Nakano [13], [14],

[15]. We additionally set

p− := ess inf{p(x) : x ∈ R
n}, p+ := ess sup{p(x) : x ∈ R

n}.

Theorem 1.2. If a variable exponent p(·) satisfies 1 6 p− 6 p+ < ∞ and the

estimates
∣

∣

∣

1

p(x)
−

1

p(y)

∣

∣

∣
6 −

C1

log |x − y|
(|x − y| 6 1

2 )

and
∣

∣

∣

1

p(x)
−

1

p(∞)

∣

∣

∣
6

C2

log(e + |x|)
(x ∈ R

n)

hold for some constants C1, C2, p(∞), then the answer to Problem 1 is affirmative

for X = Lp(·)(Rn), that is,

C−1‖b‖BMO(Rn) 6 sup
Q

1

‖χQ‖Lp(·)(Rn)

‖(b − bQ)χQ‖Lp(·)(Rn) 6 C‖b‖BMO(Rn)

holds for all b ∈ BMO(Rn).

One of the most interesting problems on spaces with variable exponent is to give

conditions on the boundedness of the Hardy-Littlewood maximal operator. The im-

portant sufficient conditions called “log-Hölder” have been obtained by Cruz-Uribe,

Fiorenza, and Neugebauer [2] and Diening [3]. Under the conditions many results

on spaces with variable exponent have been obtained now.

About Theorems 1.1 and 1.2, Lp(·)(Rn) is not rearrangement invariant. Examples

in [17] show thatM p
q (Rn) is rearrangement invariant only when p = q. Theorem 1.1

is considerably easy to prove. Indeed, from the definition of the Morrey norm, we

have

1

‖χQ‖Lq(Rn)
‖χQ(b − bQ)‖Lq(Rn) 6

1

‖χQ‖M
p
q (Rn)

‖χQ(b − bQ)‖M
p
q (Rn)

6
1

‖χQ‖Lp(Rn)
‖χQ(b − bQ)‖Lp(Rn).

So the matters are reduced to the case when X = Lp(Rn).
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However, a similar argument does not seem to work for Theorem 1.2. Especially

the estimate which corresponds to

1

‖χQ‖Lq(Rn)
‖χQ(b − bQ)‖Lq(Rn) 6

1

‖χQ‖M
p
q (Rn)

‖χQ(b − bQ)‖M
p
q (Rn)

is hard to obtain.

We organize the remaining part of this paper as follows: Section 2 is intended

as a review of variable Lebesgue spaces. We prove Theorem 1.2 in Section 3. Sec-

tion 4 contains another characterization of BMO(Rn) related to the variable exponent

Lebesgue norms.

Finally we give a convention which we use throughout the rest of this paper. The

symbol C always means a positive constant independent of the main parameters and

may change from one occurrence to another.

2. Some basic facts on variable Lebesgue spaces

Given a function f ∈ L1
loc(R

n), the Hardy-Littlewood maximal operator M is

defined by

Mf(x) := sup
Q∋x

1

|Q|

∫

Q

|f(y)| dy (x ∈ R
n),

where the supremum is taken over all cubes Q containing x.

One of the key developments of the theory of variable Lebesgue spaces is that

we obtained a good criterion for the boundedness of the Hardy-Littlewood maximal

operators [3], [4], [5].

Before we proceed, let us recall some key terminology about the continuity and

variable Lebesgue spaces. Let r(·) : R
n → (0,∞) be a measurable function.

(1) The function r(·) is said to be locally log-Hölder continuous if

(2.1) |r(x) − r(y)| 6
C

− log(|x − y|)
(|x − y| 6 1

2 )

holds. The set LH0 consists of all locally log-Hölder continuous functions.

(2) The function r(·) is said to be log-Hölder continuous at infinity if there exists

a constant r(∞) such that

(2.2) |r(x) − r(∞)| 6
C

log(e + |x|)
.

The set LH∞ consists of all functions log-Hölder continuous at infinity.
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(3) Define LH := LH0 ∩ LH∞ and say that each function belonging to LH is

globally log-Hölder continuous.

(2.3) below is initially proved by Cruz-Uribe et al. [2], when p+ < ∞. Later Cruz-

Uribe et al. [1] and Diening et al. [5] have independently extended the result even to

the case of p+ = ∞. Suppose that a variable exponent p(·) satisfies 1 < p− 6 p+ 6 ∞

and that 1/p(·) ∈ LH . Then M is bounded on Lp(·)(Rn), namely

(2.3) ‖Mf‖Lp(·)(Rn) 6 C‖f‖Lp(·)(Rn)

holds for all f ∈ Lp(·)(Rn).

We note that p(·) always satisfies p− > 1 whenever (2.3) is true [5]. In the case of

p− = 1, the weak (p−(·), p−(·)) type inequality forM holds. The following inequality

has been also proved by Cruz-Uribe et al. [1]. If a variable exponent p(·) satisfies

1 = p− 6 p+ 6 ∞ and 1/p(·) ∈ LH , then we have that for all f ∈ Lp(·)(Rn),

(2.4) sup
t>0

t‖χ{Mf(x)>t}‖Lp(·)(Rn) 6 C‖f‖Lp(·)(Rn).

Lemma 2.1. If a variable exponent p(·) satisfies the weak (p(·), p(·)) type in-

equality (2.4) for all f ∈ Lp(·)(Rn), then

|f |Q‖χQ‖Lp(·)(Rn) 6 C‖fχQ‖Lp(·)(Rn)

holds for all f ∈ Lp(·)(Rn) and all cubes Q.

P r o o f. Take f ∈ Lp(·)(Rn) and a cube Q arbitrarily. We may assume |f |Q > 0.

Let t = |f |Q/2. From |f |QχQ(x) 6 M(fχQ)(x), we obtainM(fχQ)(x) > t whenever

x ∈ Q. Thus we have

|f |Q‖χQ‖Lp(·)(Rn) 6 |f |Q‖χ{M(fχQ)(x)>t}‖Lp(·)(Rn)

6 |f |Q · Ct−1‖fχQ‖Lp(·)(Rn)

= C‖fχQ‖Lp(·)(Rn).

�

Remark 2.1. Lerner [12] has proved the converse of Lemma 2.1, provided that

p(·) is radial decreasing and satisfies p− > 1.

The next lemma is due to Diening [4, Lemmas 3.2, 5.3 and 5.5].
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Lemma 2.2. If a variable exponent p(·) satisfies 1 < p− 6 p+ < ∞ and M is

bounded on Lp(·)(Rn), then there exists a constant 0 < δ1 < 1 such that for all

0 < δ < δ1, all families of pairwise disjoint cubes Y , all f ∈ L1
loc(R

n) with |f |Q > 0

(Q ∈ Y ) and all positive sequence {tQ}Q∈Y ⊂ (0,∞),

∥

∥

∥

∥

∑

Q∈Y

tQ

∣

∣

∣

f

fQ

∣

∣

∣

δ

χQ

∥

∥

∥

∥

Lp(·)(Rn)

6 C

∥

∥

∥

∥

∑

Q∈Y

tQχQ

∥

∥

∥

∥

Lp(·)(Rn)

.

Here the constant is independent of Y , {tQ}Q∈Y and f but is dependent on δ. In

particular

(2.5) ‖|f |δχQ‖Lp(·)(Rn) 6 C(|f |Q)δ‖χQ‖Lp(·)(Rn)

holds.

3. Main results

We describe some known facts before we state the main results.

Lemma 3.1. If 1 6 q < ∞, then we have that for all b ∈ BMO(Rn),

(3.1) ‖b‖BMO(Rn) 6 sup
Q

(

1

|Q|

∫

Q

|b(x) − bQ|
q dx

)1/q

6 C0q‖b‖BMO(Rn),

where C0 > 0 is a constant independent of q.

The left hand-side inequality of (3.1) directly follows from the Hölder inequal-

ity. The right one is a famous consequence of an application of the John-Nirenberg

inequality (cf. [10]).

Proposition 3.1. There exist two positive constants C1, C2 depending only on

n such that for all b ∈ BMO(Rn), all cubes Q and all t > 0,

|{x ∈ Q : |b(x) − bQ| > t}| 6 C1|Q| exp(−C2t/‖b‖BMO(Rn)).

Lemma 3.1 can additionally be generalized to the case of variable exponents. Now

we are going to prove Theorem 1.2. Recall that we announced that we are going to

prove the following.
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Theorem 3.1. If a variable exponent p(·) satisfies 1 < p− 6 p+ < ∞ and M is

bounded on Lp(·)(Rn), then we have that for all b ∈ BMO(Rn),

(3.2) C−1‖b‖BMO(Rn) 6 sup
Q

‖(b − bQ)χQ‖Lp(·)(Rn)

‖χQ‖Lp(·)(Rn)

6 C‖b‖BMO(Rn).

The first author [9] has initially proved Theorem 3.1. Later we will give another

proof of it.

In view of Lemma 3.1, it may be a natural question to prove (3.2) for the case of

p− = 1.

Now we shall prove Theorem 1.2. Take a cube Q and b ∈ BMO(Rn) arbitrarily.

By virtue of Lemma 2.1 we have

1

|Q|

∫

Q

|b(x) − bQ| dx · ‖χQ‖Lp(·)(Rn) 6 C‖(b − bQ)χQ‖Lp(·)(Rn).

This gives us the left hand side inequality of the theorem. Next we shall prove

the right hand side one. Let us fix a number r > 1 so that rp− > 1 and write

u(·) := rp(·). Then the variable exponent u(·) satisfies 1 < u− and 1/u(·) ∈ LH .

Hence the boundedness of M on Lu(·)(Rn) holds by (2.3). Using Lemma 2.2, we can

take a constant δ ∈ (0, 1/r) so that

‖f δχQ‖Lu(·)(Rn) 6 C|fQ|
δ‖χQ‖Lu(·)(Rn)

for all f ∈ L1
loc(R

n) such that f is positive a.e. Now we obtain

(3.3) ‖f rδχQ‖Lp(·)(Rn) = ‖f δχQ‖r
Lu(·)(Rn)

6 C|fQ|
rδ‖χQ‖

r
Lu(·)(Rn) = C|fQ|

rδ‖χQ‖Lp(·)(Rn).

If we put f := |b − bQ|
1/(rδ) and apply Lemma 3.1 with q = 1/(rδ) > 1, then we get

(3.4) |fQ|
rδ =

(

1

|Q|

∫

Q

|b(x) − bQ|
1/(rδ) dx

)rδ

6 C‖b‖BMO(Rn).

Combining (3.3) and (3.4), we obtain

‖(b − bQ)χQ‖Lp(·)(Rn) 6 C‖b‖BMO(Rn)‖χQ‖Lp(·)(Rn).

This leads us to the desired inequality and completes the proof.

For the proof of Theorem 3.1, we have only to follow the same argument as the

proof of Theorem 1.2 with r = 1.
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4. Related inequalities

According to Lemma 3.1, we have

(

1

|Q|

∫

Q

|b(x) − bQ|
q dx

)1/q

6 C0q‖b‖BMO(Rn),

where C0 > 0 is independent of q ∈ [1,∞). This can be rephrased as

1

|Q|

∫

Q

( |b(x) − bQ|

C0q‖b‖BMO(Rn)

)q

dx 6 1

for all cubes Q. Observe that the estimate above is uniform over 1 6 q < ∞.

Therefore, the following inequality is seen to hold

1

|Q|

∫

Q

( |b(x) − bQ|

16C0p(x)‖b‖BMO(Rn)

)p(x)

dx 6 1.

See the inequality of the second line of the next page. Suppose that p(·) : R
n →

[1,∞) is a variable exponent which is not necessarily continuous or bounded. Then

define

‖b‖†p(·) = sup
Q

(

inf

{

λ > 0:
1

|Q|

∫

Q

( |b(x) − bQ|

p(x)λ

)p(x)

dx 6 1

})

for measurable functions b. Now we are going to prove the following

Theorem 4.1. If a variable exponent p(·) satisfies p(x) < ∞ for almost every

x ∈ R
n, then we have

‖b‖†p(·) 6 C‖b‖BMO(Rn).

Furthermore, if p(·) is bounded, then the norms ‖·‖†p(·) and ‖·‖BMO(Rn) are mutually

equivalent.

P r o o f. The classical John-Nirenberg inequality asserts that

(4.1)
1

|Q|

∫

Q

|b(x) − bQ|
p dx 6 C1

(pΓ(p)

Cp
2

)

‖b‖p
BMO(Rn).

Observe also that the function λ 7→
∞
∑

k=1

λkkΓ(k)/k!Ck
2 is a holomorphic function in

a neighborhood of the origin. Consequently, by the Taylor expansion, we have

1

|Q|

∫

Q

{

exp
(λ|b(x) − bQ|

‖b‖BMO(Rn)

)

− 1
}

dx =
∞
∑

k=1

1

k!|Q|

∫

Q

(λ|b(x) − bQ|

‖b‖BMO(Rn)

)k

dx
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if (0 <) λ ≪ 1. Note also that

1

(16p)p
6 (n + 1)−n−1

for all 1 6 n = [p] 6 p < n + 1, where [p] denotes the integer part of p ∈ R. Indeed,

we have

1

(16p)p
6

1

4p(n + 1)p
6

1

4p(n + 1)p−n−1(n + 1)n+1
6

1

(n + 1)n+1
.

Here for the last inequality we have used 4p > 4n > n + 3 > p + 2 > n + 1 >

(n + 1)n+1−p. Using (16p)−p 6 n−n−1 for all 1 6 n 6 p < n + 1, we obtain

( λ|b(x) − bQ|

16p(x)‖b‖BMO(Rn)

)p(x)

=
( 1

16p(x)

)p(x)(λ|b(x) − bQ|

‖b‖BMO(Rn)

)p(x)

6

( 1

[p(x) + 1]

)[p(x)+1](λ|b(x) − bQ|

‖b‖BMO(Rn)

)p(x)

.

If we use tp(x) 6 t[p(x)] + t[p(x)+1] and

min
{( 1

[p(x)]

)[p(x)]

,
( 1

[p(x) + 1]

)[p(x)+1]}

=
( 1

[p(x) + 1]

)[p(x)+1]

,

then we obtain

( λ|b(x) − bQ|

16p(x)‖b‖BMO(Rn)

)p(x)

6 min
{( 1

[p(x)]

)[p(x)]

,
( 1

[p(x) + 1]

)[p(x)+1]}

× max
{(λ|b(x) − bQ|

‖b‖BMO(Rn)

)[p(x)]

,
(λ|b(x) − bQ|

‖b‖BMO(Rn)

)[p(x)+1]}

6

( 1

[p(x)]

)[p(x)](λ|b(x) − bQ|

‖b‖BMO(Rn)

)[p(x)]

+
( 1

[p(x) + 1]

)[p(x)+1](λ|b(x) − bQ|

‖b‖BMO(Rn)

)[p(x)+1]

.

If we use the Taylor expansion again, then we have

( λ|b(x) − bQ|

16p(x)‖b‖BMO(Rn)

)p(x)

6 exp
(2λ|b(x) − bQ|

‖b‖BMO(Rn)

)

− 1.

In view of (4.1), we obtain

1

|Q|

∫

Q

( λ|b(x) − bQ|

16p(x)‖b‖BMO(Rn)

)p(x)

dx 6
1

|Q|

∫

Q

{

exp
(2λ|b(x) − bQ|

‖b‖BMO(Rn)

)

− 1
}

dx

6 C1

∞
∑

k=1

(2λ)kkΓ(k)

k!Ck
2

.
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Hence, if we choose λ > 0 so small that we have C1

∞
∑

k=1

(2λ)kkΓ(k)/k!Ck
2 6 1, then

it follows that

‖b‖†p(·) 6 32λ−1‖b‖BMO(Rn).

If p(·) is bounded, then

‖b‖†p(·) > sup
Q

(

inf

{

λ > 0:
1

|Q|

∫

Q

( |b(x) − bQ|

p+λ

)p(x)

dx 6 1

})

= sup
Q

(

inf

{

λ > 0:
1

|Q|

∫

Q

{1

2
+

1

2

( |b(x) − bQ|

p+λ

)p(x)}

dx 6 1

})

.

Note that
1

2
+

1

2
tp(x) >

t

2

for all t > 0 and hence we have

‖b‖†p(·) > sup
Q

(

inf

{

λ > 0:
1

|Q|

∫

Q

|b(x) − bQ|

2p+λ
dx 6 1

})

= (2p+)−1‖b‖BMO(Rn).

Therefore, these norms are mutually equivalent. �

Remark 4.1. Let Φ be a Young function. Namely, Φ: [0,∞) → [0,∞) is

a homeomorphism which is convex. If we assume that Φ(t) 6 ta (t > 2) for some

a > 1 and define

‖b‖†Φ = sup
Q

(

inf

{

λ > 0:
1

|Q|

∫

Q

Φ
( |b(x) − bQ|

p(x)λ

)

dx 6 1

})

for measurable functions b, then ‖b‖†Φ is equivalent to ‖b‖BMO(Rn). Indeed, as we have

shown in [16], the norm ‖b‖†Φ remains unchanged if we redefine Φ(t) = Φ(2)(t/2)a

for 0 6 t 6 2. Therefore, ‖b‖†Φ 6 C‖b‖BMO(Rn) by virtue of Lemma 3.1. The reverse

inequality is also clear since we have Φ(t) > Φ(1)t for t > 1.
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