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Abstract. In this paper we investigate the existence of solutions to impulsive problems
with a p(t)-Laplacian and Dirichlet boundary value conditions. We introduce two types of
solutions, namely a weak and a classical one which coincide because of the fundamental
lemma of the calculus of variations. Firstly we investigate the existence of solution to the
linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational
method and next a mountain pass approach in order to get the existence of at least one
weak solution to the nonlinear problem.
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1. Introduction

The study of impulsive boundary value problems is important due to its various

applications in which abrupt changes at certain times in the evolution process appear.

The dynamics of evolving processes is often subjected to abrupt changes such as

shocks, harvesting, and natural disasters. Often these short-term perturbations are

treated as having acted instantaneously or in the form of “impulses”. Such problems

arise in physics, population dynamics, biotechnology, pharmacokinetics, industrial

robotics, see [1].

Another vital area of research within boundary value problems is the investigation

of the so called p(x)-Laplacian problems which began in [3] and was later developed

by many authors, see [7] for an up to date study of such boundary value problems.

Such problems model various phenomena arising in the study of elastic mechanics

(see [16]), electrorheological fluids (see [11]) or image restoration (see [2]).
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Therefore we believe it is important to investigate a Dirichlet problem with a p(t)-

Laplacian, i.e. a one—dimensional counterpart of the p(x)-Laplacian, subject to some

impulsive changes. In our research we mainly follow the approach applied in [10] with

one significant difference. The existence results for problems with a fixed right hand

side in [10] were proved via the Lax-Milgram Lemma and in our paper we apply

a direct method of the calculus of variations together with the Fundamental Lemma

of the calculus of variations which we prove in the case of functions from relevant

Orlicz-Sobolev spaces. It is the variational approach for boundary value problems

with a p(x)-Laplacian that prevails in the literature, see again [7], while for impulsive

problems, the variational approach has only recently begun and most results have

been obtained by other methods, see [5], [8].

The variational investigation of impulsive problems inspired by [10] has received

a lot of attention recently. In [6] another variational framework for the Sturm-

Liuville boundary value problem is developed in the case of second order impulsive

ordinary differential equation of p-Laplacian type. Boundary value problems with

dependence on a first order derivative are developed in [12], while [15] considers

problems similar to those of [10] but for a slightly more general problem. Periodic

solutions with impulses are considered via critical point theory in [14] within the

framework sketched in [10].

The paper is organized as follows. Firstly, we consider the Fundamental Lemma of

calculus of variations for the Orlicz-Sobolev spaces. Next, we investigate the problem

with a fixed right hand side. Later we investigate nonlinear problems by the direct

method of calculus of variations and by Mountain Pass Geometry.

2. Mathematical preliminaries

Let p, q ∈ C([0, π],R+), 1/p(t) + 1/q(t) = 1 for t ∈ [0, π]. In this paper we assume

p− = inf
t∈[0,π]

p(t) > 1, p+ = sup
t∈[0,π]

p(t) 6 2. By Lp(t)(0, π) we mean the space

Lp(t)([0, π]) =

{

u ; u : [0, π] → R is measurable,

∫

π

0

|u(t)|p(t) dt < +∞

}

equipped with the norm

‖u‖Lp(t) = inf

{

λ > 0;

∫

π

0

∣

∣

∣

u(t)

λ

∣

∣

∣

p(t)

dt 6 1

}

and this is a Banach space called the generalized Lebesgue space, see [4].

C∞

0 (0, π) denotes the space of infinitely many times differentiable functions with

compact support on [0, π]. W 1,p(t)(0, π) is the generalized Orlicz-Sobolev space,
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namely

W 1,p(t)(0, π) =

{

u ; u ∈ Lp(t)(0, π),

∫

π

0

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)

dt < +∞

}

,

where the derivative d/dt stands for the weak one, i.e. (d/dt)u is an element of

Lp(t)(0, π) which satisfies

(1)

∫

π

0

d

dt
u(t)v(t) dt = −

∫

π

0

u(t)
d

dt
v(t) dt

for all v ∈ C∞

0 (0, π). It is apparent that any function belonging to W 1,p(t)(0, π) is in

fact absolutely continuous and so the weak derivative can be considered as an a.e.

derivative which is what we understand for the remainder of this paper. Consider

W 1,p(t)(0, π) with the following norm

(2) ‖u‖W 1,p(t) =

√

∥

∥

∥

d

dt
u
∥

∥

∥

Lp(t)
+ ‖u‖Lp(t) .

Now W
1,p(t)
0 (0, π) is the closure of C∞

0 (0, π) in W 1,p(t)(0, π), see [4]. The norm in

W
1,p(t)
0 (0, π) is

‖u‖
W

1,p(t)
0

=
∥

∥

∥

d

dt
u
∥

∥

∥

Lp(t)

which is equivalent to (2). Moreover, from [4] we see that there exist constants

C1, C2 > 0 such that (the Poincaré inequality)

‖u‖Lp(t) 6 C1

∥

∥

∥

d

dt
u
∥

∥

∥

Lp(t)
for all u ∈ W

1,p(t)
0 (0, π)

and

max
t∈[0,π]

|u(t)| 6 C2

∥

∥

∥

d

dt
u
∥

∥

∥

Lp(t)
for all u ∈ W

1,p(t)
0 (0, π).

The functional u →
∫

π

0 |(d/dt)u(t)|p(t) dt is called the modular for W
1,p(t)
0 (0, π).

We have the following relation between the modular and the norm

min
{∥

∥

∥

d

dt
u
∥

∥

∥

p−

Lp(t)
,

∥

∥

∥

d

dt
u
∥

∥

∥

p+

Lp(t)

}

6

∫

π

0

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)

dt

6 max
{

∥

∥

∥

d

dt
u
∥

∥

∥

p−

Lp(t)
,

∥

∥

∥

d

dt
u
∥

∥

∥

p+

Lp(t)

}

.

Let us consider an operator L : W
1,p(t)
0 (0, π) → (W

1,p(t)
0 (0, π))∗ given by

(3) 〈L(u), v〉 =

∫

π

0

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)−2 d

dt
u(t)

d

dt
v(t) dt
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for u, v ∈ W
1,p(t)
0 (0, π). Then L is a homeomorphism ([3], Theorem 3.1) and the

Gâteaux derivative of u →
∫

π

0
|(d/dt)u(t)|p(t) dt is given by (3).

3. Remarks on the fundamental lemma of the calculus of variations

Now we provide a classical lemma of the calculus of variations which we formulate

for generalized Orlicz-Sobolev spaces in order to get some regularity results for p(t)-

Laplacian problems different from known results in the literature. Note that the

proofs of subsequent lemmas are modifications of well known proofs in the area of the

calculus of variations (see [13]). We note that in this paper we have assumed p+ 6 2

and p− > 1 so Lq(t)(0, π) ⊂ Lp(t)(0, π). Thus we see thatW
1,q(t)
0 (0, π) ⊂ W

1,p(t)
0 (0, π).

Lemma 1. If h ∈ Lq(t)(0, π) and

(4)

∫

π

0

h(t)
d

dt
v(t) dt = 0

for all v ∈ W
1,p(t)
0 (0, π), then there exists a constant c ∈ R such that h(t) = c a.e. on

[0, π].

P r o o f. Put c = π
−1

∫

π

0 h(t) dt. For this c the function v(t) =
∫ t

0 (h(τ) − c) dτ

is in W
1,p(t)
0 (0, π) ∩ W

1,q(t)
0 (0, π) = W

1,q(t)
0 (0, π). Indeed, (d/dt)v(t) = h(t) − c a.e.

on [0, π], v(0) = v(π) = 0 and the derivative is understood here as a classical a.e.

derivative. From (4) we obtain that

0 6

∫

π

0

(h(t) − c)2 dt =

∫

π

0

(h(t) − c)
d

dt
v(t) dt

=

∫

π

0

h(t)
d

dt
v(t) dt + c

∫

π

0

d

dt
v(t) dt = 0.

Hence it follows that for almost all t ∈ [0, π] we have h(t) − c = 0. �

Lemma 2. If g ∈ L1(0, π), h ∈ Lq(t)(0, π) and
∫

π

0

(

g(t)v(t) + h(t)
d

dt
v(t)

)

dt = 0

for all v ∈ W
1,p(t)
0 (0, π), then (d/dt)h = g a.e. on [0, π] and (d/dt)h ∈ L1(0, π).

P r o o f. We define G(t) =
∫ t

0 g(τ) dτ . Then G is absolutely continuous and

(d/dt)G(t) = g(t) for a.e. t ∈ [0, π]. Integrating by parts we obtain that
∫

π

0

(

g(t)v(t) + h(t)
d

dt
v(t)

)

dt =

∫

π

0

(h(t) − G(t))
d

dt
v(t) dt + G(t)v(t)|π0

=

∫

π

0

(h(t) − G(t))
d

dt
v(t) dt = 0.
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Thus by Lemma 1 we obtain that h(t)−G(t) = c and the assertion of the proposition

follows. �

4. Existence with fixed right hand side

Let the numbers 0 < t1 < t2 < . . . < tm < π be fixed throughout the paper. Let

us consider the following problem in W
1,p(t)
0 (0, π)

−
d

dt

(∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

)

= f(t)(5)

x(0) = x(π) = 0

with impulsive conditions

(6)
∣

∣

∣

d

dt
x(t+j )

∣

∣

∣

p(t)−2 d

dt
x(t+j ) −

∣

∣

∣

d

dt
x(t−j )

∣

∣

∣

p(t)−2 d

dt
x(t−j ) = dj for j = 1, 2, . . . , m

and where f ∈ L1(0, π). In the condition (6) it is assumed that both limits

lim
t→t

+
j

|(d/dt)x(t)|p(t)−2(d/dt)x(t), lim
t→t

−

j

|(d/dt)x(t)|p(t)−2(d/dt)x(t) exist and the re-

quired equality holds.

We introduce two types of solution for the problem (5)–(6).

Weak solution: We call a function x ∈ W
1,p(t)
0 (0, π) a weak solution to (5)–(6)

if it satisfies

(7)

∫

π

0

∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

d

dt
v(t) dt +

m
∑

j=1

djv(tj) dt −

∫

π

0

f(t)v(t) dt = 0

for all v ∈ W
1,p(t)
0 (0, π).

Classical solution: A function x ∈ W
1,p(t)
0 (0, π) is called a classical solution to

(5)–(6) if it is a weak solution such that the function |(d/dt)x(·)|p(·)−2(d/dt)x(·) is

absolutely continuous on [0, π], the limits in (6) are defined and the relation (6) holds

together with the boundary condition x(0) = x(π) = 0 and

−
d

dt

(∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

)

= f(t)

is satisfied for a.e. t ∈ [0, π] and (d/dt)(|(d/dt)x(t)|p(t)−2(d/dt)x(t)) ∈ L1(0, π).
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Lemma 3. If ū is a weak solution to (5)–(6), then it is also a classical one.

P r o o f. Let the function ū satisfy (7), i.e.

(8)

∫

π

0

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

d

dt
v(t) dt +

m
∑

j=1

djv(tj) −

∫

π

0

f(t)v(t) dt = 0

for all v ∈ W
1,p(t)
0 (0, π).

Now, we shall show that ū is a classical solution. Let us take any interval (tj , tj+1)

and a function v ∈ W
1,p(t)
0 (tj , tj+1). Extend function v to W

1,p(t)
0 (0, π) by taking 0

outside (tj , tj+1). Then we have from (8)

∫ tj+1

tj

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

d

dt
v(t) dt −

∫ tj+1

tj

f(t)v(t) dt = 0.

An application of Lemma 2 shows that the function |(d/dt)ū(·)|p(·)−2(d/dt)ū(·) is

absolutely continuous, its derivative exists for a.e. t ∈ (tj , tj+1) and

d

dt

(∣

∣

∣

d

dt
ū(·)

∣

∣

∣

p(·)−2 d

dt
ū(·)

)∣

∣

∣

(tj ,tj+1)
∈ L1(tj , tj+1).

Therefore both limits

lim
t→t

+
j

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t), lim

t→t
−

j+1

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

exist. Taking intervals (tj , tj+1) for j = 0, 1, 2, . . . , m we see that (5) is satisfied

a.e. on [0, π] and that (d/dt)(|(d/dt)ū(·)|p(·)−2(d/dt)ū(·)) ∈ L1(0, π). Hence, we may

multiply (5) with x = ū by any v ∈ W
1,p(t)
0 (0, π) and obtain

∫

π

0

−
d

dt

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)v(t) dt −

∫

π

0

f(t)v(t) dt = 0.

By integrating by parts it follows for a fixed interval [tj , tj+1] that

(9)

∫ tj+1

tj

−
d

dt

(∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

)

v(t) dt

=

∫ tj+1

tj

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

d

dt
v(t)

+
∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j )v(t+j ) −

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1)v(t−j+1).
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Note that

m
∑

j=0

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1)v(t−j+1)

−
∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j )v(t+j ) =

m
∑

j=1

djv(tj).

Summing (9) for j = 0, 1, 2, . . . , m we get recalling that v is continuous

(10)

∫

π

0

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

d

dt
v(t) dt −

∫

π

0

f(t)v(t) dt

+

m
∑

j=1

(∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j ) −

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1)

)

v(tj) = 0.

Since ū is a weak solutions we get equating (8) and (10) that

(11)

m
∑

j=1

(
∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j )−

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1)

)

v(tj) =

m
∑

j=1

djv(tj).

Since (11) holds for arbitrary v it follows that

∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j ) −

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1) = dj

for j = 1, 2, . . . , m and therefore the impulsive conditions (6) are also satisfied. �

The action functional J : W
1,p(t)
0 (0, π) → R corresponding to (5)–(6) is as follows

J(u) =

∫

π

0

1

p(t)

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)

dt +

m
∑

j=1

dju(tj) −

∫

π

0

f(t)u(t) dt.

Lemma 4. J is a Gâteaux differentiable, weakly l.s.c. and coercive functional

and its critical points correspond to the classical solutions of (5)–(6).

P r o o f. Note that J is differentiable. Now we take an arbitrary u ∈ W
1,p(t)
0 (0, π)

and fix an arbitrary v ∈ W
1,p(t)
0 (0, π). Then the Gâteaux derivative is

J ′(u; v) =

∫

π

0

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)−2 d

dt
u(t)

d

dt
v(t) dt +

m
∑

j=1

djv(tj) −

∫

π

0

f(t)v(t) dt.

Therefore each critical point of J is a weak solution of (5)–(6).
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Let us take any weakly convergent sequence {uk}
∞

k=1 ⊂ W
1,p(t)
0 (0, π). This means

that {(d/dt)uk}
∞

k=1 is weakly convergent in Lp(t)(0, π). Then {uk}
∞

k=1 has a subse-

quence {ukn
}∞n=1 which is strongly convergent in Lp(t)(0, π) and convergent in C[0, π].

Denote by ū ∈ W
1,p(t)
0 (0, π) the weak limit of {uk}

∞

k=1. Hence,

lim inf
n→∞

J(ukn
) > lim inf

n→∞

∫

π

0

1

p(t)

∣

∣

∣

d

dt
ukn

(t)
∣

∣

∣

p(t)

dt

+ lim
n→∞

( m
∑

j=1

djukn
(tj) dt −

∫

π

0

f(t)ukn
(t) dt

)

> J(ū).

Hence J is weakly l.s.c. on W
1,p(t)
0 (0, π). Moreover, we see that for any u ∈

W
1,p(t)
0 (0, π)

∫

π

0

1

p(t)

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)

dt +

m
∑

j=1

dju(tj) −

∫

π

0

f(t)u(t) dt

>
1

p+
min

{
∥

∥

∥

d

dt
u
∥

∥

∥

p−

Lp(t)
,

∥

∥

∥

d

dt
u
∥

∥

∥

p+

Lp(t)

}

−C2

m
∑

j=1

dj‖u‖W
1,p(t)
0

C1‖u‖W
1,p(t)
0

‖f‖Lq(t) .

Since p− > 1 we see that J is coercive.

Thus J is Gâteaux differentiable, weakly l.s.c. and coercive onW
1,p(t)
0 (0, π). There-

fore there exists ū ∈ W
1,p(t)
0 (0, π) such that J(ū) = inf

u∈W
1,p(t)
0 (0,π)

J(u) and thus ū

satisfies (8). An application of Lemma 3 finishes the proof. �

5. Existence of solutions for a nonlinear problem by

a direct variational method

In this section we will apply a direct variational argument to a so called nonlinear

problem.

Let Ij : R → R be continuous functions, j = 1, 2, . . . , m, and let f : [0, π] × R be

a Caratheodory function. Let F (t, v) =
∫ v

0 f(t, τ) dτ . Assume that

(H1) there exist constants Mj for j = 1, 2, . . . , m such that

|Ij(v)| 6 Mj for all v ∈ R;

(H2) there exist a constant α > 0 and functions l ∈ L1(0, π), s ∈ C[0, π], with 1 <

s− 6 s+ < p−, such that for all v ∈ R and a.e. t ∈ [0, π]

F (t, v) > −α|v|s(t) + l(t);
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(H3) for each r > 0 there exist functions gr ∈ L1(0, π) and hr ∈ L1(0, π) such that

for all v ∈ W
1,p(t)
0 (0, π) satisfying ‖v‖

W
1,p(t)
0

6 r and a.e. t∈ [0, π]

|F (t, v(t))| 6 gr(t) and |f(t, v(t))| 6 hr(t).

Now we consider in W
1,p(t)
0 (0, π) the following problem

−
d

dt

(
∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

)

+ f(t, x(t)) = 0(12)

x(0) = x(π) = 0

with impulsive conditions

(13)
∣

∣

∣

d

dt
x(t+j )

∣

∣

∣

p(t)−2 d

dt
x(t+j ) −

∣

∣

∣

d

dt
x(t−j )

∣

∣

∣

p(t)−2 d

dt
x(t−j )

= Ij(x(tj)) for j = 1, 2, . . . , m.

As before in the condition (13) it is assumed that both limits

lim
t→t

+
j

∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t), lim

t→t
−

j

∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

exist and the given equality holds.

We call a function x ∈ W
1,p(t)
0 (0, π) a weak solution to (12)–(13) if it satisfies

(14)

∫

π

0

∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

d

dt
v(t) dt +

m
∑

j=1

Ij(x(tj))v(tj) dt

+

∫

π

0

f(t, x(t))v(t) dt = 0

for all v ∈ W
1,p(t)
0 (0, π).

A function x ∈ W
1,p(t)
0 (0, π) is called a classical solution to (12)–(13) if it is a weak

solution such that the function |(d/dt)x(·)|p(·)−2(d/dt)x(·) is absolutely continuous

on [0, π], the limits in (13) are defined and the relation (13) holds together with the

boundary condition x(0) = x(π) = 0 and

−
d

dt

(∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

)

+ f(t, x(t)) = 0

is satisfied for a.e. t ∈ [0, π] and (d/dt)(|(d/dt)x(t)|p(t)−2(d/dt)x(t)) ∈ L1(0, π).

The action functional J : W
1,p(t)
0 (0, π) → R corresponding to (12)–(13) is

(15) J(u) =

∫

π

0

1

p(t)

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)

dt +

m
∑

j=1

∫ u(tj)

0

Ij(t) dt +

∫

π

0

F (t, u(t)) dt.
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Lemma 5. If ū is a weak solution to (12)–(13), then it is also a classical one.

P r o o f. Let a function ū satisfy (14). As in the proof of Lemma 3 we take any

interval (tj , tj+1) and a function v ∈ W
1,p(t)
0 (tj , tj+1) extended to W

1,p(t)
0 (0, π) by

taking 0 outside (tj , tj+1). Then we have in (14)

∫ tj+1

tj

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

d

dt
v(t) dt +

∫ tj+1

tj

f(t, ū(t))v(t) dt = 0.

It follows from (H3) that f(·, ū(·))|(tj ,tj+1) ∈ L1(tj , tj+1). Then, by Lemma 2

|(d/dt)ū(·)|p(·)−2(d/dt)ū(·) is absolutely continuous on [tj , tj+1], its derivative ex-

ists for a.e. t ∈ (tj , tj+1) and belongs to L1(tj , tj+1). Next we obtain

∫

π

0

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)−2 d

dt
ū(t)

d

dt
v(t) dt +

∫

π

0

f(t, ū(t))v(t) dt

+

m
∑

j=1

(∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j ) −

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1)

)

v(tj) = 0.

Since ū is a weak solutions we get equating the above relation and (14) that

m
∑

j=1

(
∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j ) −

∣

∣

∣

d

dt
ū(t−j+1)

∣

∣

∣

p(t)−2 d

dt
ū(t−j+1)

)

v(tj)

=

m
∑

j=1

Ij(ū)v(tj).

Hence for all j = 1, 2, . . . , m we have

∣

∣

∣

d

dt
ū(t+j )

∣

∣

∣

p(t)−2 d

dt
ū(t+j ) −

∣

∣

∣

d

dt
ū(t−j )

∣

∣

∣

p(t)−2 d

dt
ū(t−j ) = Ij(ū).

�

Lemma 6. J is a Gâteaux differentiable, weakly l.s.c. and coercive functional

and its critical points correspond to the classical solutions of (12)–(13).

P r o o f. By the assumption (H3) we see that J is well defined on W
1,p(t)
0 (0, π).

Again by (H3) we see that J is Gâteaux differentiable. Indeed, it suffices to show

that u →
∫

π

0
F (t, u(t)) dt is differentiable in the sense of Gâteaux. Let us fix u ∈

W
1,p(t)
0 (0, π). Now we fix an arbitrary v ∈ W

1,p(t)
0 (0, π) and take any ε ∈ (−1, 1).

Then there exists a constant r > 0 and functions gr ∈ L1(0, π) and hr ∈ L1(0, π)

such that ‖u + εv‖
W

1,p(t)
0

6 r and for a.e. t ∈ [0, π]

|F (t, v(t))| 6 gr(t) and |f(t, v(t))| 6 hr(t).
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Then we can differentiate the auxiliary function g(ε) =
∫

π

0
F (t, u(t) + εv(t)) dt at 0.

This proves the Gâteaux differentiability.

Let us take an arbitrary u ∈ W
1,p(t)
0 (0, π) and fix v ∈ W

1,p(t)
0 (0, π). Then the

Gâteaux derivative is

J ′(u; v) =

∫

π

0

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)−2 d

dt
u(t)

d

dt
v(t) dt +

m
∑

j=1

Ij(u)v(tj) +

∫

π

0

f(t, u(t))v(t) dt.

Therefore each critical point of J is a weak solution of (12)–(13).

Let us take any weakly convergent sequence {uk}
∞

k=1 ⊂ W
1,p(t)
0 (0, π). This means

that {(d/dt)uk}
∞

k=1 is weakly convergent in Lp(t)(0, π). Then {uk}
∞

k=1 has a subse-

quence {ukn
}∞n=1 which is strongly convergent in Lp(t)(0, π) and convergent in C[0, π].

Denote by ū ∈ W
1,p(t)
0 (0, π) the weak limit of {uk}

∞

k=1. Then by continuity we have

that
m

∑

j=1

∫ ukn (tj)

0

Ij(t) dt →

m
∑

j=1

∫ ū(tj)

0

Ij(t) dt.

Since {ukn
}∞n=1 is weakly convergent in W

1,p(t)
0 (0, π) there exist a constant r > 0

such that
∥

∥

∥

d

dt
ukn

∥

∥

∥

Lp(t)
6 r

for all n ∈ N. Now from (H3) there exists a function gr ∈ L1(0, π) such that

|F (t, ukn
(t))| 6 gr(t) for a.e. t ∈ [0, π]. Then by the Lebesgue Dominated Conver-

gence Theorem we get

∫

π

0

F (t, ukn
(t)) dt →

∫

π

0

F (t, ū(t)) dt.

Therefore, J is weakly l.s.c. on W
1,p(t)
0 (0, π).

Moreover, we see that for any u ∈ W
1,p(t)
0 (0, π)

(16) J(u) >
1

p+
min

{
∥

∥

∥

d

dt
u
∥

∥

∥

p−

Lp(t)
,

∥

∥

∥

d

dt
u
∥

∥

∥

p+

Lp(t)

}

− α

∫

π

0

|u(t)|s(t) dt

+

∫

π

0

l(t) dt − C2

m
∑

j=1

Mj

∥

∥

∥

d

dt
u
∥

∥

∥

Lp(t)
.

Since s+ < p− it follows from (16) that J is coercive.

Thus J is Gâteaux differentiable, weakly l.s.c. and coercive onW
1,p(t)
0 (0, π). There-

fore there exists ū ∈ W
1,p(t)
0 (0, π) such that J(ū) = inf

u∈W
1,p(t)
0 (0,π)

J(u) and thus ū

satisfies (14). An application of Lemma 3 finishes the proof. �
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6. Existence of mountain pass solutions

In this section we consider the problem

−
d

dt

(∣

∣

∣

d

dt
x(t)

∣

∣

∣

p(t)−2 d

dt
x(t)

)

= f(t, x(t))(17)

x(0) = x(π) = 0

with impulsive conditions for j = 1, 2, . . . , m

(18)
∣

∣

∣

d

dt
x(t+j )

∣

∣

∣

p(t)−2 d

dt
x(t+j ) −

∣

∣

∣

d

dt
x(t−j )

∣

∣

∣

p(t)−2 d

dt
x(t−j ) + Ij(x(tj)) = 0,

with assumptions which do not yield the coercivity of the action functional J :

W
1,p(t)
0 (0, π) → R

(19) J(u) =

∫

π

0

1

p(t)

∣

∣

∣

d

dt
u(t)

∣

∣

∣

p(t)

dt −

m
∑

j=1

∫ u(tj)

0

Ij(t) dt −

∫

π

0

F (t, u(t)) dt.

Now (H1) reads: Let Ij : R → R be continuous functions, j = 1, 2, . . . , m, and let

f : [0, π]×R be a Caratheodory function. We assume that (H1) holds and additionally

(H4) there exists a constant θ > p+ such that for v ∈ R, v 6= 0 and a.e. t ∈ [0, π] and

all j = 1, 2, . . . , m

0 < θF (t, v) 6 vf(t, v),

0 < θ

∫ v

0

Ij(s) ds 6 vIj(v);

(H5) there exist constants β1, β2, β
j
1 , β

j
2, α, αj > 0 with α > p+, αj > p+ for j =

1, 2, . . . , m and such that for all v ∈ R and a.e. t ∈ [0, π]

|f(t, v)| 6 β1|v|
α−1 + β2,

|Ij(v)| 6 βj
1|v|

αj−1 + βi
2;

(H6) lim
v→0

|f(t, v)|/|v|p
+
−1 = 0 uniformly for t ∈ [0, π] and lim

v→0
|Ij(v)|/|v|p

+
−1 = 0 for

j = 1, 2, . . . , m.

Note that with (H1), (H5) the functional J is well defined. The assumption which

we employ were already used in [3] in the context of boundary value problems for

partial differential equations connected with the so called p(x)-Laplacian. Let us

recall some preliminaries. Let E be a Banach space. For any sequence {un} ⊂ E, if

{J(un)} is bounded and J ′(un) → 0 as n → ∞ possesses a convergent subsequence,

then we say J satisfies the Palais-Smale condition—(PS) condition for short.
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Lemma 7 (Mountain Pass Lemma [9]). Let J ∈ C1(E,R) satisfy the (PS) con-

dition. Suppose that

1. J(0) = 0;

2. there exist ̺ > 0 and α > 0 such that J(u) > α for all u ∈ E with ‖u‖ = ̺;

3. there exist u1 in E with ‖u1‖ > ̺ such that J(u1) < α.

Then J has a critical value c > α. Moreover, c can be characterized as

inf
g∈Γ

max
u∈g([1,0])

J(u),

where Γ = {g ∈ C([1, 0], E) : g(0) = 0, g(1) = u1}.

Lemma 8. Suppose (H1), (H4), (H5) hold. Then the functional J given by (19)

satisfies the (PS) condition.

P r o o f. Let us take a sequence {uk}
∞

k=1 ⊂ W
1,p(t)
0 (0, π) such that {J(uk)}∞k=1

is bounded and ‖J ′(uk)‖
W

1,q(t)
0 (0,π)

→ 0 as k → ∞. We shall show that {uk}
∞

k=1 has

a convergent subsequence.

Since ‖J ′(uk)‖
W

1,q(t)
0 (0,π)

→ 0, we see that for some ε > 0 there exists k0 with

‖J ′(uk)‖
W

1,q(t)
0 (0,π)

6 ε for k > k0. Note that for k > k0

〈J ′(uk), uk〉 6 ε
∥

∥

∥

d

dt
uk

∥

∥

∥

Lp(t)

and

〈J ′(uk), uk〉 =

∫

π

0

∣

∣

∣

d

dt
uk(t)

∣

∣

∣

p(t)

−

m
∑

j=1

Ij(uk(tj))uk(tj) −

∫

π

0

f(t, uk(t))uk(t) dt.

Then, we see that

−

∫

π

0

F (t, uk(t)) dt −

m
∑

j=1

∫ u(tj)

0

Ij(t) dt

> −
1

θ

(
∫

π

0

f(t, uk(t))uk(t) dt +

m
∑

j=1

Ij(uk(tj))uk(tj)

)

=
1

θ
J ′(uk; uk) −

1

θ

∫

π

0

∣

∣

∣

d

dt
uk(t)

∣

∣

∣

p(t)

> −
ε

θ

∥

∥

∥

d

dt
uk

∥

∥

∥

Lp(t)
−

1

θ
max

{∥

∥

∥

d

dt
uk

∥

∥

∥

p−

Lp(t)
,

∥

∥

∥

d

dt
uk

∥

∥

∥

p+

Lp(t)

}

.
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Since {J(uk)}∞k=1 is bounded, there exists a constant C such that C > J(uk). Using

the above estimates we obtain

C > J(uk) >

( 1

p+
−

1

θ

)

max
{
∥

∥

∥

d

dt
uk

∥

∥

∥

p−

Lp(t)
,

∥

∥

∥

d

dt
uk

∥

∥

∥

p+

Lp(t)

}

−
ε

θ

∥

∥

∥

d

dt
u
∥

∥

∥

Lp(t)
.

Hence, it follows that {(d/dt)uk}
∞

k=1 is bounded in Lp(t)(0, π). Hence {uk}
∞

k=1 has

a weakly convergent subsequence in W
1,p(t)
0 (0, π). This means that {(d/dt)uk}

∞

k=1

is weakly convergent in Lp(t)(0, π). Then {uk}
∞

k=1 has a subsequence {ukn
}∞n=1

which is strongly convergent in Lp(t)(0, π) and convergent in C[0, π]. Denote by

ū ∈ W
1,p(t)
0 (0, π) the weak limit of {uk}

∞

k=1. We see that as k → ∞

(20) 〈J ′(uk) − J ′(ū), uk − ū〉 → 0

and further it follows by a direct calculation that as k → ∞

(21)

∫

π

0

∣

∣

∣

d

dt
uk(t)

∣

∣

∣

p(t)

dt →

∫

π

0

∣

∣

∣

d

dt
ū(t)

∣

∣

∣

p(t)

dt.

Indeed, as k → ∞ we obtain

m
∑

j=1

Ij(uk(tj))uk(tj) −

∫

π

0

f(t, uk(t))uk(t) dt

→
m

∑

j=1

Ij(ū(tj))ū(tj) −

∫

π

0

f(t, ū(t))ū(t) dt,

m
∑

j=1

Ij(uk(tj))ū(tj) −

∫

π

0

f(t, uk(t))ū(t) dt

→

m
∑

j=1

Ij(ū(tj))ū(tj) −

∫

π

0

f(t, ū(t))ū(t) dt,

m
∑

j=1

Ij(ū(tj))uk(tj) −

∫

π

0

f(t, ū(t))uk(t) dt

→

m
∑

j=1

Ij(ū(tj))ū(tj) −

∫

π

0

f(t, ū(t))ū(t) dt.

Hence (20) implies (21) and thus {ukn
}∞n=1 is strongly convergent. �
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Lemma 9. Suppose that (H1), (H4)–(H6) hold. Then there exist numbers η,

ξ > 0 such that J(u) > ξ for all u ∈ W
1,p(t)
0 (0, π) such that ‖u‖

W
1,p(t)
0

= η. Moreover,

there exists an element v ∈ W
1,p(t)
0 (0, π) with ‖u‖

W
1,p(t)
0

> η and such that J(v) < 0.

P r o o f. From [4] there exist constants C3, C4, C
1
4 , . . . , Cm

4 > 0 with

‖u‖
Lp+ 6 C3‖u‖W

1,p(t)
0

and ‖u‖Lα 6 C4‖u‖W
1,p(t)
0

,

‖u‖L
αj 6 Cj

4‖u‖W
1,p(t)
0

for all u ∈ W
1,p(t)
0 (0, π). Let us take a small ε > 0. By (H5), (H6) we see for some

A(ε), A1(ε), . . . , Am(ε) > 0 that

F (t, v) 6 ε|v|p
+

+ A(ε)|v|α for a.e. t ∈ [0, π], v ∈ R

and for j = 1, 2, . . . , m

∫ v

0

Ij(s) ds 6 ε|v|p
+

+ Aj(ε)|v|
αj for (t, v) ∈ [0, π] × R.

Note

∫

π

0

F (t, u) dt +

m
∑

j=1

∫ u(tj)

0

Ij(t) dt

6 2εC3‖u‖
p+

W
1,p(t)
0

+ A(ε)C4‖u‖
α

W
1,p(t)
0

+

m
∑

j=1

Aj(ε)C
j
4‖u‖

αj

W
1,p(t)
0

and as a result we see that

J(u) >

( 1

p+
− 2εC3

)

‖u‖p+

W
1,p(t)
0

− A(ε)C4‖u‖
α

W
1,p(t)
0

−

m
∑

j=1

Aj(ε)C
j
4‖u‖

αj

W
1,p(t)
0

.

Taking ε small enough, we see for some η, ξ > 0, η < 1 that J(u) > ξ for all

u ∈ W
1,p(t)
0 (0, π) such that ‖u‖

W
1,p(t)
0

= η.

Notice for v ∈ R that

−

m
∑

j=1

∫ v

0

Ij(s) ds 6 0.

From (H4) if u ∈ R it is easy to see that there exists a constant C5 > 0 such that

F (t, u) > C5|u|
θ.
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Fix v ∈ W
1,p(t)
0 (0, π) with v 6= 0. For s ∈ R+ note that

J(sv) =

∫

π

0

1

p(t)

∣

∣

∣
s

d

dt
v(t)

∣

∣

∣

p(t)

dt −
m

∑

j=1

∫ sv(tj)

0

Ij(t) dt −

∫

π

0

F (t, sv(t)) dt

6
1

p−
sp+

∥

∥

∥

d

dt
v
∥

∥

∥

p+

Lp(t)
− C5s

θ

∫

π

0

|v(t)|θ dt.

Since θ > p+ we see that

lim
s→∞

J(sv) = −∞

and the condition 3. of Lemma 7 is satisfied. �

Theorem 10. Suppose that (H1), (H4)–(H6) hold. Then the problem (17)–(18)

admits at least one nontrivial classical solution.

P r o o f. By Lemmas 8 and 9 we see that we can apply Lemma 7 to obtain the

existence of at least one nontrivial weak solution. Applying Lemma 5 we see that

the solution is in fact a classical one. �

Remark 1. From the proof above it is easy to see that one could replace

|f(t, v)| 6 β1|v|
α−1 + β2

in (H5) with

|f(t, v)| 6 β1|v|
α(t)−1 + β2,

for some function α ∈ C[0, π] with α− > p+.
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