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Abstract. The various properties of classical Dedekind sums S(h,¢) have been investi-
gated by many authors. For example, Yanni Liu and Wenpeng Zhang: A hybrid mean value
related to the Dedekind sums and Kloosterman sums, Acta Mathematica Sinica, 27 (2011),
435-440 studied the hybrid mean value properties involving Dedekind sums and general-
ized Kloosterman sums K (m,n,r;q). The main purpose of this paper, is using the analytic
methods and the properties of character sums, to study the computational problem of one
kind of hybrid mean value involving Dedekind sums and generalized Kloosterman sums,
and give an interesting identity.
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1. INTRODUCTION

For a positive integer ¢ and an arbitrary integer h, the classical Dedekind sum

S(h,q) is defined by
s =3 ((F)((F)

a=1
where
r—[z] - 3, if x is not an integer;
((z)) = L
0, if x is an integer.
The various properties of S(h,q) were investigated by many authors, see [2], [3]
and [4]. For example, L. Carlitz [3] obtained a reciprocity theorem of S(h,q).
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J.B.Conrey et al. [4] studied the mean value distribution of S(h,q), and proved
an interesting asymptotic formula. Yanni Liu and Wenpeng Zhang [7] studied the
hybrid mean value properties involving Dedekind sums and generalized Kloosterman
sums K (m,n,r;q), which are defined as follows (see [5] and [9]):

q

K(m,n,r;q) = Z?(M),
b=1

where e(y) = e?™¥, b denotes the solution of the equation x -b = 1 modgq. They
proved the following result:
Let q be a square-full number (i.e. p | ¢ if and only if p? | ¢). Then we have

(1.1) Z " K(m.a.1:) K (m b, 15 q)S (ab. g) = 11—2 19" ]] (1 + %)

1 b=1 plg

a

where 3" denotes the summation over all 1 < a < ¢ such that (a,q) = 1, [ denotes
a=1 plg

the product over all distinct prime divisors p of ¢, ¢(¢) is the Euler function, and

f(n) denotes the complex conjugation of f(n).

In this paper, we use analytic methods to study another kind of hybrid mean value
involving Dedekind sums and generalized Kloosterman sums, and give an identity
very similar to (1.1). That is, we shall prove the following

Theorem. Let g be an odd square-full number such that p = 3 mod4 for all
prime divisors p of q. Then we have the identity

a,. 4, -1 1
D> K(uu,29)K(v,0,2,9)S(ud,q) = — - q- ©*(q) - 4“9 - ] (1 + —),
u=1 v=1 12 p

plg

where w(q) denotes the number of all distinct prime divisors of q.

For general integers r and ¢ > 3, whether there exists an identity for

4, 4q
Z Z (u,u,m;,9)K(v,v,7;9)S(uv, q)

is an interesting problem.
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2. SEVERAL LEMMAS
To complete the proof of our Theorem, we need the following lemmas.

Lemma 1. Let ¢ > 2 be an integer, then for any integer a with (a,q) = 1 we
have the identity

S =32 S x@IL P

2
™ dlq w(d) x mod d
x(—1)=-1

where L(1,x) denotes the Dirichlet L-function corresponding to the character

x mod d.
Proof. See Lemma 2 of [8]. O

Lemma 2. Let p be an odd prime, let k and « be two integers with k | p — 1
and a > 2. Then for any integer n with (p,n) = 1 and any non-primitive character
x mod p® we have the identity

Proof. It is clear that if x is a non-primitive character mod p®, then it is also
a character mod p®~!. From the properties of the trigonometric sums we know that
for any positive integer ¢ > 2 and integer n with (n,q) = 1 we have the identity

(1.2) qi e(ﬂ) = 0.

u=0 q

Note that if k | p — 1, then (k,p) = 1. From (1.2) and the definition of the reduced
residue system modulo p® we have

a—1

P° k p-lp a—1 k
na ! a— n(up +v
> x@e(M) = X 3wl wge(M )
a=1 p u=0 v=1 p
polnt knuvh—1pet 4 ok
=20 3 xe( —)
u=0 v=1 p
e vk Pl knuvh—1
= > xtwe(2) >oe( )=0
v=1 p u=0 p
This proves Lemma 2. O
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Lemma 3. Let p be an odd prime, and « > 2 an integer. Then for any primitive
character xy mod p® we have the identity

(=

P
where y2(a) = (%) is Legendre’s symbol, T(x) = > x(a)e (%) denotes the classical
a=1
Gauss sum, and e(y) = e?™V.
Proof. First, for any primitive character x modp®, from the properties of
Gauss sums (see [1] and [6]) we know that

(13) §x<pa—1r+ 0(5) = 5 2 (5) Sxne(* iy
= g 2xe(5) E(5)e(5)

=
AT e

P
where G(p) = > (%)e(%) and ¥ denotes the conjugation of x.
=1

r=
Similarly, we can also deduce the identity

(14) le r-p(5) = a0 (2) 22 ).

p/ 7(X)

Note that (p®~1r +1)(p®~1r — 1) = —1 mod p® for any integer 1 <r <p-—1, so we
have x(p*~'r + 1) - x(p*~'r — 1) = x(=1) or x(p*~'r — 1) = x(=1) - X(p*~'r + 1).
From these identities and (1.3) we have

p—1

(15) St = () = x-n - T G

r=1

Due to the identities 7(x) = X(~1) - 7(X), T(xx2) = X(~=1)(5) - T(Xx2), x(=1) =
X(—1)=1or —1, and G(p) # 0, from (1.4) and (1.5) we have

(
TOox2)y _ Thoe) =1y t0hixe) - thoe)
o) =50 -3 5 "

Then from (1.6) we know that 7(xx2)/7(x) is a real number.

(1.6)
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On the other hand, since x is a primitive character mod p® with o > 2, so xx2
is also a primitive character mod p®, hence from the properties of Gauss sums we
have |7(xx2)/7(x)] = 1. Because 7(xx2)/7(x) is a real number, we may immediately
deduce that 7(xx2)/7(x) =1 or —1. This proves Lemma 3. O

Lemma 4. Let p be an odd prime, and let a > 2 be an integer. Then for any
integers m, n with (mn,p) = 1 and any primitive character x mod p®, we have the
following identities:

(A) If x is a primitive odd character mod p* and p = 1 mod 4, then
I
Z x(ma® +na=?) =0.
a=1
(B) If x is a primitive odd character mod p®, p =3 mod4 and Xx2 = X3, then

ﬁa:/x(ma2 + na_Q) = Xl(mn)T(Y—lXQ)T(YI) ((%) + (ﬁ))

7(X) p

(C) If x is a primitive even character mod p®, p = 3 mod 4 and X = X3, then

;’X(ma2+na_2): xl(m;l();) (Yl)(lJr (%))

Proof. Since x is a primitive character mod p®, so from the properties of
Gauss sums and Legendre’s symbol we have

o (e

(17) /X(mGQ + na_Q) = L 'S (M)
1 (X a=1 b:l pa
b

e 3 e (A1)

e
7(X) az::l p p”
o
>

R

=
i)

a

~—

- = Hx(b)e(}f—f) aj(a?)e(b?;‘f )
- = ix(b)e(;—f) N Gla)x@e( ),
b=1 a=1

(A) If x is a primitive odd character mod p® and p = 1 mod 4, then xa2(—1) =1,
so ¥ and Y2 are also two odd characters mod p®. Therefore, we have

iz: (bma ) :iy(—a)e<bm ) 2 (bma )
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or

(18) p_ x(a)e( ") =0,
(1.9) i?xz(a)e(bllf) =0.

From (1.7), (1.8) and (1.9) we may deduce the identity

oo
(1.10) z:/x(ma2 +na"?) = 0.
a=1

(B) If x is a primitive odd character mod p® and p = 3 mod 4, then x2(—1) = —1,
S0 YX2 is a primitive even character mod p®. Therefore, there exits one and only
one primitive character y; such that Xx2 = X3. This time we have

(1.11) iy(a)e(meQ) =0

pOL

and

(1.12) Txa(a)e

1+ @)

a=1

= x1(mb)7(X1) + x1x2(mb)T(X1X2)-

Then from (1.7), (1.11), (1.12) and Lemma 3 we have

(1.13) f:'x(mcﬁ +na?) = X1 (mn)7 (X1 x2)7(X1) ((@) N (ﬁ))

7(X) p p

(C) If  is a primitive even character mod p® and p = 3 mod 4, then y2(—1) = —1,
S0 Y X2 is a primitive odd character mod p®. Therefore, there exits one and only one
primitive character y; such that ¥ = X3. This time we have

(1.14) ing(a)e(meQ) —0

p()’
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and

(1.15) > Y(a)e(bzf) - p_ Xl(a2)6<b7252)
— p_” (1+ X2(a))Y1(a)e<b;Za)

= x1(mb)7(X1) + x1x2(mb)7 (X1 x2)-
Then from (1.7), (1.14), (1.15) and Lemma 3 we have

P

_ Xl(an()XT) xv) (1 . (%»
Now Lemma 4 follows from (1.10), (1.13) and (1.16). O

Lemma 5. Let k1 and ko be two positive integers with (k1,k2) = 1, let x1 be
a Dirichlet character mod ki and xo a Dirichlet character mod ky. Then for any
integers m and n with (mn, kiks) = 1 we have

k1k2/ k1 , k2 ,
> vixe(ma? +na?) = (k)3 (k) 3 xi(ma® +mia=?) Y xo(mb® +ngb~2),
a=1 a=1 b=1
where ni and ne are two integers such that (ning,k1ks) = 1 and n = nlkg +

no k‘f mod k1 ks.

Proof. Since (n,kike) = 1, there exist two integers ny and ns such that
n = nlké + ngk‘f mod k1ko and (ning, k1k2) = 1. Then from the properties of the
reduced residue system mod k1ko we have

k1k2/
X1x2(ma® 4+ na~?)
a=1
k:l ’ k}z ’
=> ) xa(mlaky + bk1)® + n(aks + bk1) ™) xa(m(aks + bk1)® + n(aky + bky) ™)
a=1 b=1
k1 , ko ,
= Z x1(ma?k3 +na"%k; ?) Z X2 (mb?k? + nb= 2k ?)
a=1 b=1
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k2
= Z x1(ma®k3 + nikia=?) leg(mkbe + ngk?b™?)

a=1 b=1
k1 ’ ko ;
= X7 (k2)x3(k1) D> x1(ma® +n1a=) > xa(mb® + ngb™?).
a=1 b=1
This proves Lemma 5. (]

Lemma 6. Let g > 2 be an odd square-full number. Then we have the identity

2

* 3 1
L1z =P (1 _)
E | (7X)| 12 qg H +p )
x modq pla

x(—1)=-1

where " denotes the summation over all odd primitive characters y mod q.
x mod g
x(—1)=-1
Proof. From the definition of Dedekind sums, Lemma 1 and the Mobius

inversion formula (see Theorem 2.9 of [1]) we have

(1.17) > x@EP = 222 Y w5 (a, )

x mod q d|g

x(=1)=-1
~ 29(g) — 1(d) q
=7 q Z(uq TS<“’E)'

If a = 1, then it is easy to compute
q—1 2 1

.05 (4 1) = Has+2).
k=1

So from this formula and (1.17) we have

i) Y IL(1,><)I2:12 . Zu ( %d)

x modq
x(=1)=-1

i3 p(d) 7 o(g) x— pld ﬂ o(q)
BETIACD e e Dt Z > ud)
d|q d|g dlg

e -

q
plg
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Note that ¢ is a square-full number, p(q) and ¢(gq) are two multiplicative functions,

2
S u S =0 and Y =Y Y Lok

d|q x mod q d|qg x mod q/d
x(=1)=-1 x(=1)=-1

By virtue of the Mobius inversion formula and (1.18) we may immediately deduce

SO LR = Y@ > L xx0)P

x mod q d|q x mod q/d
x(=1)=-1 x(=1)=-1
=> ud D> LX)
dlq x modgq/d
x(=1)=—-1
{an/d)[l—[( 1 3”
- S 1) 2
12 d d
dlq al plq/d P al
™ ¢*(q) ( 1
= — 1 + —),
12 ¢2 g D
where x( denotes the principal character mod ¢. This proves Lemma 6. O

3. PROOF OF THE THEOREM

In this section, we shall complete the proof of our Theorem. Let ¢ be an odd
square-full number with p = 3 mod4 for all prime divisors p of q. Then for any
integer a with (a,q) = 1 we have (a® + a2, q) = 1. Due to the identity

S M@K w29 = 35 xw) (%”) — (0 Y X(6? +

a=1 u=1 a=1

from Lemma 1 we have

(1.19) S5 K (w0, 2:)K (v,0,2; ) S (uB, g)
N ﬂiq 2 s;éd) S XK (uw,1,2:9) Y X @)K (0,0, 2 )| L (1, )
d|q u=1 v=1
1 d NN 2 ,
= anZga( ] S )@ D x(a® +a)| - IL, X))
d| ch_nll)oilil a=1
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If x is not a primitive character mod ¢, then from Lemma 2 and the multiplicative
properties of 7(x) we have 7(x) = 0. If x is a primitive character mod ¢, then

taking into account that 7(%) = X(—1)7(x) we have 7(x)-7(X) = X(-1)7(x) - 7(x) =
X(—1) - ¢. Combining these identities, (1.19) and Lemma 2 we can deduce that

!/

q
S K (u,u, 2 ) K (v,0,2;9)S (ud, q)

(1.20) f:

u=1 v=1
—1 q * g / 2
= 2 200 Z Z X(a®+a%)| - |L(1, x)I%,
Pl x mod g a=1
x(=1)=-1

where >_" denotes the summation over all primitive characters mod g.
For any primitive character y modq with x(—1) = —1, from (B) and (C) of
Lemma 4 and Lemma 5 we have

q ’ 2

D o x(@®+a7?)| =449 g

a=1

(1.21)

where w(q) denotes the number of all distinct prime divisors of ¢. In fact, if ¢ = p®,
then from (B) and (C) of Lemma 4 we know that the identity (1.21) holds. If

(63N D)

q = pi'py? ... ppF = pit - qu with £ > 2 and p; = 3mod4 (i = 1,2,...k), then

a1

(p7,q1) = 1. Let x = x1x2 with x1 mod p]
we have

and y2 mod ¢;. Then from Lemma 5

(1.22) Z/X2(b2 +ngb?)|,

where 1 = n1q} + nopi®* mod q.

It is clear that 1 = (pil) = (%), hence from (1.22), (B) and (C) of Lemma 4 we
have

q.

(1.23) Z x(a® +a7%)| =

a=1

a /
> xaxz(@® +a7?)

a=1

q1 ,
Z Xg(b2 + n2b72) .

b=1

=92.

Note that for any p; | ¢1 we have p; = 3 mod4 and 1 = (p1) = (ZZ) so from (1.23)

by mathematical induction we may immediately deduce the identity (1.21).
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Finally, combining (1.20), (1.21) and Lemma 6 we may immediately deduce the

identity

a ! /

Z Z K(u,u,2;q)K(v,v,2;q)S(ut, q)

u=1 v=1

S S CY Z* |L(17X)|2
) x mod g
x(=1)=-1
-1 4 ™ ¢*(q) 1
1L ywla). (1+_)
I1{t+;

2 o(q) 12 ¢2

plg

-1 9 1
—.q- R IC (1 _)_
54 v (@) [I(t+ ,

plg

This completes the proof of our theorem. O
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