
Kybernetika

Włodzimierz Wysocki
Constructing families of symmetric dependence functions

Kybernetika, Vol. 48 (2012), No. 5, 977--987

Persistent URL: http://dml.cz/dmlcz/143094

Terms of use:
© Institute of Information Theory and Automation AS CR, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/143094
http://project.dml.cz


KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 5 , PAGES 9 7 7 – 9 8 7

CONSTRUCTING FAMILIES
OF SYMMETRIC DEPENDENCE FUNCTIONS

W lodzimierz Wysocki

We construct two pairs (A [1]
F ,A [2]

F ) and (A [1]
ψ ,A [2]

ψ ) of ordered parametric families of sym-
metric dependence functions. The families of the first pair are indexed by regular distribution
functions F , and those of the second pair by elements ψ of a specific function family ψ. We
also show that all solutions of the differential equation dy

du
= α(u)

u(1−u)
y for α in a certain function

family αs are symmetric dependence functions.

Keywords: archimax copula, copula, dependence function, generator of a dependence func-
tion

Classification: 62H20

1. INTRODUCTION

The systematically developed theory of copulas has found applications in statistics, prob-
ability theory, theory of stochastic processes and many practical areas, including econo-
metrics, insurance, finance, risk management and survival analysis. The best source of
information about copulas and their applications are proceedings of numerous confer-
ences concerning copulas, as well as the monographs of Hutchinson and Lai [6], Joe [7],
and Nelsen [8].

In this paper, the interval [0, 1] will be denoted by I. Let X = (X1, X2) be a (two-
dimensional) random vector defined on a probability space (Ω,F , P ) with joint distri-
bution FX and marginal distributions FX1 , FX2 . We transform X into U = (U1, U2)
according to the formula Uk = FXk

(Xk) for k = 1, 2. The random vector U takes values
in the square I2. The distribution function H of PU is called a copula if the following
conditions are satisfied: H(u1, 0) = H(0, u2) = 0, H(u1, 1) = u1 and H(1, u2) = u2 for
all u1, u2 ∈ I. The components of U have uniform distribution on I.

An important class of copulas is formed by the archimax copulas, determined by
two function parameters g and A. This class contains all the archimedean copulas and
extreme value copulas.

Define A− : I → [ 12 , 1] and A+ : I → I by A−(u) = max(u, 1− u), A+(u) ≡ 1. Let A
be the family of all convex functions A : I → [ 12 , 1] satisfying

A−(u) ≤ A(u) ≤ A+(u) for all u ∈ I. (1)
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Denote by G the family of all strictly decreasing convex functions g : I → [0,∞] such
that g(1) = 0. It is understood that g(0) = limt→0+ g(t). For g ∈ G we define the
pseudoinverse g←(x) = inf{t ∈ I : g(t) ≤ x, x ∈ [0,∞]}, g←(∞) = 0. The function g

←

coincides with the usual inverse g−1 of g if g(0) = ∞. For parameters g ∈ G and A ∈ A
we define Hg,A : I2 → I by

Hg,A(u1, u2) = g
←

{
[g(u1) + g(u2)]A

[
g(u1)

g(u1) + g(u2)

]}
for (u1, u2) ∈ I2. (2)

Capéraà et al. [1] proved that (2) is a copula. Setting A = A+ in (2), we obtain
the archimedean copula Hg(u1, u2) = g

←[g(u1) + g(u2)]. The function g is called the
additive generator of the copula. The generator g is strict if g(0) = ∞. On the other
hand, if we set g(t) = − ln(t) in (2), we obtain the extreme value copula HA(u1, u2) =
exp

{
ln(u1u2)A

[ ln(u1)
ln(u1u2)

]}
. The parameter A is called a dependence function.

Systematic investigation of archimedean copulas was initiated by Genest and MacKay
[2]. The reader interested in extreme value copulas is referred to Pickands [9] and Joe’s
monograph [7, Chap. 6]. In their survey paper, Gudendorf and Segers [3] outlined the
theory and a wide spectrum of applications of extreme value copulas. Their article also
contains an extensive bibliography.

Example 1. To the strict additive generator g(t) = 1
t − 1 and the dependence function

A(u) = u2 − u+ 1 there corresponds the copula

H(u1, u2) =
(u1 + u2 − 2u1u2)u1u2

u2
1 + u2

2 + u2
1u

2
2 − 2u2

1u2 − 2u1u2
2 + u1u2

.

The theory of archimax copulas is not well developed. Recently some relevant results
have been obtained by Hürlimann [5]. He gave formulas for popular dependence mea-
sures (Kendall’s tau and Spearman’s rho) for archimax copulas, and considered certain
dependence notions for such copulas. The present paper is a contribution to this theory.
The theorems of Section 2 enable one to produce families of symmetric dependence func-
tions. The theorems of Section 3 make use of the notion of generator of a dependence
function. This notion is inspired by the formula obtained by Capéraà et al. [1]:

P

({
g(U1)

g(U1) + g(U2)
≤ t

})
− t = t(1− t)

A(1)(t)
A(t)

,

where A(1)(t) is another notation for dA
dt . In what follows, higher derivatives dkf

duk will
also sometimes be denoted by f (k).

2. PARAMETRIC FAMILIES OF DEPENDENCE FUNCTIONS

In this section we propose two general methods of constructing parametric families
of dependence functions. The first method uses regular distribution functions F as
parameters, while the second uses elements ψ of a specific function family ψ.

Let F : R → I be a distribution function. For ϑ ∈ [0,∞) we define fϑ : I → I by

fϑ(u) = 2
∫ u

0

F [ϑF−1(t)] dt. (3)
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Theorem 1. Let F be a differentiable distribution function such that:

(i) F (1)(x) > 0 for all x ∈ R,

(ii) F (−x) = 1− F (x) for all x ∈ R. (4)

Then all elements of the family A
[1]
F = {Aϑ : ϑ ∈ [0,∞)} defined by Aϑ(u) = fϑ(u)−u+1

belong to A and have the following properties:

• Aϑ(1− u) = Aϑ(u) for all u ∈ I (symmetry),

• Aϑ is a strictly convex function,

• Aϑ is twice differentiable on (0, 1),

• if ϑ1 < ϑ2 then
Aϑ1(u) > Aϑ2(u) for all u ∈ (0, 1). (5)

P r o o f . Fix ϑ ∈ [0,∞). First we show the symmetry of Aϑ, i. e.

2
∫ u

0

F [ϑF−1(t)] dt− u+ 1 = 2
∫ 1−u

0

F [ϑF−1(t)] dt+ u. (6a)

Setting x = F−1(u) in (4) for u ∈ (0, 1), we obtain −F−1(u) = F−1(1 − u). Since the
function F (1) is even, it is now easy to check that the second derivatives of both sides
of (6a) are equal, which implies

2
∫ u

0

F [ϑF−1(t)] dt− u+ 1 = 2
∫ 1−u

0

F [ϑF−1(t)] dt+ u+ au+ b, (6b)

where a and b are some real numbers.
Formula (6b) and its derivative give, for u = 1

2 , the equalities a+ 2b = 0 and a = 0.
Hence (6a) holds. Clearly, Aϑ(0) = 1. To prove Aϑ(1) = 1, set ϕ(ϑ) = Aϑ(1) for
all ϑ ∈ [0,∞). It suffices to check that dϕ

dϑ ≡ 0 and exhibit a ϑ0 ∈ (0,∞) such that
ϕ(ϑ0) = 1. By the theorem on differentiating parameter-dependent integrals,

dϕ(ϑ)
dϑ

= 2
∫ 1

0

F (1)[ϑF−1(t)]F−1(t) dt.

Changing variable z = F−1(t), we obtain

dϕ(ϑ)
dϑ

= 2
∫ ∞

−∞
zF (1)(z)F (1)(ϑz) dz = 0,

since the integrand is odd. Note that ϑ0 = 1 yields ϕ(1) = 1. By symmetry of Aϑ, it
suffices to prove (1) on the interval [0, 1

2 ], which is equivalent to fϑ(u) ≥ 0. We see that

Aϑ ∈ A . It is obvious that Aϑ is twice differentiable. As d2Aϑ(u)
du2 = 2ϑF

(1)[ϑF−1(u)]
F (1)[F−1(u)]

> 0
on (0, 1), it follows that Aϑ is strictly convex.
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To prove (5) it suffices to show that for each u ∈ (0, 1) the function ϕ̃(ϑ) =
2

∫ u
0
F [ϑF−1(t)] dt− u+ 1 is strictly decreasing on (0,∞). To do this, note that

dϕ̃(ϑ)
dϑ

= 2
∫ F−1(u)

−∞
zF (1)(z)F (1)(ϑz) dz

= 2
∫ −F−1(u)

−∞
zF (1)(z)F (1)(ϑz) dz + 2

∫ F−1(u)

−F−1(u)

zF (1)(z)F (1)(ϑz) dz < 0

for all u ∈ ( 1
2 , 1), because the last integral is zero.

For u ∈ (0, 1
2 ], the inequality dϕ̃(ϑ)

dϑ < 0 is obvious. �

Corollary 1. The supremum A+ of A
(1)
F , equal to A0, belongs to A

[1]
F , while the

infimum A− of the family, equal to limϑ→∞Aϑ, belongs to the closure of A
[1]
F in the

uniform convergence topology.

Example 2. The distribution function F (x) = exp(x)
1+exp(x) satisfies the assumptions of

Theorem 1. Elements of the corresponding family A
[1]
F are defined by

Aϑ(u) = 2
∫ u

0

tϑ

tϑ + (1− t)ϑ
dt− u+ 1.

We now construct another parametric family of dependence functions. Let ψ be the
family of all functions ψ : [− 1

2 ,
1
2 ] → [− 1

2 ,
1
2 ] satisfying:

(1) ψ(− 1
2 ) = ψ(0) = ψ( 1

2 ) = 0,

(2) ψ(t) < 0 for all t ∈ (− 1
2 , 0) and ψ(t) > 0 for all t ∈ (0, 1

2 ),

(3) ψ(−t) = −ψ(t) for all t ∈ [− 1
2 ,

1
2 ],

(4) ψ is differentiable on [− 1
2 ,

1
2 ],

(5) inf[ψ(1)(t), 0] ≥ −1 for all t ∈ (− 1
2 ,

1
2 ).

We define fψ : I → [−1, 0] by

fψ(u) = 2
∫ u− 1

2

− 1
2

ψ(t) dt. (7)

Theorem 2. Let ψ ∈ ψ. Then the elements of the family A
[1]
ψ = {Aψϑ : ϑ ∈ I}, defined

by Aψϑ (u) = ϑfψ(u)+u2−u+1, all belong to A . Moreover, they are twice differentiable,
convex symmetric functions such that if ϑ1 < ϑ2 then

Aψϑ1
(u) > Aψϑ2

(u) for all u ∈ (0, 1). (8)
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P r o o f . Fix ϑ ∈ I. We first prove the symmetry of Aψϑ , i. e.

2ϑ
∫ u− 1

2

− 1
2

ψ(t) dt+ u2 − u+ 1 = 2ϑ
∫ −(u− 1

2 )

− 1
2

ψ(t) dt+ u2 − u+ 1

for all u ∈ I. The derivatives of both sides of this equality are equal, so

2ϑ
∫ u− 1

2

− 1
2

ψ(t) dt+ u2 − u+ 1 = 2ϑ
∫ −(u− 1

2 )

− 1
2

ψ(t) dt+ u2 − u+ 1 + c

for all u ∈ I. Setting u = 1
2 yields c = 0, which proves the symmetry of Aψϑ .

To prove that Aψϑ is convex we note that

d2Aψϑ (u)
du2

= 2[ϑψ(1)(u− 1
2 ) + 1] ≥ 0 for all u ∈ (0, 1).

Clearly, Aψϑ (0) = Aψϑ (1) = 1. By symmetry of Aψϑ , it suffices to check the validity of
Aψϑ (u) ≥ 1− u on [0, 1

2 ]. This inequality is equivalent to

2ϑ
∫ u− 1

2

− 1
2

ψ(t) dt+ u2 ≥ 0. (9)

The left hand side is strictly convex. Hence the function 2[ϑψ(u − 1
2 ) + u] is strictly

increasing and equal to zero at u = 0, which guarantees its nonnegativity on [0, 1
2 ]. We

infer that the left hand side of (9) is nonnegative on [0, 1
2 ]. We have thus shown that

Aψϑ ∈ A .
Twice differentiability of Aψϑ and the ordering (8) is clear. �

Corollary 2. The element Aψ0 (u) = u2−u+1 is greatest in the sense of the ordering (8).

Example 3. The function ψ(t) = 1
2π sin(2πt) satisfies the assumptions of Theorem 2.

Elements of the family A
[1]
ψ have the form

Aψϑ (u) =
ϑ

4π2
cos(2πu) + u2 − u+ 1− ϑ

4π2
.

3. GENERATORS OF DEPENDENCE FUNCTIONS

Let A be a dependence function. We define a function α by

α(t) = t(1− t)
A(1)(t)
A(t)

. (10a)
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This function leads to the following linear differential equation:

dy
du

=
α(u)

u(1− u)
y, where y = A. (10b)

A natural question is for which functions α every solution of (10b) is a dependence
function. It turns out that under some natural assumptions the answer is fairly easy.
We start by studying the properties of functions (10a).

Lemma 1. Let A be a strictly convex symmetric dependence function such that:

• A is twice differentiable on (0, 1),

• limu→0+ A
(1)(u) = −1.

Then the function α : I → [− 1
2 ,

1
2 ] has the following properties:

(a1) α(0) = α( 1
2 ) = α(1) = 0,

(a2) α(t)<0 for all t∈(0, 1
2 ) and α(t)>0 for all t∈( 1

2 , 1),

(a3) α(t) ≥ −t for all t ∈ [0, 1
2 ] and α(t) ≤ 1− t for all t ∈ ( 1

2 , 1],

(a4) α(1− t) = −α(t) for all t ∈ I,

(a5) α is differentiable on (0, 1),

(a6) α(1)(t) >
α(t)[1− 2t− α(t)]

t(1− t)
for all t ∈ (0, 1),

(a7) limt→0+ α
(1)(t) = −1.

P r o o f . Property (a4) follows from the symmetry of A. Clearly, α(0)
= α(1) = 0. The equality α( 1

2 ) = 0 is a consequence of the fact that u = 1
2 is

an absolute minimum point for A. Hence (a1) holds. Property (a2) is obvious. By
(a4), it suffices to prove (a3) on [0, 1

2 ], which follows from the obvious inequalities
α(t) ≥ t(1− t)A(1)(t) ≥ −t(1− t) ≥ −t. Property (a5) is also evident, and (a6) follows
from

d2y

du2
=

{
u(1− u)α(1)(u)− (1− 2u)α(u)

[u(1− u)]2
+

[
α(u)

u(1− u)

]2}
y > 0.

The equality (a7) follows by a direct calculation. �

We introduce two function families, A −
s and αs. The first consists of all dependence

functions satisfying the assumptions of Lemma 1, and the second consists of all functions
α : I → [− 1

2 ,
1
2 ] satisfying (a1)–(a7).
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Theorem 3. If α ∈ αs, then the equation (10b) with the initial condition

lim
u→0+

y(1)(u) = −1 (10c)

has a unique solution given by

y(u) = exp
[ ∫ u

0

α(t)
t(1− t)

dt
]

for all u ∈ I. (11)

This solution is a dependence function in the family A −
s .

P r o o f . By l’Hospital’s rule, limt→0+
α(t)
t(1−t) = −1, and using (a4) we obtain limt→1−

α(t)
t(1−t)

= 1. Hence the continuity of α yields
∫ u
0

α(t)
t(1−t) dt <∞ for all u ∈ I. It is easy to check

that that the function (11) satisfies (10b) with the initial condition (10c). To prove
uniqueness, suppose that y1 and y2 are solutions of (10b) satisfying (10c). The function
y1
y2

has zero derivative on (0, 1), so y1 = cy2 for some constant c. From (10c) we see that
c = 1.

To prove that y is symmetric, we write

y(1)(u) =
α(u)

u(1− u)
y(u) and y(1)(1− u) = − α(u)

u(1− u)
y(1− u),

which implies

−y
(1)(1− u)
y(1− u)

=
y(1)(u)
y(u)

.

This can be rewritten as d
du{ln[y(1 − u)]} = d

du{ln[y(u)]}, leading to ln[y(1 − u)] =
ln[y(u)] + c′ for some constant c′. Setting u = 1

2 we find c′ = 0, proving the symmetry
of y.

We now show that y is a dependence function. Clearly, y(1) = 1. We have to check
(1). It sufices to do that on [0, 1

2 ]. We divide both sides of α(t) ≥ −t by t(1 − t) and
integrate over [0, u] to obtain

∫ u
0

α(t)
t(1−t) dt ≥ ln(1− u). Hence exp

[ ∫ u
0

α(t)
t(1−t) dt

]
≥ 1− u.

Thus, the solution (11) is twice differentiable. The strict convexity of y follows by
differentiating (10b) and taking into account (a6). We have thus shown that y ∈ A −

s .
�

Remark 1. The map α 7→ exp
[ ∫ u

0
α(t)
t(1−t) dt

]
is a bijection of αs onto A −

s .

The elements of the family αs will be called generators of dependence functions.

Example 4. The family
{
αϑ(t) = (1−t)tϑ−t(1−t)ϑ

tϑ+(1−t)ϑ : ϑ > 1
}

is contained in αs. By

Theorem 3 it yields the family {Aϑ(u) = [uϑ + (1 − u)ϑ]
1
ϑ : ϑ > 1} of dependence

functions, generating the family of Gumbel copulas [4] (without the independent copula)
defined by Hϑ(u1, u2) = exp{−[(− lnu1)ϑ + (− lnu2)ϑ]

1
ϑ } for ϑ > 1.
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Example 5. The functions α1(t) = t(1− t)(2t−1) and α2(t) = −t(1− t) cos(πt) belong
to αs. By Theorem 3 the corresponding dependence functions are

A1(u) = exp[−u(1− u)], (12a)

A2(u) = exp
[
− 1
π

sin(πu)
]
. (12b)

The generators of the dependence functions (12a) and (12b) can be written in the form
α1(t) = t(1 − t)v(1)

1 (t) and α2(t) = t(1 − t)v(1)
2 (t), where v1(t) = −t(1 − t), v2(t) =

− cos(πt). It turns out that the functions v1 and v2 have the following properties:

(b1) v(0) = v(1) = 0 and v(t) < 0 for all t ∈ (0, 1),

(b2) v(t) ≥ A−(t)− 1 for all t ∈ I,

(b3) v(1− t) = v(t) for all t ∈ I,

(b4) v is strictly convex,

(b5) v is twice differentiable on (0, 1),

(b6) limt→0+ v
(1)(t) = −1.

We denote by v the family of all functions v : I → [− 1
2 , 0] satisfying (b1)–(b6). Since v1

and v2 are in v, one may suspect that to elements of v correspond dependence functions.
This is discussed below.

Theorem 4.

(a) If v ∈ v, then the function

αv(t) = t(1− t)v(1)(t) (13a)

belongs to αs, and the corresponding dependence function is

Av(u) = exp[v(u)]. (13b)

(b) If v1, v2 ∈ v and v1(t) > v2(t) for all t ∈ (0, 1), then also Av1(u) > Av2(u) on this
interval.

P r o o f . (a) We have to show that (13a) satisfies (a1)–(a7). This is easy. To illustrate,
we prove (a6). The left hand side of (a6) for (13a) is equal to (1−2t)v(1)(t)+t(1−t)v(2)(t),
and the right hand side is (1− 2t)v(1)(t)− t(1− t)[v(1)(t)]2. Hence v(2)(t) > −[v(1)(t)]2.

(b) follows from (13b). �

To give an application of Theorem 4, set vϑ(t) = fϑ(t)− t and vψϑ (t) = ϑfψ(t)+ t2− t,
where fϑ and fψ are given by (3) and (7) respectively.
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It is easy to check that the families {vϑ : ϑ ∈ (0,∞)} and {vψϑ : ϑ ∈ I} are contained in
v. By Theorem 4 the corresponding ordered families of symmetric dependence functions
are

A
[2]
F =

{
Aϑ(u) = exp

[
2

∫ u

0

F [ϑF−1(t)] dt− u
]

: ϑ ∈ [0,∞)
}
,

A
[2]
ψ =

{
Aψϑ (u) = exp

[
2ϑ

∫ u− 1
2

− 1
2

ψ(t) dt+ u2 − u
]

: ϑ ∈ I
}
,

4. CONCLUDING REMARKS

The families of extreme value copulas H[1]
F , H[2]

F and H[1]
ψ , H[2]

ψ corresponding to the

families of dependence functions A
[1]
F , A

[2]
F and A

[1]
ψ , A

[2]
ψ are ordered in the following

way:
Aϑ1 ≤ Aϑ2 on I ⇒ HAϑ1

≥ HAϑ2
.

In particular we have HAϑ
≥ H⊥, where H⊥(u1, u2) = u1u2. This yields positive

quadratic dependence for HAϑ
. Archimax copulas Hg,A can represent more complex

types of dependence. The families A
[2]
F and A

[2]
ψ induce families of archimax copulas.

This follows from the fact that to every v ∈ v (under a certain condition) corresponds a
pair of function parameters (gv, Av), where gv is an additive generator (of an archimedean
copula Hgv ). To justify this, we quote a fact from Wysocki [10]. Let V be the family of
all continuous functions v : I → [−1, 0] satisfying the following conditions:

(B1) −1 ≤ v(0) ≤ 0, v(1) = 0 and v(t) < 0 for all t ∈ (0, 1),

(B2) v(t) ≥ t− 1 for all t ∈ I,

(B3) v is differentiable on (0, 1),

(B4) v(1)(t) ≤ 1 for all t ∈ (0, 1) and limt→1− v
(1)(t) = 1.

The elements of V are called vector generators (of archimedean copulas). Define

αv(t) =
1

t− 1
− 1
v(t)

, t ∈ (0, 1).

Lemma 2. If v ∈ V has a second order left derivative at t = 1, then the differential
equation

dy
dt

=
y

v(t)
(14)

with initial condition limt→0+ y
(1)(t) = 1 has a unique solution given by

y(t) = g(t) = (1− t) exp
[ ∫ 1

t

αv(s) ds
]

for all t ∈ I. (15)

The solution (15) is a twice differentiable additive generator.
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From (15) and the definition of αv we obtain

Corollary 3. Every element v ∈ V is of the form

v(t) =
g(t)
g(1)(t)

.

Obviously, we have the inclusion v ⊂ V . For v ∈ v the solution (15) is three times
differentiable. If ψ has a right derivative at t = − 1

2 , then the limit limt→0+ v
(2)
ϑ (t) exists

for vϑ(t) = 2ϑ
∫ t−1/2

−1/2
ψ(s) ds+ t2 − t.

In turn, if there exists an interval (−∞, a), a < 0, on which the function x 7→
F (1)(x)/F (x) is bounded and monotone, then the limit limt→0+ v

(2)
ϑ (t) exists for vϑ(t) =

2
∫ t
0
F [ϑF−1(s)] ds− t.

By Theorem 4 and Lemma 2 we introduce the family of archimax copulas Hg,A for
g = gvϑ

and A = Aϑ, where vϑ(t) = 2ϑ
∫ t−1/2

−1/2
ψ(s) ds + t2 − t, Aϑ(u) = exp[vϑ(u)],

which we denote H(ψ). Similarly H(F ) is the family of archimax copulas for g = gvϑ
,

vϑ(t) = 2
∫ t
0
F [ϑF−1(s)] ds− t, Aϑ(u) = exp[vϑ(u)].

The dependence measures obtained by Hürlimann [5], Kendall’s tau and Spearman’s
rho, for elements of H(ψ) and H(F ), can only be found numerically. It suggests itself
that dependence measures constructed specifically for archimax copulas may be more
“sensitive” and easier to compute. Information about such copulas is represented by
the function parameters g and A. Consequently, a dependence measure for an archimax
copula may measure the “closeness” of the pair (g,A) (resp. (v, α)) to (g⊥, A+) (resp.
(v⊥, α⊥)), where g⊥(t) = − ln t, v⊥(t) = t ln t and α⊥ ≡ 0. Such measures may be, for
example, functions based on suitably scaled metrics on G × A (resp. V × αs). These
issues will be discussed in another publication.

In terms of generators of dependence functions, one can give necessary and sufficient
conditions for convergence of dependence functions. For example, if a sequence (αk) of
generators of dependence functions converges uniformly to a function 6= 0 on (0, 1)\{ 1

2},
then the corresponding sequence of dependence functions (Ak) ⊂ A −

s converges uni-
formly to a C1 dependence function. Omitting condition (a4) in the definition of the
family αs (which requires modifying (a1)–(a3) in the obvious way), we obtain a family α.
It turns out that in terms of vector generators and generators of dependence functions,
one can characterize archimedean copulas and study convergence of sequences of such
copulas (see Wysocki [10]).

(Received October 17, 2011)
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[1] P. Capéraà, A. L. Fougères, and C. Genest: Bivariate distributions with given extreme
value attractor. J. Multivariate Anal. 72 (2000), 30–49.

[2] C. Genest and J. MacKay: Copules archimédiennes et familles des lois bidimensionnelles
dont les marges sont données. Canad. J. Statist. 14 (1986), 145–159.



Families of dependence functions 987

[3] G. Gudendorf and J. Segers: Extreme-value copulas. In: Copula Theory and Its Applica-
tions, Warsaw 2009, Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 127–146.

[4] E. J. Gumbel: Bivariate exponential distributions. J. Amer. Statist. Assoc. 55 (1960),
698–707.

[5] W. Hürlimann: Properties and measures of dependence for the archimax copula. Adv.
Appl. Statist. 5 (2005), 125–143.

[6] T. P. Hutchinson and C. D. Lai: Continuous Bivariate Distributions. Emphasising Appli-
cations. Rumsby Sci. Publ., Adelaide 1990.

[7] H. Joe: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997.

[8] R. B. Nelsen: An Introduction to Copulas. Springer, New York 1999.

[9] J. Pickands: Multivariate extreme value distributions. Bull. Int. Statist. Inst. 49 (1981),
859–879.

[10] W. Wysocki: When a copula is archimax. Statist. Probab. Lett. (2012), to appear.

W lodzimierz Wysocki, Institute of Computer Science, Polish Academy of Sciences, 01-237

Warszawa. Poland.

e-mail: wwysocki@ipipan.waw.pl


		webmaster@dml.cz
	2013-09-24T12:45:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




