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PENROSE TRANSFORM AND MONOGENIC SECTIONS

Tomáš Salač

Abstract. The Penrose transform gives an isomorphism between the kernel
of the 2-Dirac operator over an affine subset and the third sheaf cohomology
group on the twistor space. In the paper we give an integral formula which
realizes the isomorphism and decompose the kernel as a module of the Levi
factor of the parabolic subgroup. This gives a new insight into the structure
of the kernel of the operator.

1. Introduction

Let us denote by VR(k, n+ k) the Grassmanian of null k-planes in Rn+k,k with
a quadratic form of signature (n+ k, k). This space is the homogeneous model for
a parabolic geometry. For each k ≥ 2 and n ≥ 2k there is a sequence of invariant
differential operators starting with a first order operator called the k-Dirac operator
(in the parabolic setting), see [8]. These sequences belong to singular character and
are interesting from the point of the k-Dirac operator (in the Euclidean setting)
studied in Clifford analysis, see [4].

The sequence starting with the 2-Dirac operator D1 consists of three operators

(1) Γ(V1) D1 // Γ(V2) D2 // Γ(V3) D3 // Γ(V4)→ 0

where D2 is a second order operator while D1, D3 are first order operators. The
graph of the sequence depends only on k so we suppress the parameter n and talk
about the k-Dirac operator. However, the size of the graph with increasing k grows
rapidly. A recursive formula for constructing these graphs can be found in [5].

The sequences starting with the k-Dirac operator are coming from the Penrose
transform. The Penrose transform is explained in [2] and [10]. The Penrose transform
for the k-Dirac operator, i.e. the relative BGG sequences and the direct images, is
described in [7]. Similar sequences were obtained by the Penrose transform also in
[1] on quaternionic manifolds.

The Penrose transform lives in the holomorphic category. Thus we have to
replace real groups and spaces by their complex analogues. Let VC(k, n) be the
Grassmannian of complex k-dimensional subspaces in Ck+n that are totally null
with respect to a fixed non-degenerate, symmetric, complex bilinear form. We
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may realize an affine subset of the real Grassmanian VR(k, n + k) as the set
Rm ↪→ Cm with the canonical inclusion where Cm is an affine subset of the complex
Grassmannian VC(k, n+ k) and m = nk+

(
k
2
)
. Then a real analytic section defined

over a subset V of Rm extends uniquely to a holomorphic section over a small open
neighbourhood of the set V in Cm. This induces a natural bijection between the
set of germs of real analytic sections over Rm and the set of germs of holomorphic
sections over Cm. Thus we can naturally interpret results from the holomorphic
category in the real analytic category.

A section ψ ∈ Γ(V1) such that D1ψ = 0 is called a monogenic section. In this
paper we study the real analytic monogenic sections of the 2-Dirac operator D1 in
the case n = 6 over an affine subset of VR(2, 8). In this case we can write down
explicitly the isomorphism (12) given by the Penrose transform between the third
sheaf cohomology group H3(W,Oλ) and the kernel of D1 over the affine subset.
This is the integral formula (14) which to my knowledge has not been considered
yet. This is a similar formula as the integral formula for the Maxwell equations
given in [2] and [10]. We will use the Čech definition of Hi(W,Oλ). The third
cohomology group is discussed in some detail in Section 4.1. Moreover we give the
decomposition of the space of homogeneous monogenic sections with respect to a
maximal reductive subgroup of the parabolic subgroup, see Theorem 6.1.

1.1. Notation. We will denote by M(k, n,C), resp. M(k,C), resp. A(k,C) the
space of complex matrices of size k×n, resp. k×k, resp. the space of skew-symmetric
matrices of size k× k. The identity matrix in M(k,C) is denoted by 1k. We denote
the span of vectors v1, . . . , vk by 〈v1, . . . , vk〉. If A ∈ M(n + k, k,C) is a matrix,
then we associate to A the k-plane in Cn+k which is spanned by the columns of
the matrix A.

2. The parabolic geometry

Let {e1, e2, e3, e4, e5, ē3, ē4, ē5, ē1, ē2} be the standard basis of C10. Let h be
the complex bilinear product uniquely determined by h(ei, ēj) = δij , h(ei, ej) =
h(ēi, ēj) = 0 for all 1 ≤ i, j ≤ 5. Let G := {g ∈ EndC(C10) | ∀u, v ∈ C10 :
h(gu, gv) = h(u, v),det(g) = 1}. Let x0 := 〈e1, e2〉 and let P := {g ∈ G | g(x0) =
x0}. The space G/P is naturally isomorphic to the Grassmannian VC(2, 8). Let
G0 be the stabilizer of xc0 := 〈e3, e4, e5, ē3, ē4, ē5〉 in P. Then G0 is a maximal
reductive subgroup of P isomorphic to GL(2,C) × SO(6,C). Lie algebra g of G
consists of the matrices of the form

(2)


A Y1 Y2 Y12
X1 B D −Y T2
X2 C −BT −Y T1
X12 −XT

2 −XT
1 −AT


where A ∈ M(2,C), B ∈ M(3,C), C, D ∈ A(3,C), Yi, XT

i ∈ M(2, 3,C), X12,
Y12 ∈ A(2,C). There is a G0-invariant grading

g ∼= g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2
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such that g0 is Lie algebra of G0 and Lie algebra p of P is g0 ⊕ g1 ⊕ g2. The
subalgebra g0 corresponds to the blocks A,B,C,D, g1 to the blocks Y1, Y2, g2 to
the block Y12, g−2 to the block X12 and g−1 to the blocks X1, X2. Let us denote
by g− := g−2 ⊕ g−1.

Let π : G → G/P be the canonical projection. Let G− := exp(g−) and let
U := π(G−). The map exp is a biholomorphism between g− and G− and the map
π is a biholomorphism between G− and U . Thus U is an affine subset of VC(2, 8)
biholomorphic to M(6, 2,C)×A(2,C).

3. The double fibration

Let z0 := 〈e1, . . . , e5〉 and set R := {g ∈ G | g(z0) = z0},Q := P ∩R. Then R
and Q are parabolic subgroups of G. Then we have the diagram of double fibration

(3)
G/Q = • × •�

×
�•

η

zzuuuuu τ

$$IIIII

G/R = • • •�
×
�•

G/P = • × •�
•
�•

The twistor space G/R is the connected component of z0 in the Grassmannian
VC(5, 5). This is the Grassmannian of self-dual 5-planes. Lie algebra of R is the
subspace of g where the matrices C,X2, X12 from (2) are zero. Let z̄0 = 〈ē1, . . . , ē5〉
and let R0 := {g ∈ R | g(z̄0) = z̄0}. Then R0 is a maximal reductive subgroup of
R isomorphic to GL(5,C) and its Lie algebra consists of the matrices where A, B,
X1, Y1 are arbitrary and the other matrices are zero.

The correspondence space G/Q consists of the pairs (z, x) with x ∈ G/P,
z ∈ G/R such that x ⊂ z. Lie algebra q of Q sits in the blocks A, B, D, Y1, Y2, Y12.
Let Q0 := G0 ∩R0. Then Q0 is a maximal reductive subgroup of Q isomorphic to
GL(2,C)×GL(3,C). Lie algebra q0 of Q0 corresponds to the blocks A, B.

Let us denote V := τ−1(U) and let W := η(V).

3.1. Projection τ . Let us recall that x0 = 〈e1, e2〉, xc0 = 〈e3, . . . , e5, ē3, . . . , ē5〉
and z0 = 〈e1, . . . , e5〉. Let us notice that x⊥0 = x0 ⊕ xc0 and that the invariant
product h defined on C10 descends to a non-degenerate inner product on x⊥0 /x0.
The projection τ |V : V → U sends (z, x) 7→ x. The fibre τ−1(x0) is isomorphic to the
set of all null 5-planes in G/R which contains the null 2-plane x0. Any null 5-plane
z with (z, x0) ∈ τ−1 is contained in x⊥0 and the projection z 7→ z/x0 identifies the
fibre τ−1(x0) with a set of null 3-planes in x⊥0 /x0. We know that (z0, x0) ∈ τ−1(x0)
and z0/x0 ∼= y0 where y0 := 〈e3, e4, e5〉. The fibre τ−1(x) is isomorphic to P/Q
and in particular is connected. We deduce that the fibre is biholomorphic to the
connected component of y0 in the space of all null 3-planes in x⊥0 /x0 ∼= C6. This
connected component is biholomorphic to the family of α-planes in C6.

3.2. The family of α-planes in the Grassmanian VC(3, 6). It will be conve-
nient to make the following identifications. We identify x⊥0 /x0 ∼= Λ2C4 such that
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the basis {e3, e4, e5, ē3, ē4, ē5} goes to the basis

(4) {f0 ∧ f1, f0 ∧ f2, f0 ∧ f3, f2 ∧ f3,−f1 ∧ f3, f1 ∧ f2} ,

of Λ2C4 where {f0, f1, f2, f3} is the standard basis of C4. Under this identification,
the quadratic form on C6 goes to the quadratic form Q on Λ2C4 which is determined
by α∧α = Q(α)f0∧f1∧f2∧f3 for all α ∈ Λ2C4. The natural action of SL(4,C) on
Λ2C4 preserves this quadratic form and it turns out that this identifies SL(4,C) ∼=
Spin(6,C). The corresponding isomorphism sl(4,C) ∼= so(6,C) is determined by

A1 E12 0 0
E21 A2 E23 0
0 E32 A3 E34
0 0 E43 A4

→(5)


A1 +A2 E23 0 0 0 0
E32 A1 +A3 E34 0 0 E12
0 E43 A1 +A4 0 −E12 0
0 0 0 −A1 −A2 −E32 0
0 0 −E21 −E23 −A1 −A3 −E43
0 E21 0 0 −E34 −A1 −A4

 .

The Grassmannian VC(3, 6) is the disjoint sum of two families. The first family,
called the family of α-planes, can be identified with CP3 by the following mapping.
Let v ∈ C4 be a representative of π ∈ CP3 . Let {v, v1, v2, v3} be a basis of
C4. We assign to π the 3-plane 〈v ∧ v1, v ∧ v2, v ∧ v3〉, i = 1, 2, 3. It is easy to
see that the 3-plane is null and that the map is well defined. The other family,
called the family of β-planes, can be identified with P(C4)∗ by the assignment
[ω] ∈ P(C4)∗ 7→ 〈v1 ∧ v2, v1 ∧ v3, v2 ∧ v3〉 where {v1, v2, v3} is a basis of Ker(ω).
One can easily check that this map is well defined.

3.3. Affine coordinates on the family of α-planes. Since the family of α-planes
is biholomorphic to CP3 we know that there is an affine covering {U0, . . . ,U3} of
the family of α-planes. Let us write down the affine charts on U0 and U1. Let
v = (v0, v1, v2, v3) ∈ C4 be a non-zero vector and let us assume that v0 6= 0, resp.
v1 6= 0. Let w0 := v−1

0 v = (1, ζ1, ζ2, ζ3), resp. w1 := v−1
1 v = (ρ1, 1, ρ2, ρ3). Then

{w0 ∧ f1, w0 ∧ f2, w0 ∧ f3}, resp. {−w1 ∧ f0, w1 ∧ f2,−w1 ∧ f3} is a unique basis
of the α-plane corresponding to [v] such that the matrix whose columns are the
coefficients of the vectors with respect to the preferred basis has the form

(6)


1 0 0
0 1 0
0 0 1
0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 , resp.


1 0 0
ρ2 ρ1 0
ρ3 0 −ρ1
0 −ρ3 −ρ2
0 0 1
0 1 0

 .

Thus we see that ζ1, ζ2, ζ3, resp. ρ1, ρ2, ρ3 give natural coordinates on the set U0,
resp. U1. Similarly for v3 6= 0 and v4 6= 0. The change of coordinates between U0
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and U1 is

ζ−1
1 = ρ1, ζ2ζ

−1
1 = ρ2, ζ3ζ

−1
1 = ρ3 .(7)

3.4. The set W. The set V := τ−1(U) is biholomorphic to τ−1(x0)×U such that
τ : V → U is the canonical projection on the second factor. Then {Vi := Ui × U |
i = 0, 1, 2, 3} is an affine covering of V. For i = 0, 1, 2, 3 put Wi := η(Vi). Then
W := {Wi | i = 0, 1, 2, 3} is an affine covering of W = η(V). A full discussion to
this can be found in [9]. Then each self-dual 5-plane in W0, resp. W1 has a unique
basis given by the columns of the matrix of the form
(8)

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
z11 z21 0 −ζ3 ζ2
z21 z22 ζ3 0 −ζ1
z31 z32 −ζ2 ζ1 0
0 z0 −z11 −z21 −z31
−z0 0 −z21 −z22 −z32


, resp.



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
w31 w32 ρ2 ρ1 0
w21 w22 ρ3 0 −ρ1
w11 w21 0 −ρ3 −ρ2
0 0 0 0 1
0 0 0 1 0
0 w0 ∗ ∗ ∗
−w0 0 ∗ ∗ ∗


where ∗ are determined by the other entries. We write the left matrix from (8) in
the block form

(9)


12 0
0 13
B1 B2
B0 −BT1

 , B0 =
(

0 z0
−z0 0

)
,

B1 = (zij), B2 =

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 .

The change of coordinates on W0 ∩W1 is

(10)

w0 = z0 + z32z21ζ
−1
1 − z22z31ζ

−1
1 ,

w11 = z11 + z31ζ3ζ
−1
1 + z21ζ2ζ

−1
1 ,

w12 = z12 + z32ζ3ζ
−1
1 + z22ζ2ζ

−1
1 ,

wij = (−1)iζ−1
1 zij , i = 2, 3, j = 1, 2

and those in (7).

4. Sections of the bundle Oλ over the set W

Let Cλ be an one-dimensional R-module with highest weight
( 5

2 ,
5
2 ,

5
2 ,

5
2 ,

5
2
)
. Let

Oλ be the sheaf of holomorphic sections of the line bundle Cλ := G ×R Cλ. Let
M⊂ G/R be an open subset. Let Oλ(M) be the space of holomorphic sections of
the bundle Cλ over M and let O(M) be the space of holomorphic functions on M.



404 T. SALAČ

Let z ∈ W0 and let {v1, . . . , v5} be the preferred basis of z from (8). Then
{v1, . . . , v5, ē3, ē4, ē5, ē1, ē2} is null orthogonal basis of C10. Let g ∈ EndC(C10) be
the linear map such that for all 1 ≤ i ≤ 5 : g(ei) = vi, g(ēi) = ēi. Then g ∈ G
and the map z 7→ ρ0(z) := g is a section of the principal R-bundle over W0. We
define similarly for i = 1, 2, 3 sections ρi over Wi. Let us write the transition
function of the bundle Cλ on W0 ∩W1 in the preferred trivializations ρ0 and ρ1.
Let f0 ∈ O(W0), f1 ∈ O(W1). Then f0, f1 defines an element of Oλ(W0 ∪W1) iff

(11) f0(z0, zij , ζi) = ζ−5
1 f1(w0, wij , ρi)

on W0 ∩W1. All the transition functions are rational functions and thus we can
also consider rational sections of Cλ over W.

4.1. Cohomology groups. There is a spectral sequence which relates the sheaf
cohomology Hi(W,Oλ) to the cohomology of the sequence starting with the 2-Dirac
operator over U , for more see [2]. On the first page of the spectral sequence appears
the direct images of the relative BGG sequence living on the correspondence space.
These direct images can be found in [7]. The spectral sequence converges on the
second page. In particular for k = 2, n = 6, we conclude that

(12) P : H3(W,Oλ) ∼= Ker(D1,U)

where the bundles from (1) are V1 = G ×P (Cν ⊗ S+), V2 = G ×P (Cµ ⊗ S+)
where the GL(2,C)-module Cν , resp. C2

µ has highest weight
( 5

2 ,
5
2
)
, resp.

( 7
2 ,

5
2
)

and S+ ∼= C4,S− ∼= (C4)∗ as SL(4,C)-modules.
The Leray theorem states that Hi(W,Oλ) ∼= Ȟi(W,Oλ) where Ȟ∗(W,Oλ) are

the Čech cohomology groups computed with respect to the affine covering W, see
for example [10]. The co-chains groups are Cj(W,Oλ) = 0, j ≥ 0, C3(W,Oλ) ={

(
⋂3
i=0Wi, f) | f ∈ Oλ(

⋂3
i=0Wi)

}
, C2(W,Oλ) = . . .. In particular notice that

from this follows that for k = 2, n = 6 the sequence starting with the 2-Dirac opera-
tor is locally exact. By definition we have that Ȟ3(W,Oλ) := C3(W,Oλ)/ Im(δ2)
where δ2 is the Čech co-differential. We will denote the cohomology classes by [ ].
Let us make some simple observations about Ȟ3(W,Oλ). We will work with the
affine chart on W0 from (8).

Let us first notice that
⋂
i=0,1,2,3Wi = {z ∈ W0 | ζ1 6= 0, ζ2 6= 0, ζ3 6= 0}. Thus

if f ∈ Oλ(
⋂
i=0,1,2,3Wi) is a holomorphic section then f is the converging sum of

rational sections f(s0, sij , rk) = zs0
0
∏
ij z

sij
ij ζ

−r1
1 ζ−r2

2 ζ−r3
3 where s0, sij ≥ 0 and r1,

r2, r3 ∈ Z. It is easy to see that [f(s0, sij , rk)] = 0 if r1 < 0 or r2 < 0 or r3 < 0.
From the formula (11) follows that if 5 +s0 +

∑
sij > r1 + r2 + r3 then f(s0, sij , rk)

extends to a rational section onW1∩W2∩W3 and thus [f(s0, sij , rk)] = 0. However
notice that this does not characterize Ȟ3(W,Oλ). For example the cohomology
class of the section zi31ζ

−1
1 ζ−1

2 ζ−3
3 is trivial for any i ≥ 0 although the relation does

not hold. The full characterization of the Ȟ3(W,Oλ) will be given in Theorem 6.1
where we give it as a direct sum of G0-modules.
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5. The correspondence x ∈ U 7→ η ◦ τ−1(x) ⊂ W

Let us write the correspondence on W0. Then
12
X1
X2

X12 − 1
2 (XT

1 X2 +XT
2 X1)

 ∈ U 7→(13)


12 0
0 13

X2 − ζX1 ζ
X12 + 1

2 (XT
2 X1 −XT

1 X2) +XT
1 ζX1 −XT

2 −XT
1 ζ

 ⊂ W0

where the blocks of the matrix in the second row are those from (9). In particular
X1, X2 ∈ M(3, 2,C), X12 ∈ A(2,C), ζ ∈ A(3,C). Notice that the set x̂ := η ◦
τ−1(x) ⊂ W is biholomorphic to CP3 for each x ∈ U .

5.1. Integration. The isomorphism (12) is given by integrating over the fibres
of the correspondence (13). Let f ∈ C3(W,Oλ). We write f ≡ f(B0, B1, B2)
where (B0, B1, B2) are the matrices from (9). Then the integral formula expresses
P(f)(X12, X1, X2) as

1
(2πi)3

∫
(S1)3(1, ζ1, ζ2, ζ3)f(X12 + 1

2 (XT
2 X1 −XT

1 X2)(14)

+XT
1 ζX2, X2 − ζX1, ζ) dζ1 dζ2 dζ3

where dζ1dζ2dζ3 is the holomorphic top form on x̂ which is homogeneous of degree
4 in the homogeneous coordinates. The section f is homogeneous of degree −5
in the homogeneous coordinates. Thus the integrand is homogeneous of degree
zero and the integration does not depend on the choice of trivialization on x̂. For
example

(15) P(ζ−1
1 ζ−1

2 ζ−1
3 ) = 1

(2πi)3

∫
(S1)3

(1, ζ1, ζ2, ζ3)dζ1dζ2dζ3

ζ1ζ2ζ3
= (1, 0, 0, 0)

is a constant spinor on U . Let us recall at this point that Spin(6,C) ∼= SL(4,C)
and that the spinor representation S+ of Spin(6,C) is isomorphic to the standard
representation of SL(4,C). Thus we can view the right hand side of (15) as a
section of Γ(G×P (Cν ⊗ S+)) over U . Lemma 8.6.1 in [9] shows that the integral
formula (14) really gives monogenic spinors.

6. Decomposition of monogenic sections into irreducible G0-modules

It is convenient to introduce a grading on the space of all polynomial spinors
on U . We trivialize the P-bundle over U by the map U π−1

−−→ G− ↪→ G. We write
coordinates on g− and thus also on U as X1 = (x′ij)

i=1,2,3
j=1,2 , X2 = (xij)i=1,2,3

j=1,2 ,

X12 =
(

0 x12
−x12 0

)
. We will denote polynomials on the affine space g− with the

same letters as the coordinates.
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Let us first define the weighted degree of linear polynomials by setting degw(x12) :=
2, degw(xij) = degw(x′ij) := 1. Let us extend it to the set of monomials in
C[x12, xij , x

′
ij ] by requiring that degw is a homomorphism of (C[x12, xij , x

′
ij ], ·) and

(Z,+). Let Nk be the vector space generated by the monomials of the weighted
degree k. Finally, let Mk be the space of monogenic spinors whose components
belong to Nk. If we extend this gradation naturally also to Γ(V2) over U , then the
operator D1 is homogeneous of degree −1.

We denote by W(a,b), resp. V(a,b,c,d) an irreducible GL(2,C), resp. SL(4,C)-module
with highest weight (a, b), resp. (a, b, c, d). The space of linear monogenic spinors is
a G0-irreducible module isomorphic to W( 7

2 ,
5
2 ) ⊗V(2,1,0,0). As a particular case of

Theorem 6.1 we write down the decomposition of the space of quadratic monogenic
spinors M2 which is M2 = W( 9

2 ,
5
2 ) ⊗ V(3,2,0,0) ⊕W( 7

2 ,
7
2 ) ⊗ V(3,1,1,0) ⊕W( 7

2 ,
7
2 ) ⊗

V(1,0,0,0). The proof of Theorem 6.1 gives a way how to find highest weight vectors
of these modules viewed as elements of Ȟ3(W,Oλ) which we write as in Section 4.1
as rational functions of coordinates from the left hand side in (8). Let us write
the dimension of the modules, the highest weight vectors and the corresponding
monogenic spinors on U obtained by using the formula (14). We have the following
table

W( 9
2 ,

5
2 ) ⊗V(3,2,0,0) : 180, z2

11
ζ1ζ2ζ3

, (x2
11, 0, 0, 0) ,

W( 7
2 ,

7
2 ) ⊗V(3,1,1,0) : 36, z11z22 − z12z21

ζ1ζ2ζ3
, (x11x22 − x21x12, 0, 0, 0) ,

W( 7
2 ,

7
2 ) ⊗V(1,0,0,0) : 4, z0

ζ1ζ2ζ3
− z22z31 − z21z32

ζ2
1ζ2ζ3

− z11z32 − z12z31

ζ1ζ2
2ζ3

− z12z21 − z11z22

ζ1ζ2ζ2
3

,

(3x12 + 1
2

3∑
i=1

(x′i1xi2 − xi1x′i2), x21x32 − x31x22, x31x12 − x11x32, x11x22 − x21x12) .

In general we have the following theorem.

Theorem 6.1. Let us keep the notation as above. Then the space Mk of monogenic
spinors of weighted degree k on U decomposes into irreducible G0-modules

(16) Mk
∼=

⊕
a,b,l≥0,2a+b+2l=k

W( 5
2 +l+a+b, 5

2 +l+a) ⊗V(2a+b+1,a+b,a,0) .

In particular, the decomposition of algebraic monogenic spinors into irreducible
G0-modules is multiplicity free.

Proof. Let us recall that the sections are in bijective correspondence with equi-
variant functions on the total space and that the action of G0 on Ȟ3(W,Oλ) is
induced by the left action on the total space of the parabolic geometry. Thus Lie
algebra g0 of G0 acts by the right invariant vector fields, i.e. let X ∈ g0 and let RX
be the corresponding right invariant vector field then for any equivariant function f
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the action is (Xf)(g) = d
dt

∣∣
0f(e−tXg) = −RXf(g). Let us now compute the weight

of

(17) f =
zs0

0
∏
ij z

sij
ij

ζr1
1 ζr2

2 ζr3
3
∈ C3(W,Oλ) .

Let us denote for j = 1, 2 : cj := s1j + s2j + s3j , for i = 1, 2, 3 : si := si1 + si2 and
let r := r1 +r2 +r3, s := s1 +s2 +s3. We write weights as gl(2,C)⊕sl(4,C)-weights.
Then the formulas (2), (5), (8) give that the weight of f is

(18) (c1 + s0 + 5
2 , c2 + s0 + 5

2)⊕ (5 + s− r, r1 + s1, r2 + s2, r3 + s3).

Let us denote the R-module structure on Cλ by σ. Let A12 be a standard positive
root in sl(2,C). The action of g0 on the space of polynomials on W0 is determined
by

(19)

E12z0 = z22z31 − z21z32, E12z1j = −ζ2z2j − ζ3z3j , E12zkj = zkjζ1 ,

E12ζi = ζiζ1, A12zi2 = zi1, E23ζ1 = −ζ2 ,

E23z2j = z1j , E34ζ2 = −ζ3, E34z3j = z2j , E21ζ1 = 1 ,

E32z1j = z2j , E32ζ2 = −ζ1, E43ζ3 = −ζ2, E43z2j = z3j ,

where i = 1, 2, 3, j = 1, 2, k = 2, 3 and all other terms are zero. Since f ∈ Oλ(W0)
is a section, we have take into account also the vertical part of the right invariant
vector fields corresponding to E∗ ∈ g0. We denote the action of the vertical part of
RE∗ by σ̇(E∗). We find that

(20) σ̇(E12)f = 5ζ1f, σ̇(A12)f = σ̇(E23)f = σ̇(E34)f = 0 .

This and the Leibniz rule allows us to compute the action of g0 on C3(W,Oλ). In
particular, with respect to A12, E23, E34, f behaves as a usual function while when
differentiating with respect to E12 there is the additional term 5ζ1f appearing. For
example

E12(z11/ζ1) = 5z11 − (ζ2z21 + ζ3z31)/ζ1 − z11 = 4z11 − (ζ2z21 + ζ3z31)/ζ1 .

�

Lemma 6.1. Let f be a q0-highest weight vector in the space of polynomials on
the block B1 in (9), i.e. f ∈ C[zij ]. Then f is A(z11z22 − z21z12)azb11 for some
A ∈ C, a, b = 0, 1, 2, . . .

Proof. See Theorem 5.2.7. on GL(k,C)×GL(n,C)-duality from [6]. �

Lemma 6.2. Let f be the rational section from (17) such that the weight of f
is dominant and s0 = 0, ri ≥ 1. Then the class [Er1+r2+r3−3

12 Er2+r3−2
23 Er3−1

34 f ] ∈
Ȟ3(W,Oλ) is non-zero.
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Proof. We have that

Er3−1
34 f = A

∏
ij z

sij
ij

ζr1
1 ζr2+r3−1

2 ζ3
+ ζ−2

3 (. . .) ,

Er2+r3−2
23 Er3−1

34 f = B

∏
ij z

sij
ij

ζr1+r2+r3−2
1 ζ2ζ3

+ ζ−2
2 (. . .) + ζ−2

3 (. . .) ,

Er1+r2+r3−3
12 Er2+r3−2

23 Er3−1
34 f = C

∏
ij z

sij
ij

ζ1ζ2ζ3
+ ζ−2

1 (. . .) + ζ−2
2 (. . .) + ζ−2

3 (. . .) ,

where . . . denotes sections where ζi appear only in denominators and
A = (−1)r3−1r2(r2 + 1) . . . (r2 + r3 − 2) ,
B = (−1)r2+r3−2r1(r1 + 1) . . . (r1 + r2 + r3 − 3)A ,
C = AB(s2 + s3 + 5− r)(s2 + s3 + 5− (r − 1)) . . . (s2 + s3 + 1) .

Since the weight of f is by assumption dominant, then 5 + s− r ≥ r1 + s1 > 0 and
thus 5 + s2 + s3 − r > 0. It follows that C 6= 0 and thus also

(21) P(Er1+r2+r3−3
12 Er2+r3−2

23 Er3−1
34 f) = C

∏
ij

(xsijij , 0, 0, 0) + . . .

where . . . denotes some spinors whose first components are different from
∏
ij x

sij
ij .

In particular we get that the cohomology class is non-zero. �

Lemma 6.3. Let

(22) f =
K∑
k=1

gk, where gk = fk∏
i ζ
rk
i
i

,

be a highest weight vector in Ȟ3(W,Oλ) such that all fk ∈ C[zij ]. Then K = r1
1 =

r1
2 = r1

3 = 1 and f1 is a q0-maximal polynomial given in Lemma 6.1.

Proof. Each summand in (22) satisfy the assumptions of Lemma (6.2). Let us
notice that from (18) follows that for all 1 ≤ j, k ≤ K : rj1 + rj2 + rj3 = rk1 + rk2 + rk3
and that deg(fj) = deg(fk). We can order the summands in (22) in such a way
that for all k > 1 the following holds: r1

1 > rk1 or r1
1 = rk1 and r1

2 > rk2 or r1
1 = rk1

and r1
2 = rk2 and r1

3 > rk3 .
Let us assume that r1

1r
1
2r

3
3 ≥ 2. Let E := E

r1
1+r1

2+r1
3−3

12 E
r1

2+r1
3−2

23 E
r1

3−1
34 . The

formula (21) reveals that P(E(g1)) 6= 0. Similar manipulations give that P(E(g1)) 6=
−P(E(f − g1) and thus P(Ef) 6= 0 and thus f is not a highest weight vector.
Thus the only possibility is that K = r1

1 = r1
2 = r1

3 = 1 and f = f1
ζ1ζ2ζ3

with f1 a
q0-highest weight vector from Lemma 6.2. �

Lemma 6.4. Let

(23) f =
s0∑
i=0

zs0−i
0 fi = zs0

0 f0 + zs0−1
0 f1 + . . .

be a maximal highest weight vector such that fi ∈ C3(W,Oλ) are rational sections
which do not depend on z0 and [f0] 6= 0. Then f0 is also a highest weight vector
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and f is uniquely determined by s0 and f0. Conversely given a non-zero highest
weight vector f0 ∈ C3(W,Oλ) that does not depend on the variable z0 and s0 ≥ 0,
then there exists a unique highest weight vector f of the form as in (23) for some
fi, i = 1, . . . , s0.

Proof. We easily check that if f is highest weight vector then also f0 is highest
weight vector. Thus f0 is a multiple non-zero of za11(z11z22 − z12z21)bζ−1

1 ζ−1
2 ζ−1

3
for some a, b ≥ 0. Let us check uniqueness of f given f0 and s0. Let f̂ , f̃ be two
highest weight vectors of the same weight such that f̂ = zs0

0 f0 + zs0−1
0 (. . .) and

f̃ = zs0
0 f0 + zs0−1

0 (. . .). Then f̌ := f̂ − f̃ = zt00 f̌0 + zt0−1
0 f̌1 + . . . with t0 < s0 has to

be a highest weight vector with the same weight as f and f ′. Thus f̌0 is a multiple
of zc11(z11z22 − z12z21)dζ−1

1 ζ−1
2 ζ−1

3 for some c, d ≥ 0. But the formula (18) shows
that then a = c, b = d and thus also t0 = s0. Contradiction.

Let us consider a filtration {Fi | i ≥ 0} of C3(W,Oλ) given by the degree of
z0, i.e. Fi := {g ∈ C3(W,Oλ) | ∂i+1

12 g = 0} where ∂12 is the coordinate vector field
corresponding to the variable z0. From table (19), we conclude that the action
of G0 preserves this filtration. Let ftop = zs0

0 f0 be the highest part of f . Let
V = G0 · ftop = {

∑M
j=1 gj · ftop | gj ∈ G0,M <∞}. Then clearly V is the smallest

G0-module which contains the vector ftop. Moreover V ⊂ Fs0 and from the table
(19) follows that V/Fs0−1 is spanned by ftop. We have that V = ⊕iVi for some
irreducible G0-modules Vi. Let hi be a maximal vector of Vi. Since the filtration
Fi is G0-equivariant, there exists i such that hi = ftop + l.o.t. where l.o.t. means
lower order terms in z0-variables. From the uniqueness we have that hi is up to a
multiple the unique highest weight vector with the leading term zs0

0 f0. �

Thus we have that any highest weight vector is uniquely determined by its leading
term ftop with respect to the variable z0. If ftop = zl0(z11z22 − z12z21)azb11, then f
is highest weight vector of the module W( 5

2 +a+b+s0,
5
2 +s0+b) ⊗ V(2a+b+1,a+b,a,0).
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