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Abstract. In this paper, for the second initial boundary value problem for Schrödinger
systems, we obtain a performance of generalized solutions in a neighborhood of conical
points on the boundary of the base of infinite cylinders. The main result are asymptotic
formulas for generalized solutions in case the associated spectrum problem has more than
one eigenvalue in the strip considered.
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1. Introduction

The boundary value problems for Schrödinger equations whose coefficients are

independent of the time variable have been previously proposed and analyzed by

J.-L. Lions and E. Magenes, [15], [16]. In the finite cylinder ΩT = Ω × (0, T ),

the first initial boundary value problem for this kind of equation with coefficients

depending on both the time and spatial variables has been considered in [2]. In this

paper, we study the second initial boundary value problem for general Schrödinger

systems (coefficients depending on both the time and spatial variables) in the infinite

cylinder Ω∞ = Ω × (0,∞) with conical points on the boundary of the base Ω.

Existence, uniqueness of the generalized solution of this problem were considered

in [5], the regularity of the generalized solution (with respect to both the time and

This research is funded by Vietnam national foundation for science and Technology
development (NAFOSTED) under grant number 101.01-2011.30.
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spatial variables) were given in [6] and [7]. Our main purpose here is to study the

asymptotic behavior of generalized solutions in a neighborhood of conical points.

In the previous papers [1], [2], [3], [4], to consider asymptotic behavior of solutions

of boundary value problems for non-stationary systems, the authors just studied the

case when the associated spectrum problem has simple eigenvalues. And now, by

weakening restrictions on eigenvalues of the spectrum problem (extending them to

semisimple eigenvalues having invariant multiplicity), we obtain generally asymptotic

formulas of solutions as linear combinations of special singular vector functions and

regular vector functions. Moreover, these vector functions and coefficients of the

linear combinations are regular with respect to the time variable. Our results are

extended to the case in which the considered strip has more than one eigenvalue.

That causes more technical difficulties. The main method used in this paper can

be shown as follows. At first, we study the asymptotic behavior of solutions of

the second boundary value problem for elliptic systems depending on a parameter.

After that, we take the term containing the derivative in time of the unknown vector

function to the right-hand side of the system so that the problem can be viewed as an

elliptic one (depending on the parameter t). Dividing m into 3 cases by comparing it

with 1
2n, where n is the dimension of Ω, we can manage to apply results for elliptic

systems depending on a parameter to get the asymptotic behavior of solutions of our

problem.

The paper is organized as follows. In Section 2, we introduce some notation and

formulation of the problem. The main result is given in Section 3, where asymptotic

formulas of solutions of the second initial boundary value problem for Schrödinger

systems are shown. In Section 4, by giving some auxiliary lemmas, we prove our

main result. Some examples are stated in Section 5. Finally, some conclusions will

be given in the last section.

2. Notation and formulation of the problem

Suppose that Ω is a bounded domain in R
n with the boundary ∂Ω. Moreover,

we assume that Γ = ∂Ω \ {0} is a smooth manifold and Ω coincides with the cone

K = β{x : x/|x| ∈ G} in a neighborhood of the origin 0, where G is a smooth domain

on the unit sphere Sn−1 in R
n.

Let A be a subset of Rn. Denote AT = A × (0, T ) for some T ∈ (0,∞), A∞ =

A × (0,∞) and A∞ = A × [0,∞]. Let u be a complex valued vector function with

components u1, . . . , us and let α = (α1, . . . , αn) (αi ∈ N, i = 1, . . . , n) be a multi-

index, |α| = α1 + . . . + αn. We use the notation Dα = ∂|α|/∂xα1

1 . . . ∂xαn
n , |D

αu|2 =
s

∑

i=1

|Dαui|
2 and utj = (∂ju1/∂tj, . . . , ∂jus/∂tj). Denote by ω = (ω1, . . . , ωn−1) a
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local coordinate system on Sn−1, r = |x| and
(

k
l

)

= k!/l!(k − l)! (0 6 l 6 k).

Moreover, if β is a real number, we use the symbol [β] for the maximum integer that

is smaller than or equal to β.

Assume that l, h, k are nonnegative integer numbers, β is a real number and

γ is a positive real number. In this paper we will use the usual function spaces:

C̊∞(Ω), L2(Ω), H l(Ω), H l−1/2(Γ), H l,k(ΩT ) when T < ∞ (see [2], [5] for the precise

definitions). We define

• H l
β(Ω)—the space of all measurable complex functions v(x) that satisfy

(2.1) ‖v‖Hl
β(Ω) =

( l
∑

|α|=0

∫

Ω

r2(β+|α|−l)|Dαv|2 dx

)1/2

< ∞;

• H
l−1/2
β (Γ)—the space of traces of functions from H l

β(Ω) on Γ with the norm

(2.2) ‖v‖
H

l−1/2

β (Γ)
= inf{‖w‖Hl

β(Ω) : w ∈ H l
β(Ω), w|Γ = v};

• W l
β(Ω)—the space of all measurable complex functions v(x) that have general-

ized derivatives up to order l with the norm

‖v‖W l
β(Ω) :=

( l
∑

|α|=0

∫

Ω

r2β |Dαv|2 dx

)1/2

< ∞;

• H l,k(e−γt, Ω∞)—the space of all measurable complex functions v(x, t) that have

generalized derivatives up to order l with respect to x and up to order k with

respect to t with the norm

‖v‖Hl,k(e−γt,Ω∞) =

(
∫

Ω∞

[ l
∑

|α|=0

|Dαv|2 +

k
∑

j=0

|vtj |2
]

e−2γt dxdt

)1/2

< ∞;

• H l,k
β (e−γt, Ω∞)—the space of all measurable complex functions v(x, t) with the

norm

‖v‖Hl,k
β (e−γt,Ω∞)(2.3)

=

(
∫

Ω∞

( l
∑

|α|=0

r2(β+|α|−l)|Dαv|2 +

k
∑

j=1

|vtj |2
)

e−2γt dxdt

)1/2

< ∞;
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• V l
β(e−γt, Ω∞)—the space of all measurable complex functions v(x, t) that have

generalized derivatives up to order l with respect to x and t, with the norm

‖v‖V l
β(e−γt,Ω∞)

=

(
∫

Ω∞

( l
∑

|α|+j=1

r2(β+|α|+j−l)|Dαlvtj |2 + |v|2
)

e−2γt dxdt

)1/2

< ∞.

The weighted spaces H l
β(K), H

l−1/2
β (∂K), H l,k

β (e−γt, K∞) are defined similarly

to (2.1), (2.2), and (2.3) with Ω, Γ replaced by K and ∂K, respectively.

Let X be a Banach space and h a nonnegative integer. By L∞(0,∞; X) we denote

the space of all X-valued functions defined on (0,∞) with the norm

‖v‖∞,X = ess sup
t>0

‖v(t)‖X < ∞.

Denote byWh(0,∞; X) the Sobolev space of allX-valued functions defined on (0,∞)

with the norm

‖f‖W h(0,∞;X) =

( h
∑

k=0

∫ ∞

0

‖ftk(t)‖2
Xe−2γt dt

)1/2

< ∞.

For short, we denote Lh
2(e−γt, (0,∞)) = Wh(0,∞;C),

V l,0
β,h(e−γt, Ω∞) = Wh(0,∞; H l

β(Ω)),

V
l−1/2,0
β,h (e−γt, Γ∞) = Wh(0,∞; H

l−1/2
β (Γ)),

V l,0
β,h(e−γt, K∞) = Wh(0,∞; H l

β(K)),

V
l−1/2,0
β,h (e−γt, ∂K∞) = Wh(0,∞; H

l−1/2
β (∂K)),

C∞,h(e−γt, G∞) = Wh(0,∞; C∞(G)),

C∞,h(e−γt, ∂G∞) = Wh(0,∞; C∞(∂G)).

Recall that an X-valued function f(t) defined on [0,∞) is said to be continuous

or analytic at∞ if the function g(t) := f(1/t) is continuous or analytic, respectively,

at t = 0 with a suitable value of g(0) ∈ X . In these cases we can regard f(t) as a

function defined on [0,∞] with f(∞) := g(0).

Denote by Ca([0,∞], X) the set of all X-valued functions defined and analytic on

[0,∞]. It is clear that if f ∈ Ca([0,∞], X) then f together with all its derivatives

are bounded on [0,∞].
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Let A be a subset of Rn and let f(x, t) be a complex-valued function defined

on A∞. We will say that f belongs to the class C∞,a(A∞) if f ∈ Ca([0,∞], Cl(A))

for all nonnegative integers l.

For convenience, in the rest of this paper we say that the complex valued vector

functions u(x, t), f(x, t), g(x, t), . . . belong to some spaces if all of its components

belong to them.

We now introduce a 2mth-order differential operator

L = L(x, t, D) :=

m
∑

|p|,|q|=0

Dp(apq(x, t)Dq),

where apq are s × s matrices of functions belonging to C∞,a(Ω∞) and apq =

(−1)|p|+|q|a∗
qp (a

∗
qp denotes the transposed conjugate matrix of aqp). Suppose that

apq are continuous in x ∈ Ω uniformly with respect to t ∈ [0,∞] if |p| = |q| = m.

Set

B[u, u](t) =

m
∑

|p|,|q|=0

(−1)|p|
∫

Ω

apq(x, t)Dqu(x, t)Dpu(x, t) dx.

We assume that B[·, ·](t) is Hm(Ω)-coercive uniformly with respect to t ∈ (0,∞),

i.e.,

B(t, u, u) > µ0‖u‖
2
Hm(Ω)

for all u ∈ Hm(Ω), t ∈ (0,∞), where µ0 is a positive constant independent of u and

t (see [5] for reference).

Assume that

Bj = Bj(x, t, D) :=
∑

|α|62m−1−j

bjα(x, t)Dα, j = 0, 1, . . . , m − 1

is a system of boundary operators on Γ∞, where coefficients bjα are s× s matrices of

functions belonging to C∞,a(∂Ω×[0,∞]). Suppose that bjα are continuous in x ∈ ∂Ω

uniformly with respect to t ∈ [0,∞] if |α| = 2m − 1 − j for all j = 0, 1, . . . , m − 1.

Moreover, we assume that the system {Bj, j = 0, . . . , m − 1} satisfies the Green

formula

∫

Ω

Luv dx =

m
∑

|p|,|q|=0

(−1)|p|
∫

Ω

apq(·, t)D
quDpv dx +

m−1
∑

j=0

∫

Γ

Bju
∂jv

∂νj
ds

for all u, v ∈ C∞(Ω) and almost all t ∈ (0,∞), where ν is the unit exterior normal

to Γ.
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In this paper, we consider asymptotic behavior near the conical point of solutions

of the second initial boundary value problem for the Schrödinger system

i(−1)m−1Lu − ut = f in Ω∞,(2.4)

Bju = 0 on Γ∞, j = 0, 1, . . . , m − 1,(2.5)

u|t=0 = 0 on Ω,(2.6)

where u, f are vector functions.

The vector function u(x, t) is then called a generalized solution in the space

Hm,0(e−γt, Ω∞) of the problem (2.4)–(2.6) if u ∈ Hm,0(e−γt, Ω∞) and for each

T ∈ (0,∞), the integral equality

i(−1)m−1
m

∑

|p|,|q|=0

(−1)|p|
∫

ΩT

apq(x, t)Dqu(x, t)Dpη(x, t) dxdt(2.7)

+

∫

ΩT

u(x, t)ηt(x, t) dxdt =

∫

ΩT

f(x, t)η(x, t) dxdt

holds for all test vector functions η(x, t) ∈ Hm,1(ΩT ), η(x, T ) = 0 for all x ∈ Ω.

The solvability of this problem was considered in [5] (Theorems 3.1, 3.2). It can

be formulated as follows.

Assume that

i) |(∂apq/∂t)(x, t)| 6 µ where µ = const. > 0; ∀ 0 6 |p|, |q| 6 m; ∀ (x, t) ∈ Ω∞

and

ii) f, ft ∈ L∞(0,∞, L2(Ω)), f(x, 0) = 0.

Then there exists a positive number γ0 such that for every γ > γ0 the second initial

boundary value problem (2.4)–(2.6) has a unique generalized solution u(x, t) in the

space Hm,0(e−γt, Ω∞).

Moreover, the regularity of the generalized solution (with respect to both the time

and spatial variables) was given in [6] and [7]. The main point in this paper is to

study the asymptotic behavior of generalized solutions in a neighborhood of conical

points. The results are given in the next section.
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3. Main result

Denote

L(t, D) :=
∑

|p|=|q|=m

Dp(apq(0, t)Dq),

Bj(t, D) :=
∑

|α|=2m−1−j

bjα(0, t)Dα, j = 0, 1, . . . , m − 1

to be the principal parts of operators L(x, t, D), Bj(x, t, D) at the origin 0.

Let ω = (ω1, . . . , ωn−1) be a local coordinate system on Sn−1, r = |x|. We

can check easily that Dα = r−|α|
|α|
∑

k=0

Pα,k(ω, Dω)(rDr)
k, where Pα,k(ω, Dω) is a

linear operator with coefficients belonging to C∞,a(G∞), Dr = i∂/∂r and Dω =

∂/∂ω1 . . . ∂ωn−1. So the operators L(t, D), Bj(t, D) can be rewritten in the form

L(t, D) = r−2mL(ω, t, rDr , Dω),

Bj(t, D) = r−(2m−1−j)Bj(ω, t, rDr, Dω), j = 0, 1, . . . , m − 1,

where L(ω, t, rDr, Dω), Bj(ω, t, rDr, Dω), j = 0, 1, . . . , m − 1, are linear operators

with coefficients belonging to C∞,a(G∞).

We introduce the operator

U(λ, t) = (L(ω, t, λ, Dω),Bj(ω, t, λ, Dω)), λ ∈ C, t ∈ [0,∞)

of the parameter-depending elliptic boundary-value problem

L(ω, t, λ, Dω)v = 0 in G,(3.1)

Bj(ω, t, λ, Dω)v = 0 on ∂G, j = 0, 1, . . . , m − 1.(3.2)

(Here the parameters are λ and t.) For every fixed number λ ∈ C, t ∈ [0,∞) this

operator continuously maps

X ≡ H l(G) into Y ≡ H l−2m(G) ×

m
∏

j=1

H l−µj−1/2(∂G) (l > 2m).

We mention now some well-known definitions ([13]). Let t0 ∈ [0,∞) be a fixed

number. If λ0 ∈ C, ϕ0 ∈ X are such that ϕ0 6= 0, U(λ0, t0)ϕ0 = 0, then λ0 is called

an eigenvalue of U(λ, t0) and ϕ0 ∈ X is called an eigenvector corresponding to λ0.

Λ = dim kerU(λ0, t0) is called the geometric multiplicity of the eigenvalue λ0.
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If the elements ϕ1, . . . , ϕs of X satisfy the equations

σ
∑

q=0

1

q!

dq

dλq
U(λ, t0)|λ=λ0

ϕσ−q = 0 for σ = 1, . . . , s,

then the ordered collection ϕ0, ϕ1, . . . , ϕs is said to be a Jordan chain corresponding

to the eigenvalue λ0 of the length s + 1. The rank of the eigenvector ϕ0 (rankϕ0) is

the maximal length of the Jordan chains corresponding to the eigenvector ϕ0.

A canonical system of eigenvectors of U(λ0, t0) corresponding to the eigenvalue λ0

is a system of eigenvectors ϕ1,0, . . . , ϕΛ,0 such that rankϕ1,0 is maximal among

the ranks of all eigenvectors corresponding to λ0 and rankϕj,0 is maximal among

the ranks of all eigenvectors in any direct complement in kerU(λ0, t0) to the lin-

ear span of vectors ϕ1,0, . . . , ϕj−1,0 (j = 2, . . . , Λ). The numbers κj = rankϕj,0

(j = 1, . . . , Λ) are called the partial multiplicities and the sum κ = κ1 + . . . + κΛ is

called the algebraic multiplicity of the eigenvalue λ0.

The eigenvalue λ0 is called simple if both its geometric multiplicity and the rank

of the corresponding eigenvector equal one. The eigenvalue λ0 is called semisimple if

its algebraic multiplicity and its geometric multiplicity are equal. So all semisimple

eigenvalue’s partial multiplicities are equal to one (see [8, p. 70]).

It is well known [13] that for every t ∈ [0,∞), the spectrum of the problem (3.1)–

(3.2) is an enumerable set of eigenvalues. In addition, it follows from [8, p. 70,

p. 99] that if λ(t) is a semisimple eigenvalue having invariant multiplicity for all

t ∈ [0,∞] of the problem (3.1)–(3.2), then λ(t) is analytic on [0,∞]. Moreover,

there exists a canonical system of eigenvectors {ϕk(ω, t), k = 1, . . . , Λ} of the prob-

lem (3.1)–(3.2) corresponding to the eigenvalue λ(t) such that ϕk(ω, t) are analytic

functions on G∞ for all k = 1, . . . , Λ; Λ is the algebraic multiple of the eigen-

value λ(t).

For γ > 0, denote γk := (2k + 1)γ. The following theorem gives the asymptotic

behavior of solutions of the second initial boundary value problem for Schrödinger

system (2.4)–(2.6) in a neighborhood of a conical point.

Theorem 3.1. Let l, h be nonnegative integers, let β, β′ be real numbers that

satisfy β > max{m, 2m − 1
2n} and 0 6 β′ < β. Assume that the vector func-

tion u(x, t) is a generalized solution in Hm,0(e−γt, Ω∞) of the problem (2.4)–(2.6);

ftk ∈ L∞(0,∞, L2(Ω)), k 6 h + 2l + 2; ftk(x, 0) = 0, k 6 h + 2l. Moreover, assume

that the straight lines Im λ = −β + 2m − 1
2n, Im λ = −β′ + 2m + l − 1

2n do not

contain any point of the spectrum of the problem (3.1)–(3.2) for every t ∈ [0,∞],

and in the strip

−β + 2m −
1

2
n < Im λ < −β′ + 2m + l −

1

2
n
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there are semisimple eigenvalues λ1(t), . . . , λN0
(t) of the problem (3.1)–(3.2) that

have invariant multiplicity for all t ∈ [0,∞] and satisfy for all T ∈ (0,∞)

i) Im λ1(t) < . . . < Im λN0
(t), t ∈ [0, T ],

ii) −β + 2m− 1
2n < Im λ1(t) < −β + 2m + µ∗

1 −
1
2n < Im λ2(t) < . . . < −β + 2m +

µ∗
N0−1 −

1
2n < Im λN0

(t) < −β′ + 2m + l − 1
2n, t ∈ (T,∞],

iii) Im λj(t) 6= Im λk(t) + z, z ∈ Z, j 6= k ∈ {1, . . . , N0}, t ∈ [0,∞],

where µ∗
j , j = 1, . . . , N0, are nonnegative numbers. Then the following representation

holds:

(3.3) u(x, t) =

N0
∑

j=0

l+κj−1
∑

k=0

r−iλj(t)+kPk,j(ln r) + w(x, t),

where w(·, ·) ∈ V 2m+l,0
β′,h+l (e−γh+lt, Ω∞), Pk,j(·) are vectors of polynomials of order less

than 3l+κj, whose coefficients are functions in the space C∞,h+l(e−γh+lt, G∞); κj is

the minimum integer greater than −β′ + 2m − 1
2n − Im λj(t) for all t ∈ [0,∞),

j = 1, . . . , N0.

R em a r k 3.1. The formula (3.3) is separated into two parts. The latter part

w(·, ·) ∈ V 2m+l,0
β′,h+l (e−γh+lt, Ω∞) has good regularity near the conical points, and the

former part is built on the eigenvalues λj (j = 1, . . . , N0) and the distance r to

the conical point. With the restriction on κj , all vector functions that have good

regularity are combined to w(·, ·), the remaining vector functions are in the sum of

r−iλj(t)+k, with coefficients being vectors of polynomials Pk,j(·). First, the vectors

of polynomials Pk,j(·) are constructed on some quite simple sums (see Lemma 4.1,

Lemma 4.2), based on canonical systems of eigenvectors of the problem (3.1)–(3.2)

corresponding to its eigenvalues. However, when we combine formulas to build the

asymptotic behavior of solutions of the parameter-depending elliptic boundary-value

problem (3.1)–(3.2) and the problem (2.4)–(2.6) (Proposition 4.1 and the following

results), because of the dependence of the coefficients on the time variable, all sums

of coefficients must be changed into the form of vectors of polynomials Pk,j(·) whose

coefficients are functions with respect to (ω, t). By choosing κj to be the minimum

integer greater than −β′ + 2m − 1
2n − Im λj(t) for all t ∈ [0,∞), the formula has

clear representation.
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4. Proof of the main result

First, in the cone K we consider the second boundary value problem for elliptic

system depending on a parameter t in the form

(−1)mL(t, D)u = f in K∞,(4.1)

Bj(t, D)u = gj on ∂K∞, j = 0, . . . , m − 1.(4.2)

The following lemma can be proved similarly to Lemma 4.1 in [1].

Lemma 4.1. Let the vector function u ∈ V l1,0
β1,h(e−γt, K∞) be a solution of the

problem (4.1)–(4.2), where f ∈ V l2−2m,0
β2,h (e−γt, K∞), gj ∈ V

l2−2m+j+ 1
2

,0

β2,h (e−γt, ∂K∞);

l1, l2 > 2m, β2 − l2 < β1 − l1. In addition, assume that the straight lines Im λ =

−βi+li−
1
2n, i = 1, 2, do not contain any point of the spectrum of the problem (3.1)–

(3.2) for all t ∈ [0,∞] and the eigenvalues of the problem (3.1)–(3.2) λ1(t) . . . , λN (t)

in the strip

−β1 + l1 −
1

2
n < Im λ < −β2 + l2 −

1

2
n

are semisimple and have invariant multiplicity for all t ∈ [0,∞]. Then the following

representation holds:

u(x, t) =

N
∑

µ=1

r−iλµ(t)

Λµ
∑

k=1

cµk(t)ϕµk(ω, t) + w(x, t),

where w ∈ V l2,0
β2,h(e−γt, K∞), cµk ∈ Lh

2 (e−γt, (0,∞)) and {ϕµk, k = 1, . . . , Λµ} is

a canonical system of eigenvectors of the problem (3.1)–(3.2) corresponding to the

eigenvalue λµ(t), in which Λµ is a multiple of λµ(t), µ = 1, . . . , N .

When the right-hand sides f , gj of the problem (4.1)–(4.2) have special forms, by

using an analogous method to that used in [17] we can prove the following lemma.

Lemma 4.2. We consider the problem (4.1)–(4.2), where

f = r−iλ0(t)−2m
M
∑

k=0

lnk rfk(ω, t),

gj = r−iλ0(t)−2m+j+1
M
∑

k=0

lnk rj,k(ω, t), j = 0, . . . , m − 1,

in which fk ∈ C∞,h(e−γt, G∞) and gj,k ∈ C∞,h(e−γt, ∂G∞) for all k = 0, . . . , M .

Moreover, assume that if λ0(t) is an eigenvalue of the problem (3.1)–(3.2) for some
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t ∈ [0,∞] then λ0(t) is a semisimple eigenvalue having invariant multiplicity of the

problem (3.1)–(3.2) for all t ∈ [0,∞]. Then there exists a solution of the prob-

lem (4.1)–(4.2) in the form

u(x, t) = r−iλ0(t)

M+µ
∑

k=0

lnk rûk(ω, t),

where ûk ∈ C∞,h(e−γt, G∞), k = 0, . . . , M +µ; µ = 1 or µ = 0 according to whether

λ0(t) is either an eigenvalue of the problem (3.1)–(3.2) or not.

Now we consider the second boundary value problem for the elliptic system de-

pending on a parameter t in the form

(−1)mL(x, t, D)u = f in K∞,(4.3)

Bj(x, t, D)u = gj on ∂K∞, j = 0, . . . , m − 1.(4.4)

The following proposition describes the asymptotic behavior of solutions of the

problem (4.3)–(4.4) in a neighborhood of a conical point.

Proposition 4.1. Let the vector function u ∈ V l1,0
β1,h(e−γt, K∞) be a solution of the

problem (4.3)–(4.4) and f ∈ V l2−2m,0
β2,h (e−γt, K∞), gj ∈ V

l2−2m+j+1/2,0
β2,h (e−γt, ∂K∞),

j = 0, . . . , m−1, where l1, l2, h are nonnegative integers, l2 > l1 > 2m, β1, β2 are real

numbers that satisfy l1 − β1 < l2 − β2. Moreover, we assume that the straight lines

Im λ = −βj+lj−
1
2n, j = 1, 2 do not contain any eigenvalue of the problem (3.1)–(3.2)

for all t ∈ [0,∞], and in the strip

−β1 + l1 −
1

2
n < Im λ < −β2 + l2 −

1

2
n

there exists only one semisimple eigenvalue λ0(t) having invariant multiplicity for all

t ∈ [0,∞] of the problem (3.1)–(3.2). Then the solution u has the form

(4.5) u =

κ−1
∑

k=0

r−iλ0(t)+kPk(ln r) + w,

where w ∈ V l2,0
β2,h(e−γt, K∞), Pk(·) are vectors of polynomials of order less than κ,

whose coefficients are functions in the space C∞,h(e−γt, G∞), κ is the minimum

integer greater than −β2 + l2 −
1
2n − Im λ0(t) for all t ∈ [0,∞].
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P r o o f. Divide the interval [β2, β1+l2−l1] intoM subintervals by δ0, δ1, . . . , δM

such that δ0 = β1 + l2 − l1, δM = β2, 0 < δd−1 − δd 6 1, d = 1, . . . , M . Denote Λ to

be the multiple of λ0(t).

From Lemma 6.3.1 in [13] we have

(4.6) u ∈ V l2,0
δ0,h(e−γt, K∞).

Rewrite the problem (4.3)–(4.4) in the form

(−1)mL(t, D)u = f̂(x, t),(4.7)

Bj(t, D)u = ĝj(x, t), j = 0, . . . , m − 1,(4.8)

where

f̂(x, t) = f(x, t) + (−1)m(L(t, D) − L(x, t, D))u,

ĝj(x, t) = gj(x, t) + (Bj(t, D) − Bj(x, t, D))u, j = 0, . . . , m − 1.

We have

L(t, D) − L(x, t, D)

=
∑

|p|=|q|=m

Dp(apq(0, t) − apq(x, t))Dqu
∑

|p|+|q|<2m
|p|,|q|6m

Dpapq(x, t)Dqu.

Since |apq(0, t) − apq(x, t)| 6 Cr for |p| = |q| = m and u ∈ V l2,0
δ0,h(e−γt, K∞), we have

∑

|p|=|q|=m

Dp(apq(0, t) − apq(x, t))Dqu ∈ V l2−2m,0
δ0−1,h (e−γt, K∞).

In another way, we have

∑

|p|+|q|<2m
|p|,|q|6m

Dpapq(x, t)Dqu ∈ V l2−2m+1,0
δ0,h (e−γt, K∞) ⊂ V l2−2m,0

δ0−1,h (e−γt, K∞).

From δ0 − 1 6 δ1 it can be seen that V l2−2m,0
δ0−1,h (e−γt, K∞) ⊂ V l2−2m,0

δ1,h (e−γt, K∞).

This implies

(4.9) f̂ ∈ V l2−2m,0
δ1,h (e−γt, K∞).

Using similar arguments, we obtain

(4.10) ĝj ∈ V
l2−2m+j+1/2,0
δ1,h (e−γt, ∂K∞), j = 0, . . . , m − 1.
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We will prove that if −δ0 + l2 −
1
2n < Im λ0(t) < −δd + l2 −

1
2n, 1 6 d 6 M for all

t ∈ [0,∞] then

(4.11) u(x, t) =

κd−1
∑

k=0

r−iλ0(t)+kPk,d(ln r) + ud(x, t),

where ud ∈ V l2,0
δd,h(e−γt, K∞), κd is the minimum integer greater than −δd + l2−

1
2n−

Im λ0(t) for all t ∈ [0,∞] and Pk,d(·) are vectors of polynomials of order less than κd

whose coefficients are functions in C∞,h(e−γt, G∞).

Let d = 1. The straight lines Im λ = −δ0 + l2 −
1
2n, Im λ = −δ1 + l2 −

1
2n do not

contain any point of the spectrum of the problem (3.1)–(3.2) and −δ0 + l2 − 1
2n <

Im λ0(t) < −δ1 + l2 −
1
2n for all t ∈ [0,∞]. It follows from (4.6), (4.9), (4.10), and

Lemma 4.1 that

u(x, t) = r−iλ0(t)
Λ

∑

k=1

ck(t)ϕk(ω, t) + u1(x, t),

where u1 ∈ V l2,0
δ1,h(e−γt, K∞), ck(·) ∈ Lh

2 (e−γt, (0,∞)), ϕk(ω, t) are infinitely differen-

tiable vector functions of (ω, t) for all k = 1, . . . , Λ. So (4.11) holds for d = 1.

Assume that (4.11) holds for d 6 M −1. We have to prove that it is true for d+1.

We distinguish the following cases.

Case 1 : −δd + l2 −
1
2n < Im λ0(t) < −δd+1 + l2 −

1
2n for all t ∈ [0,∞]. It follows

that the strip

−δ0 + l2 −
1

2
n 6 Im λ 6 −δ1 + l2 −

1

2
n

does not contain any eigenvalue of the problem (3.1)–(3.2) for all t ∈ [0,∞], hence

from (4.6), (4.9), (4.10), and Lemma 4.1 we have u ∈ V l2,0
δ1,h(e−γt, K∞). Using

similar arguments in the proof of (4.9), (4.10) we have f̂ ∈ V l2−2m,0
δ2,h (e−γt, K∞),

ĝj ∈ V
l2−2m+j+1/2,0
δ2,h (e−γt, ∂K∞) for all j = 0, . . . , m−1. By virtue of Lemma 4.1 we

get u ∈ V l2,0
δ2,h(e−γt, K∞). Repeating it d times we obtain u ∈ V l2,0

δd,h(e−γt, K∞) and

then f̂ ∈ V l2−2m,0
δd+1,h (e−γt, K∞), ĝj ∈ V

l2−2m+j+1/2,0
δd+1,h (e−γt, ∂K∞), j = 0, . . . , m − 1.

Applying Lemma 4.1 again we get

u(x, t) = r−iλ0(t)
Λ

∑

k=1

ck(t)ϕk(ω, t) + u1(x, t),

where u1 ∈ V l2,0
δd+1,h(e−γt, K∞), ck(·) ∈ Lh

2(e−γt, (0,∞)) and ϕk(ω, t) are infinitely

differentiable vector functions of (ω, t). That shows (4.11) holds for d + 1.
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Case 2 : −δ0 + l2 − 1
2n < Im λ0(t) < −δd + l2 − 1

2n for all t ∈ [0,∞]. From the

induction assumption we infer (4.11) with ud ∈ V l2,0
δd,h(e−γt, K∞). Putting

Sd(x, t) :=

κd−1
∑

k=0

r−iλ0(t)+kPk,d(ln r),

we conclude

(4.12) LSd = Ad + Rd, BjSd = Ej,d + Fj,d, j = 0, . . . , m − 1,

where

Ad =

κd−1
∑

k=0

∑

k+k′6κd+1−1

r−iλ0(t)−2m+k+k′

Pk,k′,d(ln r)

=

κd+1−1
∑

k=0

r−iλ0(t)−2m+kP̂k,d(ln r),

Rd =

κd−1
∑

k=0

∑

k+k′>κd+1

r−iλ0(t)−2m+k+k′

Pk,k′,d(ln r),

Ej,d =

κd−1
∑

k=0

∑

k+k′6κd+1−1

r−iλ0(t)−2m+j+1+k+k′

Qj,k,k′,d(ln r)

=

κd+1−1
∑

k=0

r−iλ0(t)−2m+j+1+kQ̂j,k,d(ln r),

Fj,d =

κd−1
∑

k=0

∑

k+k′>κd+1

r−iλ0(t)−2m+j+1+k+k′

Qj,k,k′,d(ln r).

It is easy to see that Rd ∈ V l2−2m,0
δd+1,h (e−γt, K∞), Fj,d ∈ V

l2−2m+j+1/2,0
δd+1,h (e−γt, ∂K∞)

for all j = 0, . . . , m − 1. Moreover, there exists

(4.13) vd =

κd+1−1
∑

k=0

r−iλ0(t)+kP̂k,d+1(ln r)

such that

L(t, D)vd = − Ad,(4.14)

Bj(t, D)vd = − Ej,d, j = 0, . . . , m − 1,(4.15)
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by virtue of Lemma 4.2, where P̂k,d+1(·) are vectors of polynomials of order less than

κd+1, whose coefficients are functions in C∞,h(e−γt, G∞).

It follows from (4.11), (4.12), (4.14), and (4.15) that

(−1)mL(t, D)[ud − vd] = f + (−1)mL1ud − (−1)mRd ∈ V l2−2m,0
δd+1,h (e−γt, K∞),

Bj(t, D)[ud − vd] = gj + B1
jud − Fj,d ∈ V

l2−2m+j+1/2,0
δd+1,h (e−γt, ∂K∞)

for all j = 0, . . . , m − 1, where L1 := L(t, D) − L(x, t, D) and B1
j := Bj(t, D) −

Bj(x, t, D). By applying Lemma 4.1 and noting that ud − vd ∈ V l2,0
δ0,h(e−γt, K∞), we

get

(4.16) ud − vd = r−iλ0(t)
Λ

∑

j=1

cj(t)ϕj(ω, t) + ud+1,

where ud+1 ∈ V l2,0
δd+1,h(e−γt, K∞), ck(·) ∈ Lh

2 (e−γt, (0,∞)). From (4.11), (4.13), and

(4.16) we have

(4.17) u(x, t) =

κd+1−1
∑

k=0

r−iλ0(t)+kPk,d+1(ln r) + ud+1,

where P0,d+1 = P0,d + P̂0,d+1 +
Λ
∑

j=1

cj(t)ϕj(ω, t), Pk,d+1 = Pk,d + P̂k,d+1 for all

k = 1, . . . , κd − 1 and Pk,d+1 = P̂k,d+1 for k = κd+1 − 1. Clearly Pk,d+1 are

vectors of polynomials of order less than κd+1, whose coefficients are functions in

C∞,h(e−γht, G∞).

Case 3 : There exists t0 such that Im λ0(t0) = −δd + l2 − 1
2n. We may assume

without loss of generality that −δd − ε + l2 −
1
2n < Im λ0(t) < −δd+1 − ε + l2 −

1
2n

for ε ∈ (0, δd − δd+1). Since in the strip −δ0 + l2 −
1
2n 6 Im λ 6 −δd − ε + l2 −

1
2n,

there is no point of the spectrum of the problem (3.1)–(3.2), by repeating arguments

of the proof of Case 1, we obtain

u(x, t) = r−iλ0(t)
Λ

∑

k=1

ck(t)ϕk(ω, t) + ûd(x, t),

where ûd ∈ V l2,0
δd+1+ε,h(e−γt, K∞). After that by using method similar to that used in

the proof of Case 2 we obtain (4.17).

When d = M , we obtain (4.5) from (4.11). The proposition is proven completely.

�
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Now we go back to consider the second initial boundary value problem for the

Schrödinger system (2.4)–(2.6). Denote by U0 a neighborhood of 0 in which Ω coin-

cides with the cone K. We have the following lemma.

Lemma 4.3. Let the vector function u(x, t) be a generalized solution in

Hm,0(e−γt, Ω∞) of the problem (2.4)–(2.6) such that u ≡ 0 outside U0, ftk ∈

L∞(0,∞, L2(Ω)), k 6 h + 2; ftk(x, 0) = 0, k 6 h. Moreover, assume that the

straight lines Im λ = −β + 2m − 1
2n, Im λ = −β′ + 2m − 1

2n do not contain any

eigenvalue of the problem (3.1)–(3.2) for all t ∈ [0,∞], and in the strip

−β + 2m −
1

2
n < Im λ < −β′ + 2m−

1

2
n

there is only one semisimple eigenvalue λ0(t) having invariant multiplicity for all

t ∈ [0,∞] of the problem (3.1)–(3.2), where β, β′ are real numbers satisfying β >

max{m, 2m− 1
2n}, 0 6 β′ < β. Then the solution u has the representation

(4.18) u(x, t) =

κ−1
∑

k=0

r−iλ0(t)+kPk(ln r) + w(x, t),

where w ∈ V 2m,0
β′,h (e−γht, Ω∞), Pk(·) are vectors of polynomials of order less than κ,

whose coefficients are functions in C∞,h(e−γht, G∞); κ is the minimum integer greater

than −β′ + 2m − 1
2n − Im λ0(t) for all t ∈ [0,∞].

P r o o f. Rewrite (2.4), (2.5) in the form

(−1)mL(x, t, D)u = F, where F = i(ut + f),(4.19)

Bj(x, t, D)u = 0.(4.20)

We consider the following cases.

i) Case m < 1
2n. From Theorem 4.1 in [5] we have utj ∈ Hm,0(e−γjt, K∞) for all

j 6 h + 1. Then utj ∈ H2m,0
m (e−γjt, K∞) for all j 6 h + 1 by virtue of Lemma 3.2

in [6]. It is easy to see that u ∈ V l,0
β,h(e−γt, K∞) if and only if utj ∈ H l,0

β (e−γt, K∞)

for all j 6 h. Therefore, u ∈ V 2m,0
m,h (e−γht, K∞) ⊂ V 2m,0

β,h (e−γht, K∞). In another

way we have F = i(ut + f) ∈ V 0,0
0,h (e−γht, K∞) ⊂ V 0,0

β′,h(e−γht, K∞). So by applying

Proposition 4.1 to the problem (4.19)–(4.20) we obtain the representation (4.18).

ii) Case m = 1
2n. Since on the straight line Im λ = −β + 2m − 1

2n there is

no eigenvalue of the problem (3.1)–(3.2) and eigenvalues of this problem are either

continuous in [0,∞] or have modulus tending to some point of [0,∞], there exists

ε > 0 such that in the strip −β − ε + 2m − 1
2n 6 Im λ 6 −β + 2m − 1

2n there is no

eigenvalue of the problem (3.1)–(3.2) for all t ∈ [0,∞].

78



In another way, using similar arguments as those used in the proof of Lemma 3.2

in [6] we have utk ∈ H2m
m+ε(K) for all k 6 h + 1. Therefore F ∈ V 0,0

m,h(e−γht, K∞).

Applying Proposition 4.1 we get u ∈ V 2m,0
m,h (e−γht, K∞). Then using analogous ar-

guments as in the case m < 1
2n we can obtain the representation (4.18).

iii) Case m > 1
2n. From Lemma 3.3 in [6] we find that

(4.21) u(x, t) =
∑

|α|6n∗

cα(t)xα + u0(x, t),

where cα(·) ∈ Lh
2 (e−γht, (0,∞)) for all |α| 6 n∗ and u0 ∈ V 2m,0

m,h (e−γht, K∞), with

n∗ =
[

m − 1
2n

]

if n is odd and n∗ =
[

m − 1
2n − 1] if n is even.

Set v̂(x, t) :=
∑

|α|6n∗

cα(t)xα. We have

v̂(·, t) ∈ W 2m
m (K), u0(·, t) ∈ H2m

m (K) ⊂ W 2m
m (K)

for almost all t ∈ (0,∞). Therefore, u(·, t) ∈ W 2m
m (K) for almost all t ∈ (0,∞).

Since β > max{m, 2m− 1
2n}, then following Lemma 7.1.5 in [13] we get

u(·, t) ∈ W 2m
m (K) ⊂ W 2m

β (K) ⊂ W 2m
β+ε(K) ≡ H2m

β+ε(K)

for all ε > 0 and for almost all t ∈ (0,∞). Using analogous arguments for utk , k 6 h

we obtain u ∈ V 2m,0
β+ε,h(e−γht, K∞).

On the other hand we have F ∈ V 0,0
β′,h(e−γht, K∞). By using arguments similar to

those in the case m = 1
2n, we also get (4.18). The lemma is proven. �

Lemma 4.4. Let l be a nonnegative integer; let β, β′ be real numbers satisfying

β > max{m, 2m − 1
2n} and 0 6 β′ < β. Assume that the vector function u(x, t) is

a generalized solution in Hm,0(e−γt, Ω∞) of the problem (2.4)–(2.6) such that u ≡ 0

outside U0, ftk ∈ L∞(0,∞, H l
β′(Ω)), k 6 h + 2l + 2; ftk(x, 0) = 0, k 6 h + 2l. In

addition, assume that the straight lines Im λ = −β+2m− 1
2n, Im λ = −β′+2m+l− 1

2n

do not contain any eigenvalue of the problem (3.1)–(3.2) for all t ∈ [0,∞] and in the

strip

−β + 2m −
1

2
n < Im λ < −β′ + 2m + l −

1

2
n

there is only one semisimple eigenvalue λ0(t) having invariant multiplicity for all

t ∈ [0,∞] of the problem (3.1)–(3.2). Then we have

(4.22) u(x, t) =

l+κ−1
∑

k=0

r−iλ0(t)+kPk(ln r) + w(x, t),

where w ∈ V 2m+l,0
β′,h+l (e−γh+lt, Ω∞) and Pk(·) are vectors of polynomials of order less

than 3l+κ whose coefficients are functions in C∞,h+l(e−γh+lt, G∞); κ is the minimum

integer greater than −β′ + 2m − 1
2n − Im λ0(t) for all t ∈ [0,∞].
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P r o o f. We use the induction by l. For l = 0 the assertion follows from

Lemma 4.3. Assume that it is true for l − 1 (l > 1). We have to prove that this

lemma holds for l. Consider the following cases.

Case 1 : −β + 2m − 1
2n < Im λ0(t) < −β′ + 2m + l − 1 − 1

2n for all t ∈ [0,∞].

From induction hypothesis we have

(4.23) u(x, t) =

l+κ−2
∑

k=0

r−iλ0(t)+kPk(ln r) + u1(x, t),

where Pk(·) are vectors of polynomials of order less than 3l+κ−3, whose coefficients

are functions in C∞,h+l−1(e−γh+l−1t, G∞); u1 ∈ V 2m+l−1,0
β′,h+l−1 (e−γh+l−1t, K∞).

Rewrite (2.4)–(2.5) in the form

(−1)mL(t, D)u1 = F1 + (−1)m−1L(x, t, D)S − iSt,

Bj(t, D)u1 = g1,j − Bj(x, t, D)S, j = 0, . . . , m − 1,

where
F1 = i((u1)t + f) + (−1)mL1u1,

g1,j = B1
ju1,

S =
l+κ−2
∑

k=0

r−iλ0(t)+kPk(ln r).

Since for almost all t ∈ (0,∞), ftk ∈ H l
β′(K), k 6 2l + h + 2 and ftk(x, 0) = 0,

k 6 2l + h, so ftk ∈ H l−1
β′ (K), k 6 2(l − 1) + (h + 2) + 2 and ftk(x, 0) = 0,

k 6 2(l− 1)+ (h+2). This implies (u1)tk ∈ H2m+l−1,0
β′ (e−γkt, K∞) for k 6 h+ l +1.

Therefore F1 ∈ V l,0
β′,h+l(e

−γh+lt, K∞), g1,j ∈ V
l+j+1/2,0
β′,h+l (e−γh+lt, ∂K∞) for all j =

0, . . . , m − 1.

In another way, by using arguments similar to those in the case 2 of Proposition 4.1

we get

(−1)m−1L(x, t, D)S − iSt = F2 +
l+κ−1
∑

k=0

r−iλ0(t)−2m+kP̂k(ln r),

−Bj(x, t, D)S = g2,j +

l+κ−1
∑

k=0

r−iλ0(t)−2m+j+k+1Q̂k(ln r), j = 0, . . . , m − 1,

where P̂k are vectors of polynomials of order less than 3l + κ − 1 whose coefficients

are functions in C∞,h+l(e−γh+lt, G∞), Q̂k are vectors of polynomials of order less

than 3l + κ − 1 whose coefficients are functions in C∞,h+l(e−γh+lt, ∂G∞) and F2 ∈

V l,0
β′,l+h(e−γl+ht, K∞), g2,j ∈ V

l+j+1/2,0
β′,l+h (e−γl+ht, ∂K∞) for all j = 0, . . . , m − 1.
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According to Lemma 4.2, there exists

(4.24) v =

l+κ−1
∑

k=0

r−iλ0(t)+kPk(ln r)

such that

(−1)mL(t, D)v =

l+κ−1
∑

k=0

r−iλ0(t)−2m+kP̂k(ln r),

Bj(t, D)v =
l+κ−1
∑

k=0

r−iλ0(t)−2m+j+k+1Q̂k(ln r), j = 0, . . . , m − 1,

where Pk are vectors of polynomials of order less than 3l + κ whose coefficients are

functions in C∞,h+l(e−γh+lt, G∞). So we get

(−1)mL(t, D)(u1 − v) = F3,(4.25)

Bj(t, D)(u1 − v) = g3,j ,(4.26)

where

F3 = F1 + F2 ∈ V l,0
β′,h+l(e

−γl+ht, K∞),

g3,j = g1,j + g2,j ∈ V
l+j+1/2,0
β′,h+l (e−γl+ht, ∂K∞), j = 0, . . . , m − 1.

Applying Lemma 4.1 to the problem (4.25)–(4.26) and noting that u1 − v ∈

V 2m+l−1,0
β′+m+l−1,h+l(e

−γh+lt, K∞) we infer that

(4.27) u1(x, t) − v(x, t) =
Λ

∑

j=0

r−iλ0(t)cj(t)ϕj(ω, t) + u2(x, t),

where cj(·) ∈ Lh+l
2 (e−γh+lt, (0,∞)), u2 ∈ V 2m+l,0

β′,h+l (e−γh+lt, K∞). It follows from

(4.23), (4.24), and (4.27)

u(x, t) =

l+κ−1
∑

k=0

r−iλ0(t)+kPk(ln r) + u2(x, t),

where u2 ∈ V 2m+l,0
β′,h+l (e−γh+lt, K∞) and Pk are vectors of polynomials of order less

than 3l + κ whose coefficients are functions in C∞,h+l(e−γh+lt, G∞).

Case 2 : −β′ + 2m + l − 1 − 1
2n < Im λ0(t) < −β′ + 2m + l − 1

2n. By using the

induction on j we prove that if for all t ∈ (0,∞), ftk ∈ Hj
β′(K), k 6 2j + h + 2 and

ftk(x, 0) = 0, k 6 2j + h, then u ∈ V 2m+j,0
β′,h+2l−j(e

−γh+2l−jt, K∞) for all j 6 l − 1.
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Indeed, from Lemma 4.3 for ε > 0 arbitrary we have u ∈ V 2m,0
β+ε,h+2l(e

−γh+2lt, K∞)

and F ∈ V 0,0
β′,h+2l(e

−γh+2lt, K∞). By applying Proposition 4.1 one obtains u ∈

V 2m,0
β′,h+2l(e

−γh+2lt, K∞). That shows the assertion is true for j = 0.

Assume that the assertion holds up to j − 1. Since ftk ∈ Hj−1,0
β′ (e−γkt, K∞),

k 6 2(j − 1) + (h + 2) + 2 and ftk(x, 0) = 0, k 6 2(j − 1) + h + 2, hence

utk ∈ H2m+j−1,0
β′ (e−γkt, K∞), k 6 h + 2l − j + 3. So utk+1 ∈ H2m+j−1,0

β′ (e−γkt, K∞),

k 6 h + 2l − j + 2. On the other hand F ∈ V j−1,0
β′−1,h+2l−j(e

−γh+2l−jt, K∞). There-

fore by applying Proposition 4.1 we have u ∈ V 2m+j−1,0
β′−1,h+2l−j(e

−γh+2l−jt, K∞). From

Lemma 6.3.1 in [13] one gets u ∈ V 2m+j,0
β′,h+2l−j(e

−γh+2l−jt, K∞). That shows the asser-

tion holds for all j 6 l − 1.

It follows that for j = l − 1 we have u ∈ V 2m+l−1,0
β′,h+l+1 (e−γh+l+1t, K∞). Since F ∈

V l,0
β′,h+l(e

−γh+lt, K∞), by applying Proposition 4.1 we obtain

u(x, t) =
Λ

∑

k=1

ck(t)r−iλ0(t)ϕk(ω, t) + u1(x, t),

where u1 ∈ V 2m+l,0
β′,h+l (e−γh+lt, K∞), ϕk are infinitely differentiable with restpect

to (ω, t) and ck(·) ∈ Lh+l
2 (e−γh+lt, (0,∞)) for all k = 1, . . . , Λ, Λ is the multiple

of λ0(t).

Case 3 : There exists t0 such that Im λ0(t0) = −β′ + 2m + l − 1 − 1
2n. Using

analogous arguments as in the proof of case 3 of Proposition 4.1 we obtain the

representation (4.22). This completes the proof. �

Now we can prove Theorem 3.1.

P r o o f. 1. First we prove it for the case u ≡ 0 outside U0.

For any t0 ∈ [0,∞] there exists ε > 0 such that −β +2m+µj−1−
1
2n < Im λj(t) <

−β + 2m + µj − 1
2n, t ∈ [t0 − ε, t0 + ε], where µj , j = 1, . . . , N0 are nonnegative

constants. Since [0, T ] is compact, we can divide [0, T ] into subintervals by 0 =

τ0, τ1, . . . , τM = T such that −β+2m+µj−1,k−
1
2n < Im λj(t) < −β+2m+µj,k−

1
2n,

t ∈ [τk−1, τk], where µj,k and µj−1,k are nonnegative constants, j = 1, . . . , N0, k =

1, . . . , M . Therefore without loss of generality we can assume that

−β + 2m−
1

2
n < Im λ1(t) < −β + 2m + µ1 −

1

2
n < Im λ2(t) < . . .

< −β + 2m + µN0−1 −
1

2
n < Im λN0

(t) < −β′ + 2m + l −
1

2
n, t ∈ [0, T ].

We use the induction on N0. For N0 = 1 the assertion of the theorem follows from

Lemma 4.4. Assume that the theorem holds for N0 − 1.
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Set µ̂0 := max{µN0−1, µ
∗
N0−1} > 0, l0 := [µ̂0 −β +β′] 6 µ̂0 −β +β′. Without loss

of generality we can assume that 0 6 l0 < l. Then −β + µ̂0 = −β′ + l0 + δ, δ ∈ [0, 1).

Set β1 := β′ − δ 6 β′.

Since in the strip −β + 2m − 1
2n < Im λ < −β1 + 2m + l0 −

1
2n there are N0 − 1

eigenvalues we have

(4.28) u(x, t) =

N0−1
∑

j=1

l0+κj−1
∑

k=0

r−iλj(t)+kPk,j(ln r) + u1(x, t),

where Pk,j are vectors of polynomials of order less than 3l0 + κj with coefficients in

the space C∞,h+l0(e−γh+l0 , K∞), u1 ∈ V 2m+l0,0
β1,h+l0

(e−γh+l0 , K∞).

Using arguments similar to case 1 in the proof of Lemma 4.4, one gets if −β1 +

2m+ l1−
1
2n < Im λN0

(t) < −β1 +2m+ l1 +1− 1
2n for all t ∈ [0,∞] with l0 6 l1 < l,

hence we obtain the representation (3.3), where Pk,j are vectors of polynomials of

order less than 3l1 +κj + 3 with coefficients in the space C∞,h+l1+1(e−γh+l1+1 , K∞),

w ∈ V 2m+l1+1,0
β1,h+l1+1 (e−γh+l1+1 , K∞).

Because in the strip −β1 + 2m + l1 + 1 − 1
2n 6 Im λ 6 −β′ + 2m + l − 1

2n

there is no eigenvalue of the problem (3.1)–(3.2) we receive (3.3) with w ∈

V 2m+l,0
β′,h+l (e−γh+lt, K∞).

If there is t0 ∈ [0,∞] such that Im λN0
(t0) = −β1 + 2m + l1 − 1

2n, then using

arguments similar to case 3 of the proof of Lemma 4.4 we also obtain (3.3).

2. We now prove the general case. Denote u0 = ϕ0u, where ϕ0 ∈ C̊∞(U0) and

ϕ0 ≡ 1 in a neighborhood of 0. The vector function u0 satisfies (−1)miLu0− (u0)t =

ϕ0f + L1u, where L1u is a linear differential operator having order less than 2m.

Coefficients of this operator depend on the choice of the vector function ϕ0 and

equal 0 outside U0. Denote u1 := ϕ1u = (1 − ϕ0)u. It is easy to see that u1 is

equal to 0 in a neighborhood of a conical point. Therefore, we can apply results

of the smoothness of a solution of the elliptic problem in a smooth domain to this

vector function to conclude that (u1)tk ∈ H2m+l
β′ (Ω) for all k 6 h + l, for almost all

t ∈ (0,∞). That shows u1 ∈ V 2m+l,0
β′,h+l (e−γh+lt, Ω∞).

In another way, the vector functions u0 and f̂ = ϕ0f +L1u satisfy the hypotheses

of part 1, so u0 has the representation (3.3). It follows that u = u0 + u1 has the

representation (3.3) too. The theorem is proven completely. �

R em a r k 4.1. From the proof of Theorem 3.1 it follows that the hypotheses

of the semisimple property and the invariant multiplicity property of eigenvalues

of the problem (3.1)–(3.2) are sufficient conditions to ensure that these eigenvalues

and hence the eigenvectors are smooth enough with respect to t. If we can choose

eigenvalues, eigenvectors and generalized eigenvectors of the problem (3.1)–(3.2) such
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that they are smooth with respect to t up to some order (for example h + l), then

the results of Theorem 3.1 are also true.

5. Examples

In this example we consider the Cauchy-Neumann problem for the Schrödinger

equation in quantum mechanics

i∆u − ut = f in Ω∞,(5.1)

u|t=0 = 0 on Ω,(5.2)

∂u

∂ν
:=

n
∑

k=1

∂u

∂xk
cos(xk, ν) = 0 on Γ∞,(5.3)

where ∆ is the Laplace operator and ν is a unit exterior normal to Γ∞.

We can rewrite Laplace operator in local coordinates (r, ω) in the form

∆u(r, ω) =
1

rn−1

∂

∂r

(

rn−1 ∂

∂r

)

u(r, ω) +
1

r2
∆ωu(r, ω),

where ∆ω is the Laplace-Beltrami operator in the unit sphere Sn−1. So the prob-

lem (3.1)–(3.2) is the Neumann problem for the equation

(5.4) ∆ωv + [(iλ)2 + i(2 − n)λ]v = 0, ω ∈ G.

Denote by kj , j = 0, 1, . . ., the nonnegative eigenvalues of the Neumann problem

for the equation

(5.5) ∆ωv + kv = 0, ω ∈ G.

Note that the values kj , j = 0, 1, . . . are countably many nonegative real numbers

(see [14, p. 46, p. 397]). Then λj = i
(

1 − 1
2n ±

√

(1 − 1
2n)2 + kj

)

, j = 0, 1, . . ., are

eigenvalues of the Neumann problem for equation (5.4). We consider the following

cases.

Case n > 4. The following corollary deals with the regularity of solutions of the

problem (5.1)–(5.3).

Corollary 5.1. Let u(x, t) be a generalized solution in H1,0(e−γt, Ω∞) of the

problem (5.1)–(5.3) and let f, ft, ftt, fttt ∈ L∞(0,∞, L2(Ω)), f(x, 0) = ft(x, 0) = 0

for x ∈ Ω. Then we have

i) if n > 4 then u ∈ H2
0 (e−γt, Ω∞),

ii) if n = 4 then u ∈ H2(e−γt, Ω∞).
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P r o o f. i) It is clear that if n > 4, the strip

1 −
1

2
n 6 Im λ 6 2 −

1

2
n

contains no eigenvalue of the Neumann problem for (5.4). Therefore we have u ∈

H2
0 (e−γt, Ω∞) by virtue of Lemma 4.3.

ii) In case n = 4, since in the strip −1 < Im λ < 0 there is no eigenvalue of the

Neumann problem for (5.4) and λ = 0 is an eigenvalue of the Neumann problem

for (5.4) on the straight line Im λ = 0, so from formula (1.26) in [10] we have

Du ∈ H1,0(e−γt, Ω∞). Hence

(5.6)
∑

|α|=2

∫

Ω∞

|Dαu|2e−2γt dxdt < ∞.

In another way, from Theorem 4.1 in [5] we have ut, utt ∈ H1,0(e−γt, Ω∞). That

shows

(5.7)
∫

Ω∞

[

|ut|
2 + |utt|

2 +
∑

|α|=1

|Dαut|
2

]

e−2γt dxdt < ∞.

From (5.6), (5.7), and u ∈ H1,0(e−γt, Ω∞) one gets u ∈ H2(e−γt, Ω∞). �

Case n = 3. From Theorem 2 in [12] it follows that the strip − 1
2 6 Im λ 6 0

contains only one simple eigenvalue λ0 = 0 of the Neumann problem for (5.4). In

another way,

λj = i

(

−
1

2
+

√

1

4
+ kj

)

, λ∗
j = i

(

−
1

2
−

√

1

4
+ kj

)

, j = 0, 1, . . .

are eigenvalues of the Neumann problem for (5.4), where 0 = k0 < k1 6 k2 6 . . . are

eigenvalues of the Neumann problem for (5.5). It is easy to see that λj , j = 0, 1, 2 . . .

are simple eigenvalues. Then we have the following result.

Corollary 5.2. Let u(x, t) be a generalized solution in H1,0(e−γt, Ω∞) of the

problem (5.1)–(5.3) and let ftk ∈ L∞(0,∞, L2(Ω)), k 6 h + 2, ftk(x, 0) = 0, k 6 h

for all x ∈ Ω. Then

u(x, t) = c(t) + u1(x, t),

where c(·) ∈ Lh
2 (e−γht, (0,∞)) and |u1| 6 C|x|min{1/2,Im λ1}, C > 0.
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P r o o f. We distinguish the following cases.

Case 1: Im λ1 > 1
2 . Because on the straight lines Im λ = − 1

2 and Im λ = 1
2 there

is no eigenvalue of the Neumann problem for (5.4) and the strip − 1
2 < Im λ < 1

2

contains a simple eigenvalue λ0 = 0, from Lemma 4.3 we have

u(x, t) = c(t) + u1(x, t),

where c(·) ∈ Lh
2 (e−γht, (0,∞)) and u1 ∈ V 2,0

0,h (e−γht, Ω∞).

Denote Ω̺ := {x ∈ Ω: 1
2̺ < |x| < 2̺, ̺ > 0}. Assume that ̺ is small

enough so that Ω̺ coincides with the cone K. Set υ(x′, t) = u1(̺x′, t). Since

u1 ∈ H2,0
0 (e−γht, Ω∞), by applying with embedding theorem to the domain K ′ =

{x′ ∈ K : 1
2 < |x′| < 2}, we have

|υ(x′, t)|2 6 C1

∫

K′

[

υ2 + |gradυ|2 +
∑

|α|=2

|Dαυ|2
]

dx′,

where C1 > 0. Let x = ̺x′. Then one gets

|u1(x
′, t)|2 6 C1

∫

Ω̺

[

̺−3u2
1 + ̺−1|gradu1|

2 + ̺
∑

|α|=2

|Dαu1|
2
]

dx.

That shows

̺−1|u1(x
′, t)|2 6 C1

∫

Ω̺

[

̺−4u2
1 + ̺−2|gradu1|

2 +
∑

|α|=2

|Dαu1|
2
]

dx

6 C2

∫

Ω̺

[

r−4u2
1 + r−2|gradu1|

2 +
∑

|α|=2

|Dαu1|
2
]

dx

6 C3‖u1(x, t)‖2
H2

0
(Ω) 6 C4‖f(x, t)‖2

L2(Ω)

for almost all t ∈ (0,∞), where Ci > 0, i = 2, 3, 4. When |x| = ̺ we have |u1(x, t)| 6

C|x|1/2, C > 0.

Case 2 : Im λ1 6 1
2 . Assume that 0 = λ0, λ1, . . . , λN0

are the eigenvalues of the

Neumann problem for (5.4) such that − 1
2 < Im λ1 < . . . < Im λN0

6 1
2 .

(i) If on the straight line Im λ = 1
2 there is no eigenvalue of the Neumann problem

for (5.4), then repeating the arguments from the proof of Theorem 3.1 we obtain

(5.8) u(x, t) = c(t) +

N0
∑

j=1

cj(t)r
Im λj φj(ω, t) + u0(x, t),

where φj are infinitely differentiable with respect to (ω, t), and

cj(·) ∈ Lh
2 (e−γht, (0,∞)), j = 0, 1, . . . , N0, u0 ∈ V 2,0

0,h (e−γht, Ω∞).
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Using arguments similar to those in the proof of case 1, we obtain |u0(x, t)| 6

C|x|1/2, C > 0. From this and (5.8) one has

u(x, t) = c(t) + u1(x, t),

where c(·) ∈ Lh
2 (e−γht, (0,∞)) and |u1| 6 C|x|Im λ1 , C > 0.

(ii) If Im λN0
= 1

2 , then there exists ε > 0 such that on the straight line Im λ = 1
2+ε

there is no eigenvalue of the Neumann problem for (5.4) and 0 < Im λ1 < . . . <

Im λN0
< 1

2 + ε. Using arguments similar to those in the proof of Theorem 3.1 we

obtain

u(x, t) =

N0
∑

j=0

cj(t)r
Im λj φj(ω, t) + u0(x, t),

where φj are infinitely differentiable with respect to ω, cj(·) ∈ Lh
2(e−γht, (0,∞)),

j = 0, 1, . . . , N0 and u0 ∈ V 2,0
−ε,h(e−γht, Ω∞) ⊂ V 2,0

0,h (e−γht, Ω∞).

Repeating the arguments from the proof of part (i), we have u(x, t) = c(t)+u1(x, t),

where c(·) ∈ Lh
2 (e−γht, (0,∞)) and |u1| 6 C|x|Im λ1 , C > 0. The proof is completed.

�

Case n = 2. We can assume that K = {x = (x1, x2) ∈ R
2 : r > 0, 0 < ω < ω0},

where (r, ω) are the polar coordinates of x = (x1, x2) and 0 < ω0 < 2π. Then the

Neumann problem for (5.4) has simple form

∂2v

∂ω2
− λ2v = 0, 0 < ω < ω0,(5.9)

∂v

∂ω

∣

∣

∣

ω=0
=

∂v

∂ω

∣

∣

∣

ω=ω0

= 0.(5.10)

We have that

(5.11) λk =
ikπ

ω0
, k = ±1,±2, . . .

are eigenvalues of the problem (5.9)–(5.10) with eigenvectors

(5.12) ϕk(ω) = cos
kπω

ω0
.

Moreover, λ0 ≡ 0 is an eigenvalue of the problem (5.9)–(5.10) with the multiple equal

to 2, the eigenvector u0 = 1, and the generalized eigenvector u1 = 1.

Corollary 5.3. Let u(x, t) be a generalized solution in H1,0(e−γt, Ω∞) of the

problem (5.1)–(5.3) and let f, ft, ftt, fttt ∈ L∞(0, T, L2(Ω)), f(x, 0) = ft(x, 0) = 0

for x ∈ Ω. We have
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• if ω0 < π then u ∈ H2(e−γt, Ω∞) and

• if ω0 > π then

u(x, t) = c(x, t)rπ/ω0 cos(πω/ω0) + u1(x, t),

where c(·, ·) ∈ V 2
π/ω0

(e−γt, Ω∞), u1 ∈ H2(e−γt, Ω∞).

P r o o f. i) If ω0 < π then in the strip −ε < Im λ < 1, ε ∈ (0, 1), there is only one

eigenvalue λ0 ≡ 0 with multiple 2, eigenvector u0 = 1 and generalized eigenvector

u1 = 1. We can see that the multiple of λ0 is constant and the eigenvectors and the

generalized eigenvector are infinitely differentiable to (ω, t). So by using Remark 4.1

and arguments similar to those in the proof of Theorem 3.1, we have

u(x, t) = c1(t) + c2(t) ln r + u0(x, t),

where ci(·) ∈ L2
2(e

−γt, (0,∞)), i = 1, 2, u0 ∈ H2,0
0 (e−γt, Ω∞).

Rewrite u in the form

u(x, t) = c2(t) ln r + u1(x, t),

where c2(·) ∈ L2
2(e

−γt, (0,∞)), u1 ∈ H2,0(e−γt, Ω∞). It is easy to check that

∂

∂xj
c2(t) ln r = c2(t)

xj

r2
.

Since u ∈ H1,0(e−γt, Ω∞) and u1 ∈ H2,0(e−γt, Ω∞), we have

|c2(t)|
2

∫

Ω

r−2 dx 6 C

∫

Ω

[|Du|2 + |Du1|
2] dx < ∞, C > 0.

It follows that c2(t) ≡ 0 and u = u1 ∈ H2,0(e−γt, Ω∞). From Theorem 4.1 in [5] we

have ut, utt ∈ H1,0(e−γt, Ω∞). Therefore, u ∈ H2(e−γt, Ω∞).

ii) If ω0 > π then in the strip −ε < Im λ < 1 (0 < ε < ω0/π) there are λ0 = 0

(multiple 2) and λ1 = iπ/ω0 (simple). From Theorem 3.1 we have

u(x, t) = c(t)rπ/ω0 cos(πω/ω0) + u1(x, t),

where c(·) ∈ L2
2(e

−γt, (0,∞), u1 ∈ H2,0
0 (e−γt, Ω∞).

Denote

D1 = cos
πω

ω0

∂

∂r
−

1

r
sin

πω

ω0

∂

∂ω
.
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We have (ω0/π)r1−π/ω0D1u = c(t) + (ω0/π)r1−π/ω0D1u1. Set c1(x, t) = (π/ω0)×

r1−π/ω0D1u. Since u ∈ H1,0(e−γt, Ω∞), we have

∫

Ω∞

|c1|
2e−2γt dxdt 6 C

∫

Ω∞

r2(1−π/ω0)|D1u|
2e−2γt dxdt(5.13)

6 C

∫

Ω∞

|Du|2e−2γt dxdt < ∞,

where C > 0. From Theorem 4.1 in [5] one has ut ∈ H1,0(e−γt, Ω∞). This yields

∫

Ω∞

r2(−1+π/ω0)|(c1)t|
2e−2γt dxdt(5.14)

6 C

∫

Ω∞

|D1ut|
2e−2γt dxdt

6 C

∫

Ω∞

|Dut|
2e−2γt dxdt < ∞,

where C > 0. On the other hand, since u1 ∈ H2,0
0 (e−γt, Ω∞), we have

∫

Ω∞

r2(−1+π/ω0)|Dc1|
2e−2γt dxdt(5.15)

6 C

∫

Ω∞

[r−1D1u1 + DD1u1]
2e−2γt dxdt

6 C

2
∑

|α|=1

∫

Ω∞

r2(|α|−2)|Dαu1|
2e−2γt dxdt < ∞.

From (5.13), (5.14), and (5.15) one gets

∑

|α|+k=1

∫

Ω∞

r2(−1+π/ω0+k+|α|−1)|Dα(c1)tk |2e−2γt dxdt(5.16)

+

∫

Ω∞

|c1|
2e−2γt dxdt < ∞,

or c1 ∈ V 1
−1+π/ω0

(e−γt, Ω∞).

It follows from Lemma 2 in [11] that ĉ1(x, t) satisfies

‖ĉ1‖V 2p/ω0
(e−γt,Ω∞) 6 C‖c1‖V 1

−1+p/ω0
(e−γt,Ω∞)

+

∫

Ω∞

r2(−2+π/ω0)|c1 − ĉ1|
2e−2γt dxdt < ∞,
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where C > 0. So from (5.13) and (5.16) we have

u(x, t) = ĉ1(x, t)rπ/ω0 cos(πω/ω0) + u2(x, t),

where u2 = (c− ĉ1)r
π/ω0 cos(πω/ω0)+u1 ∈ H2(e−γt, Ω∞) and ĉ1 ∈ V 2

π/ω0
(e−γt, Ω∞).

The proof is completed. �

6. Conclusions

In this paper, by reducing some conditions on eigenvalues of the spectrum prob-

lem, we obtained generally asymptotic expansions of solutions of the second boundary

value problem for Schrödinger systems in a neighborhood of conical points (to com-

pare see [3], [4] for example). Results are obtained for the second initial boundary

value problem in infinite cylinders with the coefficients depending on both the time

and spatial variables, while previous results were given for the first initial boundary

value problem [2], [4] or in a finite cylinder [2], [15], [16] or for coefficients indepen-

dent of the time variable [9], [15], [16], [18] or for other kinds of systems [3], [4],

[9], [18].
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