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POSITIVE SOLUTIONS AND EIGENVALUE INTERVALS OF

A NONLINEAR SINGULAR FOURTH-ORDER

BOUNDARY VALUE PROBLEM

Qingliu Yao, Nanjing

(Received July 14, 2010)

Abstract. We consider the classical nonlinear fourth-order two-point boundary value
problem

{

u(4)(t) = λh(t)f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′′(1) = 0.

In this problem, the nonlinear term h(t)f(t, u(t), u′(t), u′′(t)) contains the first and second
derivatives of the unknown function, and the function h(t)f(t, x, y, z) may be singular at
t = 0, t = 1 and at x = 0, y = 0, z = 0. By introducing suitable height functions and
applying the fixed point theorem on the cone, we establish several local existence theorems
on positive solutions and obtain the corresponding eigenvalue intervals.

Keywords: nonlinear ordinary differential equation, singular nonlinearity, positive solu-
tion, eigenvalue interval

MSC 2010 : 34B15, 34B16, 34B18

1. Introduction

It is well known that the deflection of elastic beams can be described by some

fourth-order boundary value problems, for example, see [3], [11]. Consequently,

fourth-order boundary value problems play a very important role for ordinary dif-

ferential equations in both theory and applications.

This work was supported by the National Natural Science Foundation of China
(11071109).
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Let λ be a positive parameter. In this paper, we consider the classical nonlinear

fourth-order two-point boundary value problem

(P1)

{

u(4)(t) = λh(t)f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′′(1) = 0,

and its simplified form

(P2)

{

u(4)(t) = λh(t)f(t, u(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′′(1) = 0.

In applied mathematics, the problems (P1) and (P2) can model the deflection of an

elastic beam simply supported at the left end and fastened with a sliding clamp at

the right end.

In the last decade or so, several papers have been devoted to the boundary value

problems (P1) and (P2), for example, see [5], [7]–[9], [11], [15], [21]. However, in

the literature, the problems (P1) and (P2) have not received as much attention as

the fourth-order boundary value problems with boundary condition u(0) = u(1) =

u′′(0) = u′′(1) = 0, which were considered, for example, in [4], [6], [12], [14], [16], [19].

This paper focuses on the positive eigenvalue intervals for which there exist one

or two positive solutions. Here, the solution u∗(t) of (P1) or (P2) is called positive

if u∗(t) > 0, 0 < t 6 1. Throughout this paper, let

α(t) =
1

2
(3t− t3), β(t) = 2t− t2, γ(t) =

1

2
(1 − t2).

In 2000, Graef and Yang [9] proved the following existence theorem for the prob-

lem (P2).

Theorem 1.1. Assume that

(a1) h : [0, 1] → [0,∞) is a continuous function.

(a2) A = 1
12

∫ 1

0 s
2(3 − s2)2h(s) ds, B = 1

6

∫ 1

0 s
2(2 − s)(3 − s2)h(s) ds.

(a3) f(t, x) = f(x) and f : [0,∞) → [0,∞) is continuous.

(a4) One of the following conditions is satisfied:

(i) [A lim
x→+0

f(x)/x]−1 < λ < [B lim
x→∞

f(x)/x]−1.

(ii) [A lim
x→∞

f(x)/x]−1 < λ < [B lim
x→+0

f(x)/x]−1.

Then problem (P2) has at least one positive solution.
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In Theorem 1.1, the function h(t)f(x) is continuous with respect to both vari-

ables t and x, and the nonlinear term h(t)f(u(t)) does not contain first and second

derivatives of the unknown function u(t).

In this paper, we generalize Theorem 1.1 under the following assumptions.

For the problem (P1), we use the assumptions:

(H1) h : (0, 1) → [0,∞) is continuous.

(H2) f : (0, 1) × (0,∞) × (0,∞) × (−∞, 0) → [0,∞) is continuous.

(H3) For each pair of positive numbers r1 < r2, there exists a nonnegative function

jr2

r1
∈ C(0, 1) such that

∫ 1

0 h(t)j
r2

r1
(t) dt <∞ and if

0 < t < 1,
1

3
r1α(t) 6 x 6

1

2
r2β(t),

1

2
r1γ(t) 6 y 6 r2, r1t 6 −z 6 r2,

then f(t, x, y, z) 6 jr2

r1
(t).

For the problem (P2), we use the assumptions:

(H1)♭ h : (0, 1) → [0,∞) is continuous.

(H2)♭ f : (0, 1) × (0,∞) → [0,∞) is continuous.

(H3)♭ For each pair of positive numbers r1 < r2, there exists a nonnegative function

jr2

r1
∈ C(0, 1) such that

∫ 1

0
h(t)jr2

r1
(t) dt <∞ and if

0 < t < 1, r1α(t) 6 x 6 r2β(t),

then f(t, x) 6 jr2

r1
(t).

If (H1) holds,
∫ 1

0
h(t) dt <∞ and f : [0, 1]× [0,∞)× [0,∞)× (−∞, 0] → [0,∞) is

continuous, then (H3) holds. If (H1)♭ holds,
∫ 1

0 h(t) dt <∞ and f : [0, 1]× [0,∞) →
[0,∞) is continuous, then (H3)♭ holds.

The assumptions (H1)–(H3) show that, in this paper, the nonlinear term h(t)f(t,

u(t), u′(t), u′′(t)) contains the first and second derivatives of the unknown function

u(t), and the function h(t)f(t, x, y, z) may be singular at t = 0, t = 1 and at x = 0,

y = 0, z = 0. The singularities mean that h(t)f(t, x, y, z) may be singular at t = 0

and/or t = 1 for any (x, y, z) ∈ [0,∞) × [0,∞) × (−∞, 0], and may be singular at

x = 0, y = 0 and/or z = 0 for any t ∈ [0, 1].

The assumptions (H1)♭–(H3)♭ show that the function h(t)f(t, x) may be singular

at t = 0, t = 1 and at x = 0. This implies that h(t)f(t, x) may be singular at t = 0

and/or t = 1 for any x ∈ [0,∞), and may be singular at x = 0 for any t ∈ [0, 1].

To the best of our knowledge, for the problem (P1), there are no existence results

of positive solutions under the assumptions (H1)–(H3). For the problem (P2), the

existence of positive solutions under (H1)♭–(H3)♭ has not been studied by any author.

Recently, various nonlinear boundary value problems with singularity have re-

ceived a great deal of attention in the literature. For developments in the field, see
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Agarwal and O’Regan [1], [2], Meehan and O’Regan [17], Staněk [18], Wei [19] and

the references therein. The motivation of this paper comes from these papers.

In this paper, we will use the exact apriori estimation technique that came from

papers [20], [22]. In [20], we presented the exact apriori estimation technique and

considered the problem

{

u(4)(t) = f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′′(1) = 0,

where the function f(t, x) is allowed to be singular only at x = 0. In [22], we perfected

the technique and considered the problem

{

u(4)(t) = h(t)f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where h(t)f(t, x, y) may be singular at t = 0, t = 1 and at x = 0, y = 0. In

the present paper, we will deal with the more complicated problem (P1). The main

tool is the Guo-Krasnosel’skii fixed point theorem of the cone expansion-compression

type. All results are independent of the existence of upper and lower solutions.

By applying the related Green function, the problems (P1) and (P2) are changed

to integral equations. In order to overcome the difficulties resulting from the above-

mentioned singularities, we construct suitable cones and height functions. By es-

timating integrals of these height functions and considering the fixed points of the

associated integral operators defined on the cones, the eigenvalue intervals for which

there exist one or two positive solutions are obtained.

The rest of this paper is organized as follows. Section 2 gives some preliminaries

and necessary lemmas. Section 3 is devoted to the positive solutions and positive

eigenvalues of the problems (P1) and (P2). Finally, we will verify that Theorem 1.1

is a corollary of the main results, and give an example to demonstrate our results.

2. Preliminaries and lemmas

Let G(t, s) be the Green function of the homogeneous linear problem

−u′′(t) = 0, 0 6 t 6 1, u(0) = u′(1) = 0.

The precise expression of G(t, s) is

G(t, s) =

{

s, 0 6 s 6 t 6 1,

t, 0 6 t 6 s 6 1.
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Thus G : [0, 1] × [0, 1] → [0, 1] is continuous. Let

J(t, s) =

∫ 1

0

G(t, τ)G(τ, s) dτ, 0 6 t, s 6 1.

Direct computations give that

J(t, s) =

{

ts− 1
2 t

2s− 1
6s

3, 0 6 s 6 t 6 1,

ts− 1
2 ts

2 − 1
6 t

3, 0 6 t 6 s 6 1.

Computing the first and second partial derivatives of J(t, s) with respect to t, one

has
∂

∂t
J(t, s) =

{

s− ts, 0 6 s 6 t 6 1,

s− 1
2s

2 − 1
2 t

2, 0 6 t 6 s 6 1;

∂2

∂t2
J(t, s) = −G(t, s), 0 6 t, s 6 1.

Lemma 2.1. (1) If 0 6 t, s 6 1, then ts 6 G(t, s) 6 s = max
06t61

G(t, s).

(2) If 0 6 t, s 6 1, then α(t)J(1, s) 6 J(t, s) 6 β(t)J(1, s).

(3) If 0 6 s 6 1, then max
06t61

J(t, s) = J(1, s) 6 1
2s.

(4) If 0 6 t, s 6 1, then γ(t)s 6 ∂
∂tJ(t, s) 6 s.

(5) If 0 6 t, t+ ∆t, s 6 1, then |J(t+ ∆t, s) − J(t, s)| 6 |∆t|.
(6) If 0 6 t, t+ ∆t, s 6 1, then | ∂

∂tJ(t+ ∆t, s) − ∂
∂tJ(t, s)| 6 |∆t|.

(7) If 0 6 t, t+ ∆t, s 6 1, then |G(t+ ∆t, s) −G(t, s)| 6 |∆t|.

P r o o f. The proofs of (1) and (7) are direct.

The proof of (2). For 0 6 s 6 t 6 1,

J(t, s) − α(t)J(1, s) =
1

4
ts− 1

2
t2s− 1

6
s3 +

1

4
ts3 +

1

4
t3s− 1

12
t3s3

=
1

4
ts(1 − t) − 1

4
t2s(1 − t) +

1

12
ts3(1 − t2) − 1

6
s3(1 − t)

=
1

12
s(1 − t)[3t(1 − t) − s2(1 − t) − s2(1 − t2)]

=
1

12
s(1 − t)2[3t− 2s2 − ts2] > 0,

β(t)J(1, s) − J(t, s) =
1

6
s3 − 1

3
ts3 +

1

6
t2s3 =

1

6
s3(1 − t)2 > 0.

For 0 6 t 6 s 6 1, the proof is similar.

The proof of (3). Obviously, ∂
∂tJ(t, s) > 0, 0 6 t, s 6 1. Thus, for any 0 6 s 6 1,

max
06t61

J(t, s) = J(1, s) =
1

2
s− 1

6
s3 6

1

2
s.
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The proof of (4). For 0 6 s 6 t 6 1,

∂

∂t
J(t, s) − γ(t)s = s− ts− 1

2
s(1 − t2) =

1

2
s(1 − t)2 > 0.

For 0 6 t 6 s 6 1,

∂

∂t
J(t, s) − γ(t)s = s− 1

2
s2 − 1

2
t2 − 1

2
s(1 − t2) =

1

2
(1 − s)(s− t2) > 0.

From the expression of ∂
∂tJ(t, s), one has ∂

∂tJ(t, s) 6 s, 0 6 t, s 6 1.

The proof of (5). Applying the mean value theorem and (4), for any 0 6 t, s,

t+ ∆t 6 1, we obtain

|J(t+ ∆t, s) − J(t, s)| 6 sup
06t61

∂

∂t
J(t, s)|∆t| 6 |∆t|s 6 |∆t|.

Applying (1), the proof of (6) is similar to (5). �

In order to deal with the problem (P1), the following preliminaries are necessary.

Let C2[0, 1] be the Banach space of all functions twice continuously differentiable

on [0, 1] and equipped with the norm |||u||| = max{‖u‖, ‖u′‖, ‖u′′‖}, where ‖u‖ =

max
06t61

|u(t)|. Let

C2
0 [0, 1] = {u ∈ C2[0, 1] : u(0) = u′(1) = 0},

K = {u ∈ C2
0 [0, 1] : ‖u‖α(t) 6 u(t) 6 ‖u‖β(t), u′(t) > ‖u′‖γ(t),

−u′′(t) > ‖u′′‖t, 0 6 t 6 1}.

Let p(t) =
∫ 1

0
J(t, s) ds = 1

3 t− 1
6 t

3 + 1
24 t

4. Then 0 6= p ∈ K by direct calculations.

If u1, u2 ∈ K, then

u1(t) > 0, u2(t) > 0, u′1(t) > 0, u′2(t) > 0, 0 6 t 6 1.

This shows that u1(t), u2(t) are nonnegative nondecreasing functions on [0, 1]. So,

for 0 6 t 6 1,

(u1 + u2)(t) = u1(t) + u2(t) 6 ‖u1‖β(t) + ‖u2‖β(t)

= u1(1)β(t) + u2(1)β(t) = (u1 + u2)(1)β(t) = ‖u1 + u2‖β(t).

Simple verification shows that K is a nonnegative function cone in C2[0, 1]. Here,

the set K is called a cone in C2[0, 1], if K is a convex closed subset in C2[0, 1] such

that (i) if u ∈ K, ̺ > 0, then ̺u ∈ K; (ii) if u ∈ K and −u ∈ K, then u = 0. For

r > 0, write

K(r) = {u ∈ K : |||u||| < r}, ∂K(r) = {u ∈ K : |||u||| = r}.

Lemma 2.2. If u ∈ K, then ‖u′′‖ = |||u|||, 1
2 |||u||| 6 ‖u′‖ 6 |||u||| and 1

3 |||u||| 6 ‖u‖ 6
1
2 |||u|||.
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P r o o f. Since u ∈ K, one has ‖u′′‖t 6 −u′′(t) 6 ‖u′′‖, 0 6 t 6 1. Since

u(0) = u′(1) = 0, one has

u(t) =

∫ 1

0

G(t, s)[−u′′(s)] ds, 0 6 t 6 1.

It follows that

‖u‖ = max
06t61

∫ 1

0

G(t, s)[−u′′(s)] ds 6 ‖u′′‖ max
06t61

∫ 1

0

G(t, s) ds =
1

2
‖u′′‖,

‖u‖ > ‖u′′‖ max
06t61

∫ 1

0

G(t, s)s ds =
1

3
‖u′′‖.

Since u′(1) = 0, one has u′(t) =
∫ 1

t [−u′′(s)] ds, 0 6 t 6 1. So

1

2
‖u′′‖ = max

06t61

∫ 1

t

‖u′′‖s ds 6 ‖u′‖ 6 max
06t61

∫ 1

t

‖u′′‖ ds = ‖u′′‖.

Hence ‖u′′‖ = |||u|||, 1
3 |||u||| 6 ‖u‖ 6 1

2 |||u||| and 1
2 |||u||| 6 ‖u′‖ 6 |||u|||. �

For u ∈ K \ {0}, define the operator T as follows:

(Tu)(t) = λ

∫ 1

0

J(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds, 0 6 t 6 1.

Lemma 2.3. Assume that 0 < r1 < r2 <∞ and (H1)–(H3) hold. Then
(1) T : K(r2) \K(r1) → C2[0, 1] and for any u ∈ K(r2) \K(r1),

(Tu)′′(t) = −λ
∫ 1

0

G(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds, 0 6 t 6 1.

(2) T : K(r2) \K(r1) → K is completely continuous.

P r o o f. Let u ∈ K(r2) \ K(r1). Then r1 6 |||u||| 6 r2. By Lemma 2.2,
1
3r1 6

‖u‖ 6 1
2r2,

1
2r1 6 ‖u′‖ 6 r2, r1 6 ‖u′′‖ 6 r2. So, for 0 6 t 6 1,

1

3
r1α(t) 6 ‖u‖α(t) 6 u(t) 6 ‖u‖β(t) 6

1

2
r2β(t),

1

2
r1γ(t) 6 ‖u′‖γ(t) 6 u′(t) 6 ‖u′‖ 6 r2,

r1t 6 ‖u′′‖t 6 −u′′(t) 6 ‖u′′‖ 6 r2.
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Let the function jr2

r1
∈ C(0, 1) be as in (H3). Then

f(t, u(t), u′(t), u′′(t)) 6 jr2

r1
(t), 0 < t < 1.

By Lemma 2.1 (3) and the assumption (H3), we get that

max
06t61

∫ 1

0

J(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds 6
1

2

∫ 1

0

sh(s)jr2

r1
(s) ds <∞.

So, (Tu)(t) is well defined on [0, 1].

Applying Lemma 2.1 (5), one has

∣

∣

∣

J(t+ ∆t, s) − J(t, s)|
∆t

∣

∣

∣
h(s)f(s, u(s), u′(s), u′′(s)) 6 h(s)f(s, u(s), u′(s), u′′(s)).

By (H3), h(s)f(s, u(s), u′(s), u′′(s)) is a nonnegative integrable function on [0, 1].

Applying the Lebesgue dominated convergence theorem ([13, (12.24), p. 172]), we

get that, for 0 6 t 6 1,

(Tu)′(t) = λ lim
∆t→0

1

∆t
[(Tu)(t+ ∆t) − (Tu)(t)]

= λ lim
∆t→0

∫ 1

0

J(t+ ∆t, s) − J(t, s)

∆t
h(s)f(s, u(s), u′(s), u′′(s)) ds

= λ

∫ 1

0

lim
∆t→0

J(t+ ∆t, s) − J(t, s)

∆t
h(s)f(s, u(s), u′(s), u′′(s)) ds

= λ

∫ 1

0

∂

∂t
J(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds.

Further, applying Lemma 2.1 (6) and copying the above arguments, one has

(Tu)′′(t) = −λ
∫ 1

0

G(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds, 0 6 t 6 1.

Therefore, Tu ∈ C2[0, 1] and the conclusion (1) is proved.

Since ∂
∂tJ(t, s) > 0, 0 6 t, s 6 1, one has (Tu)′(t) > 0, 0 6 t 6 1. Since J(0, s) ≡ 0,

∂
∂tJ(1, s) ≡ 0, one has (Tu)(0) = 0, (Tu)′(1) = 0.
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According to Lemma 2.1 (1)–(3), one has, for 0 6 t 6 1,

(Tu)(t) = λ

∫ 1

0

J(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds

> λα(t)

∫ 1

0

J(1, s)h(s)f(s, u(s), u′(s)u′′(s)) ds

> λα(t) max
06t61

∫ 1

0

J(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds = ‖Tu‖α(t),

−(Tu)′′(t) = λ

∫ 1

0

G(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds

> λt

∫ 1

0

sh(s)f(s, u(s), u′(s), u′′(s)) ds

> λt max
06t61

∫ 1

0

G(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds = ‖(Tu)′′‖t.

Similarly, (Tu)(t) 6 ‖Tu‖β(t), (Tu)′(t) > ‖(Tu)′‖γ(t), 0 6 t 6 1. Therefore,

T : K(r2) \K(r1) → K.

Now we prove that the operator T : K(r2) \K(r1) → C2[0, 1] is completely con-

tinuous. Let

(T1u)(t) = h(t)f(t, u(t), u′(t), u′′(t)), 0 < t < 1, u ∈ K(r2) \K(r1),

(T2v)(t) = λ

∫ 1

0

J(t, s)v(s) ds, 0 6 t 6 1, v ∈ L1[0, 1].

By (H1)–(H3), T1 : K(r2) \K(r1) → L1[0, 1]. Let v ∈ L1[0, 1], then

max
06t61

∣

∣

∣

∣

∫ 1

0

J(t, s)v(s) ds

∣

∣

∣

∣

6
1

2

∫ 1

0

s|v(s)| ds 6
1

2

∫ 1

0

|v(s)| ds <∞.

Hence, T2v is well defined. Since v(t) is an integrable function on [0, 1], by the

Lebesgue dominated convergence theorem, for 0 6 t 6 1,

lim
∆t→0

(T2v)(t+ ∆t) − (T2v)(t)

∆t
= lim

∆t→0

λ

∆t

∫ 1

0

[J(t+ ∆t, s) − J(t, s)]v(s) ds

= λ lim
∆t→0

∫ 1

0

J(t+ ∆t, s) − J(t, s)

∆t
v(s) ds

= λ

∫ 1

0

∂

∂t
J(t, s)v(s) ds.

So, T2v ∈ C1[0, 1] and for 0 6 t 6 1,

(T2v)
′(t) = λ

∫ 1

0

∂

∂t
J(t, s)v(s) ds.
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Similarly, T2v ∈ C2[0, 1] and for 0 6 t 6 1,

(T2v)
′′(t) = −λ

∫ 1

0

G(t, s)v(s) ds.

It follows that T2 : L1[0, 1] → C2[0, 1] and T = T2 ◦ T1 on K(r2) \K(r1).

From the above arguments, we see that T2, (T2(·))′, (T2(·))′′ : L1[0, 1] → C[0, 1] are

linear operators.

Let r > 0 and U(r) =
{

v ∈ L1[0, 1] :
∫ 1

0 |v(s)| ds 6 r
}

. Then

sup
v∈U(r)

‖T2v‖ = λ sup
v∈U(r)

max
06t61

∣

∣

∣

∣

∫ 1

0

J(t, s)v(s) ds

∣

∣

∣

∣

6
1

2
λ sup

v∈U(r)

∫ 1

0

s|v(s)| ds

6
1

2
λ sup

v∈U(r)

∫ 1

0

|v(s)| ds =
1

2
λr.

This shows that T2 : L1[0, 1] → C[0, 1] is a bounded linear operator. Hence, T2 :

L1[0, 1] → C[0, 1] is continuous and the set T2(U(r)) is bounded. On the other hand,

if v ∈ U(r), by Lemma 2.1 (5) we have

|(T2v)(t1) − (T2v)(t2)| = λ

∣

∣

∣

∣

∫ 1

0

[J(t1, s) − J(t2, s)]v(s) ds

∣

∣

∣

∣

6 λ|t1 − t2|
∫ 1

0

|v(s)| ds 6 λr|t1 − t2|.

So, the set T2(U(r)) is equicontinuous. By the Arzela-Ascoli theorem, T2 : L1[0, 1] →
C[0, 1] is completely continuous.

Similarly, by Lemma 2.1 (6) and (7), (T2(·))′, (T2(·))′′ : L1[0, 1] → C[0, 1] are com-

pletely continuous.

Therefore, T2 : L1[0, 1] → C2[0, 1] is a completely continuous operator.

In order to prove that T : K(r2) \K(r1) → K is completely continuous, we only

need to prove that T1 : K(r2) \K(r1) → L1[0, 1] is continuous.

Let un, u0 ∈ K(r2) \ K(r1) and |||un − u0||| → 0. Then for any 0 < t < 1,

un(t) → u0(t), u
′
n(t) → u′0(t), u

′′
n(t) → u′′0(t) and by (H2),

lim
n→∞

f(t, un(t), u′n(t), u′′n(t)) = f(t, u0(t), u
′
0(t), u

′′
0(t)).

Since un, u0 ∈ K(r2) \K(r1), we have for n = 1, 2, . . . and 0 < t < 1,

h(t)|f(t, un(t), u′n(t), u′′n(t)) − f(t, u0(t), u
′
0(t), u

′′
0(t))| 6 2h(t)jr2

r1
(t).
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By the Lebesgue dominated convergence theorem, we obtain that

lim
n→∞

∫ 1

0

|(T1un)(t) − (T1u0)(t)| dt

= lim
n→∞

∫ 1

0

h(t)|f(t, un(t), u′n(t), u′′n(t)) − f(t, u0(t), u
′
0(t), u

′′
0 (t))| dt

=

∫ 1

0

h(t) lim
n→∞

|f(t, un(t), u′n(t), u′′n(t)) − f(t, u0(t), u
′
0(t), u

′′
0(t))| dt = 0.

Therefore, T1 : K(r2) \K(r1) → L1[0, 1] is continuous.

The proof is completed. �

For the problem (P2), we will use the following cone and associate integral oper-

ator.

Let C[0, 1] be the Banach space of all functions continuous on [0, 1] and equipped

with the norm ‖u‖ = max
06t61

|u(t)|. Let

K♭ = {u ∈ C[0, 1] : ‖u‖α(t) 6 u(t) 6 ‖u‖β(t), 0 6 t 6 1}.

Then K♭ is a cone in C[0, 1]. In the cone, all functions are nonnegative.

For r > 0, write K♭(r) = {u ∈ K♭ : ‖u‖ < r}.
For u ∈ K♭ \ {0}, define the operator T ♭ as follows:

(T ♭u)(t) = λ

∫ 1

0

J(t, s)h(s)f(s, u(s)) ds, 0 6 t 6 1.

Imitating and simplifying the proof of Lemma 2.3 (2), we get Lemma 2.4. The

theorem concerns the complete continuity of the operator T ♭.

Lemma 2.4. Assume that 0 < r1 < r2 < ∞ and (H1)♭–(H3)♭ hold. Then

T ♭ : K♭(r2) \K♭(r1) → Kb is completely continuous.

For convenience of the reader, we list the Guo-Krasnosel’skii fixed point theorem

of cone expansion-compression type, see [10].

Lemma 2.5. Let X be a Banach space, let K be a cone in X , let Ω1,Ω2 be two

bounded open subsets in K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : Ω2 \ Ω1 → K be

a completely continuous operator. Assume that one of the following conditions is

satisfied:

(1) ‖Tx‖ 6 ‖x‖, x ∈ ∂Ω1 and ‖Tx‖ > ‖x‖, x ∈ ∂Ω2,

(2) ‖Tx‖ > ‖x‖, x ∈ ∂Ω1 and ‖Tx‖ 6 ‖x‖, x ∈ ∂Ω2.

Then T has a fixed point in Ω2 \ Ω1.
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3. Main results

Part I. On the problem (P1).

For 0 < t < 1 and r > 0, define the height functions

ϕ(t, r) = max{f(t, x, y, z) : 1
3rα(t) 6 x 6 1

2rβ(t), 1
2rγ(t) 6 y 6 r, rt 6 −z 6 r},

ψ(t, r) = min{f(t, x, y, z) : 1
3rα(t) 6 x 6 1

2rβ(t), 1
2rγ(t) 6 y 6 r, rt 6 −z 6 r}.

If (H1)–(H3) hold, then h(·)ϕ(·, r), h(·)ψ(·, r) ∈ L1[0, 1] ∩ C(0, 1).

We obtain the following local existence theorems.

Theorem 3.1. Assume that (H1)–(H3) hold and there exist two positive numbers

a < b such that one of the following conditions is satisfied:

b
∫ 1

0
sh(s)ψ(s, b) ds

6 λ 6
a

∫ 1

0
sh(s)ϕ(s, a) ds

,(b1)

a
∫ 1

0
sh(s)ψ(s, a) ds

6 λ 6
b

∫ 1

0
sh(s)ϕ(s, b) ds

.(b2)

Then problem (P1) has at least one increasing positive solution u∗ ∈ K such that

a 6 |||u∗||| 6 b.

P r o o f. Without loss of generality, we only prove the case (b1). By Lem-

ma 2.3 (2), T : K(b) \K(a) → K is completely continuous.

If u ∈ ∂K(a), then |||u||| = a. By Lemma 2.2, for 0 6 t 6 1,

1
3aα(t) 6 u(t) 6 1

2aβ(t), 1
2aγ(t) 6 u′(t) 6 a, at 6 −u′′(t) 6 a.

By the definition of ϕ(t, a), then

f(t, u(t), u′(t), u′′(t)) 6 ϕ(t, a), 0 < t < 1.

By Lemma 2.3 (2), Tu ∈ K. By Lemmas 2.2 and 2.1 (1), then

|||Tu||| = ‖(Tu)′′‖ = λ max
06t61

∫ 1

0

G(t, s)h(s)f(s, u(s), u′(s), u′′(s)) ds

6
a

∫ 1

0
sh(s)ϕ(s, a) ds

·
∫ 1

0

sh(s)ϕ(s, a) ds = a = |||u|||.

If u ∈ ∂K(b), then |||u||| = b and for 0 6 t 6 1,

1
3bα(t) 6 u(t) 6 1

2bβ(t), 1
2bγ(t) 6 u′(t) 6 b, bt 6 −u′′(t) 6 b.
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By the definition of ψ(t, b), one has

f(t, u(t), u′(t), u′′(t)) > ψ(t, b), 0 < t < 1.

By Lemma 2.1 (1), one has G(t, s) > ts for 0 6 t, s 6 1. It follows that

|||Tu||| = ‖(Tu)′′‖ > λ max
06t61

∫ 1

0

G(t, s)h(s)ψ(s, b) ds

>

b max
06t61

t

∫ 1

0
sh(s)ψ(s, b) ds

·
∫ 1

0

sh(s)ψ(s, b) ds = b = |||u|||.

By Lemma 2.5 (1), the operator T has a fixed point u∗ ∈ K and a 6 |||u∗||| 6 b.

Since u∗ ∈ K, one has u∗(0) = 0, (u∗)′(1) = 0 and u∗ ∈ C2[0, 1]. Since Tu∗ = u∗

and by virtue of Lemma 2.3 (1), we get that, for 0 6 t 6 1,

(u∗)′′(t) = (Tu∗)′′(t) = −λ
∫ 1

0

G(t, s)h(s)f(s, u∗(s), (u∗)′(s), (u∗)′′(s)) ds.

Since G(0, s) ≡ 0, one has (u∗)′′(0) = 0. Since h(s)f(s, u∗(s), (u∗)′(s), (u∗)′′(s)) is

integrable on [0, 1], differentiating both sides of the above equality we get that, for

0 6 t 6 1,

(u∗)′′′(t) = −λ
∫ 1

0

∂

∂t
G(t, s)h(s)f(s, u∗(s), (u∗)′(s), (u∗)′′(s)) ds

= −λ
∫ 1

t

h(s)f(s, u∗(s), (u∗)′(s), (u∗)′′(s)) ds.

So, (u∗)′′′(1) = 0. Since h(·)f(·, u∗(·), (u∗)′(·), (u∗)′′(·)) ∈ C(0, 1), differentiating

both sides of the equality we get that, for 0 < t < 1,

(u∗)(4)(t) = λh(t)f(t, u∗(t), (u∗)′(t), (u∗)′′(t)).

Therefore, u∗ is a solution of the problem (P1).

Since u∗(t) > ‖u∗‖α(t) > 1
3aα(t) > 0, 0 < t 6 1, we see that u∗(t) is a positive

solution. Since (u∗)′(t) > 1
2aγ(t) > 0, 0 < t < 1, we see that u∗(t) is a strictly

increasing function. �

Imitating the proof of Theorem 3.1, we can prove Theorem 3.2 concerned with

twin positive solutions.
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Theorem 3.2. Assume that (H1)–(H3) hold and there exist three positive num-

bers a1 < b < a2 such that one of the following conditions is satisfied:

b
∫ 1

0
sh(s)ψ(s, b) ds

< λ 6 min
i=1,2

ai
∫ 1

0
sh(s)ϕ(s, ai) ds

.(c1)

max
i=1,2

ai
∫ 1

0 sh(s)ψ(s, ai) ds
6 λ <

b
∫ 1

0 sh(s)ϕ(s, b) ds
.(c2)

Then problem (P1) has at least two strictly increasing positive solutions u∗1, u
∗
2 ∈ K

such that a1 6 |||u∗1||| < b < |||u∗2||| 6 a2.

Part II. On the problem (P2).

Now, for 0 < t < 1 and r > 0, we use the height functions

ϕ♭(t, r) = max{f(t, x) : rα(t) 6 x 6 rβ(t)},
ψ♭(t, r) = min{f(t, x) : rα(t) 6 x 6 rβ(t)}.

Since ∂
∂tJ(t, s) > 0, 0 6 t, s 6 1, we see that

∫ 1

0
J(t, s)h(s)ϕ♭(s, r) ds and

∫ 1

0 J(t, s)h(s)ψ♭(s, r) ds are nondecreasing functions with respect to t under the

assumptions (H1)♭–(H3)♭. And since J(1, s) = 1
2s− 1

6s
3, one has

max
06t61

∫ 1

0

J(t, s)h(s)ϕ♭(s, r) ds =
1

6

∫ 1

0

s(3 − s2)h(s)ϕ♭(s, r) ds,

max
06t61

∫ 1

0

J(t, s)h(s)ψ♭(s, r) ds =
1

6

∫ 1

0

s(3 − s2)h(s)ψ♭(s, r) ds.

Applying Lemma 2.4 and imitating the proofs of Theorems 3.1 and 3.2, we can

prove the following local existence theorems.

Theorem 3.3. Assume that (H1)♭–(H3)♭ hold and there exist two positive num-

bers a < b such that one of the following conditions is satisfied:

6b
∫ 1

0
s(3 − s2)h(s)ψ♭(s, b) ds

6 λ 6
6a

∫ 1

0
s(3 − s2)h(s)ϕ♭(s, a) ds

.(d1)

6a
∫ 1

0 s(3 − s2)h(s)ψ♭(s, a) ds
6 λ 6

6b
∫ 1

0 s(3 − s2)h(s)ϕ♭(s, b) ds
.(d2)

Then problem (P2) has at least one strictly increasing positive solution u∗ ∈ K♭

such that a 6 ‖u∗‖ 6 b.
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Theorem 3.4. Assume that (H1)♭–(H3)♭ hold and there exist three positive num-

bers a1 < b < a2 such that one of the following conditions is satisfied:

6b
∫ 1

0 s(3 − s2)h(s)ψ♭(s, b) ds
< λ 6 min

i=1,2

6ai
∫ 1

0 s(3 − s2)h(s)ϕ♭(s, ai) ds
.(e1)

max
i=1,2

6ai
∫ 1

0 s(3 − s2)h(s)ψ♭(s, ai) ds
6 λ <

6b
∫ 1

0 s(3 − s2)h(s)ϕ♭(s, b) ds
.(e2)

Then problem (P2) has at least two strictly increasing positive solutions u∗1, u
∗
2 ∈

K♭ such that a1 6 ‖u∗1‖ < b < ‖u∗2‖ 6 a2.

4. Further discussion

Proposition 4.1. Theorem 1.1 is a special case of Theorem 3.3.

P r o o f. We only prove the proposition with the condition (a4)(i), that is,

[A lim
x→∞

f(x)/x]−1 < λ < [B lim
x→+0

f(x)/x]−1.

By (a1) and (a3), the assumptions (H1)♭–(H3)♭ are satisfied. Moreover,

A =
1

12

∫ 1

0

s2(3 − s2)2h(s) ds =
1

6

∫ 1

0

s(3 − s2)h(s)α(s) ds,

B =
1

6

∫ 1

0

s2(2 − s)(3 − s2)h(s) ds =
1

6

∫ 1

0

s(3 − s2)h(s)β(s) ds.

Since lim
x→+0

f(x)/x < (λB)−1, there exists a > 0 such that f(x) 6 (λB)−1x,

0 6 x 6 a. Thus, for 0 6 t 6 1,

ϕ♭(t, a) 6 max{(λB)−1x : aα(t) 6 x 6 aβ(t)} = (λB)−1aβ(t).

It follows that

6a
∫ 1

0
s(3 − s2)h(s)ϕ♭(s, a) ds

>
6aλB

a
∫ 1

0
s(3 − s2)h(s)β(s) ds

= λ.

Since λA lim
x→∞

f(x)/x > 1, there exist ε > 0 and 0 < σ < 1 such that

λ
[

lim
x→∞

f(x)/x− ε
]

[

1

6

∫ 1

σ

s(3 − s2)h(s)α(s) ds

]

> 1.

Let Ā = 1
6

∫ 1

σ
s(3 − s2)h(s)α(s) ds. Then lim

x→∞
f(x)/x > (λĀ)−1 + ε.
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Since lim
x→∞

f(x)/x > (λĀ)−1, there exists b1 > a such that f(x) > (λĀ)−1x,

b1 6 x <∞. Let b = b1σ
−1. Then

min
σ6t61

[bα(t)] > b min
σ6t61

t = bσ = b1,

where α(t) = 1
2 t(3−t2) > t for any 0 6 t 6 1. So, if σ 6 t 6 1 and bα(t) 6 x 6 bβ(t),

then x > b1. This shows that

ψ♭(t, b) > min{(λĀ)−1x : bα(t) 6 x 6 bβ(t)} = (λĀ)−1bα(t), σ 6 t 6 1.

Consequently,

6b
∫ 1

0 s(3 − s2)h(s)ψ♭(s, b) ds
6

6b
∫ 1

σ s(3 − s2)h(s)ψ♭(s, b) ds

6
6bλĀ

b
∫ 1

σ
s(3 − s2)h(s)α(s) ds

= λ.

By Theorem 3.3 (d1), the proof is completed. �

E x am p l e 4.2. Consider the fourth-order boundary value problem







u(4)(t) = λ
[1

5
u2(t) +

1
√

u(t)
sin2 π

8t(1 − t)

]

, 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′′(1) = 0.

Here h(t) ≡ 1, f(t, x) = 1
5x

2 + 1√
x

sin2 π

8t(1−t) .

For r2 > r1 > 0, let jr2

r1
(t) = 1

5r
2
2t

2(2 − t)2 + 1√
r1t
, then f(t, x, y) 6 jr2

r1
(t) for

any 0 < t < 1, 1
2r1t(3 − t2) 6 x 6 r2t(2 − t). So, the assumptions (H1)♭–(H3)♭ are

satisfied.

Direct computation gives that

ϕ♭(t, r) 6 max
{1

5
x2 +

1√
x

:
1

2
rt(3 − t2) 6 x 6 rt(2 − t)

}

6
1

5
r2t2(2 − t)2 +

1√
rt
,

ψ♭(t, r) > min
{1

5
x2 +

1√
x

sin2 π

8t(1 − t)
:

1

2
rt(3 − t2) 6 x 6 rt(2 − t)

}

> max
{ 1

20
r2t2(3 − t)2,

1
√

rt(2 − t)
sin2 π

8t(1 − t)

}

.
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Let a1 = 1
3 , b = 4, a2 = 20. Then

6a1
∫ 1

0
s(3 − s2)h(s)ψ♭(s, a1) ds

6
2√

3
∫ 1

0
s(3−s2)√

s(2−s)
sin2 π

8t(1−t) ds

6
8

3
√

3
∫ 3/4

1/4

√
s(3 − s2) ds

≈ 1.6757,

6b
∫ 1

0
s(3 − s2)h(s)ϕ♭(s, b) ds

>
24

16
5

∫ 1

0
s3(3 − s2)(2 − s)2 ds+ 1

2

∫ 1

0
ds√

s

=
24

16
5 · 739

840 + 1
≈ 6.2905,

6a2
∫ 1

0 s(3 − s2)h(s)ψ♭(s, a2) ds
6

120

20
∫ 1

0 s
3(3 − s2)3 ds

=
240

131
≈ 1.8321.

By Theorem 3.4 (e2), the problem has two strictly increasing positive solutions

u∗1, u
∗
2 ∈ K♭ such that 1

3 6 ‖u∗1‖ < 4 < ‖u∗2‖ 6 20 for any 1.8322 6 λ < 6.2904.

Since the problem has two positive solutions and f(t, x) is singular at t = 0, t = 1

and x = 0, the multiplicity conclusion can not be derived from Theorem 1.1.
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