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Jan Štěpnička, The University of Ostrava
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On the Diophantine equation x2 + 2α5β17γ = yn

Hemar Godinho, Diego Marques, Alain Togbé

Abstract. In this paper, we find all solutions of the Diophantine equa-
tion x2 + 2α5β17γ = yn in positive integers x, y ≥ 1, α, β, γ, n ≥ 3 with
gcd(x, y) = 1.

1 Introduction
There are many results concerning the generalized Ramanujan-Nagell equation

x2 + C = yn, (1)

where C > 0 is a given integer and x, y, n are positive integer unknowns with
n ≥ 3. Results obtained for general superelliptic equations clearly provide effec-
tive finiteness results for this equation, too (see for example [8], [31], [32] and the
references given there). The first result concerning the above equation was due
to V. A. Lebesgue [23] and it goes back to 1850, where he proved that the above
equation has no solutions for C = 1. More recently, other values of C were consid-
ered. Tengely [33] solved the equation with C = b2, b odd and 3 ≤ b ≤ 501. The
case where C = pk, a power of a prime number, was studied in [5], [21], [20] for
p = 2, in [6], [4], [24] for p = 3, in [1], [2] for p = 5, and in [27] for p = 7. The
case C = p2k with 2 ≤ p < 100 prime and gcd(x, y) = 1 was solved by Bérczes
and Pink [9]. For arbitrary primes, some advances can be found in [7]. In [13],
the cases with 1 ≤ C ≤ 100 were completely solved. The solutions for the cases
C = 2a ·3b, C = 2a ·5b and C = 5a ·13b, when x and y are coprime, can be found in
[3], [25], [26], respectively. Recent progress on the subject were made in the cases
C = 5a · 11b, C = 2a · 11b, C = 2a · 3b · 11c, C = 2a · 5b · 13c and can be found in
[16], [15], [14], [18]. For related results concerning equation (1) see [10], [22], [29],
[30] and the references given there. For a survey concerning equation (1) see [12].

In this paper, we are interested in solving the Diophantine equation

x2 + 2α5β17γ = yn, gcd(x, y) = 1 , x, y ≥ 1 , α, β, γ ≥ 0 , n ≥ 3 . (2)
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Our result is the following.

Theorem 1. The equation (2) has no solution except for:

n = 3 the solutions given in Table 1;

n = 4 the solutions given in Table 2;

n = 5 (x, y, α, β, γ) = (401, 11, 1, 3, 0);

n = 6 (x, y, α, β, γ) = (7, 3, 3, 1, 1), (23, 3, 3, 2, 0);

n = 8 (x, y, α, β, γ) = (47, 3, 8, 0, 1), (79, 3, 6, 1, 0) .

One can deduce from the above result the following corollary.

Corollary 1. The equation

x2 + 5k17l = yn, x ≥ 1 , y ≥ 1 , gcd(x, y) = 1 , n ≥ 3 , k ≥ 0 , l ≥ 0 (3)

has only the solutions

(x, y, k, l, n) = (94, 21, 2, 1, 3) , (2034, 161, 3, 2, 3) , (8, 3, 0, 1, 4) .

Therefore, our work extends that of Pink and Rábai [28]. We will follow the
standard approach to work on equation (2) but with another version of MAGMA
(V2.18-6) that gives better results when we deal with the corresponding elliptic
curves.

2 The case n = 3
Lemma 1. When n = 3, all the solutions to equation (2) are given in Table 1.

For n = 6, we have (x, y, α, β, γ) = (7, 3, 3, 1, 1) , (23, 3, 3, 2, 0).

Proof. Equation (2) can be rewritten as( x
z3

)2
+A =

( y
z2

)3
, (4)

where A is sixth-power free and defined implicitly by 2α5β17γ = Az6. One can see
that A = 2α15β117γ1 with α1, β1, γ1, ∈ {0, 1, 2, 3, 4, 5}. We thus get

V 2 = U3 − 2α15β117β1 , (5)

with U = y/z2, V = x/z3 and α1, β1, γ1 ∈ {0, 1, 2, 3, 4, 5}. We need to determine
all the {2, 5, 17}-integral points on the above 216 elliptic curves. Recall that if S is a
finite set of prime numbers, then an S-integer is rational number a/b with coprime
integers a and b, where the prime factors of b are in S. We use the command
SIntegralPoints of MAGMA [17] to determine all the {2, 5, 17}-integer points on the
above elliptic curves. Here are a few remarks about the computations:

1. We eliminate the solutions with UV = 0 because they yield to xy = 0.
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Table 1: Solutions for n = 3 .

α1 β1 γ1 z α β γ x y
1 0 0 1 1 0 0 5 3
1 0 0 2 · 5 7 6 0 383 129
2 0 0 1 2 0 0 11 5
4 0 1 5 4 6 1 5369 321
3 0 2 5 3 6 2 167589 3041
1 1 1 22 13 1 1 93 89
1 1 1 5 1 7 1 1531 171
1 1 1 1 1 1 1 453 59
3 1 1 1 3 1 1 7 9
1 1 2 1 1 1 2 63 19
2 1 2 1 2 1 2 59 21
1 1 3 2 7 1 3 5471 321
1 1 3 5 1 7 3 17052501 66251
3 2 0 1 3 2 0 23 9
3 2 0 2 9 2 0 17771 681
5 2 0 1 5 2 0 261 41
0 2 1 1 0 2 1 94 21
0 2 1 2 6 2 1 55157 1449
3 3 1 2 9 3 1 10763 489
3 3 1 22 15 3 1 4617433 27729
0 3 2 1 0 3 2 2034 161
3 3 5 25 33 3 5 2037783243169 160733121
1 4 0 1 1 4 0 9 11
4 4 1 2 · 5 10 10 1 3274947 22169
5 4 2 2 · 5 11 10 2 699659581 788121
1 5 0 17 1 5 6 916769 9971
1 5 1 17 1 5 7 846227 14859
1 5 1 2 7 5 1 17579 681

2. We consider only solutions such that the numerators of U and V are coprime.

3. If U and V are integers then z = 1. So α1 = α, β1 = β, and γ1 = γ.

4. If U and V are rational numbers which are not integers, then z is determined
by the denominators of U and V . The numerators of these rational numbers
give x and y. Then α, β, γ are computed knowing that 2α5β17γ = Az6.

Therefore, we first determine (U, V, α1, β1, γ1) and then we use the relations

U =
y

z2
, V =

x

z3
, 2α5β17γ = Az6,

to find the solutions (x, y, α, β, γ) listed in Table 1.
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For n = 6, equation
x2 + 2α5β17γ = y6 (6)

becomes equation

x2 + 2α5β17γ =
(
y2
)3
. (7)

We look in the list of solutions of Table 1 and observe that y is a perfect square
only when y = 9 corresponding to two solutions. Therefore, the only solutions to
equation (2) for n = 6 are the two solutions listed in Theorem 1. This completes
the proof of Lemma 1. �

Remark 1. Notice that with the old version of MAGMA, it was difficult to determine
the rational points of certain elliptic curves when 2α5β17γ is very high. That is
the case of the following elliptic curves:

V 2 = U3 − 23 · 55 · 175, V 2 = U3 − 25 · 51 · 174.

We thank the team MAGMA, particularly Steve Donnelly for the new version (Magma
V2.18-6) and their help.

3 The case n = 4
Here, we have the following result.

Lemma 2. If n = 4, then the only solutions to equation (2) are given in Table 2.
If n = 8, then the only solution to equation (2) is (x, y, α, β, γ) = (47, 3, 8, 0, 1),

(79, 3, 6, 1, 0).

Table 2: Solutions for n = 4 .

α1 β1 γ1 z α β γ x y
1 0 0 2 5 0 0 7 3
0 1 0 2 4 1 0 1 3
0 0 1 22 8 0 1 1087 33
0 0 1 1 0 0 1 8 3
0 0 1 22 8 0 1 47 9
1 0 1 2 5 0 1 9 5
3 0 1 2 7 0 1 15 7
3 0 1 22 11 0 1 495 23
2 1 0 2 6 1 0 79 9
2 2 1 2 6 2 1 409 21
3 2 2 2 7 2 2 511 33
1 0 3 22 9 0 3 4785 71

Proof. Equation (2) can be written as( x
z2

)2
+A =

(y
z

)4
, (8)
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where A is fourth-power free and defined implicitly by 2α 5β 17γ = Az4. One can
see that A = 2α1 5β1 17γ1 with α1, β1, γ1 ∈ {0, 1, 2, 3}. Hence, the problem consists
of determining the {2, 5, 17}-integer points on the totality of the 64 elliptic curves

V 2 = U4 − 2α1 5b1 17γ1 , (9)

with U = y/z, V = x/z2 and α1, β1, γ1 ∈ {0, 1, 2, 3}. Here, we use the command
SIntegralQuarticPoints of MAGMA [17] to determine the {2, 5, 17}-integer points on
the above elliptic curves. As in Section 2, we first find (U, V, α1, β1, γ1), and then
using the coprimality conditions on x and y and the definition of U and V , we
determine all the corresponding solutions (x, y, α, β, γ) listed in Table 2.

Looking in the list of solutions of equation Table 2, we observe the 2 solutions
in Table 2 whose values for y are perfect squares. Thus, the only solutions to
equation (2) with n = 8 are those listed in Theorem 1. This concludes the proof
of Lemma 2. �

4 The case n ≥ 5
The aim of this section is to determine all solutions of equation (2), for n ≥ 5
and to prove its unsolubility for n = 7 and n ≥ 9. The cases when n is of the
form 2a3b were treated in previous sections. So, apart from these cases, in order
to prove that (2) has no solution for n ≥ 7, it suffices to consider n prime. In fact,
if (x, y, α, β, γ, n) is a solution for (2) and n = pk, where p ≥ 7 is prime and k > 1,
then (x, yk, α, β, γ, p) is also a solution. So, from now on, n will denote a prime
number.

Lemma 3. The Diophantine equation (2) has no solution with n ≥ 5 prime except
for

n = 5 (x, y, α, β, γ) = (401, 11, 1, 3, 0) .

Proof. Let (x, y, α, β, γ, n) be a solution for (2). We claim that y is odd. In fact,
if y is even and since gcd(x, y) = 1, one has that x is odd, and then −2α5β17γ ≡
x2 − yn ≡ 1 (mod 4), but this contradicts the fact that −2α5β17γ ≡ 0, 2 or 3
(mod 4) (according to α ≥ 2, α = 1 or α = 0, respectively). Now, write equation (2)
as x2 + dz2 = yn, where

d = 2α−2bα/2c5β−2bβ/2c17γ−2bγ/2c ,

and z = 2bα/2c5bβ/2c17bγ/2c. Since x− 2bx/2c ∈ {0, 1}, we have

d ∈ {1, 2, 5, 10, 17, 34, 85, 170} .

We then factor the previous equation over K = Q[i
√
d] = Q[

√
−d] as

(x+ i
√
dz)(x− i

√
dz) = yn.

Now, we claim that the ideals (x + i
√
dz)OK and (x − i

√
dz)OK are coprime.

If this is not the case, there must exist a prime ideal p containing these ideals.
Therefore, x± i

√
dz and yn (and so y) belong to p. Thus 2x ∈ p and hence either 2
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or x belongs to p. Since gcd(2, y) = gcd(x, y) = 1, then 1 belongs to the ideals
〈2, y〉 and 〈x, y〉, then 1 ∈ p leading to an absurdity of p = OK. By the unique
factorization of ideals, it follows that (x + i

√
dz)OK = jn, for some ideal j of OK.

Using Mathematica’s command NumberFieldClassNumber[Sqrt[-d]], we obtain that
the class number of K is either 1, 2, 4 or 12 and so coprime to n, then j is a principal
ideal yielding

x+ i
√
dz = εηn, (10)

for some η ∈ OK and ε a unit of K. Since the group of units of K is a subset
of {±1,±i} and n is odd, then ε is a n-th power. Thus, (10) can be reduced to
x+ i
√
dz = ηn. Since K is an imaginary quadratic field and −d 6≡ 1 (mod 4), then

{1, i
√
d} is an integral basis and we can write η = u + i

√
dv, for some integers u

and v. We then get

ηn − ηn

η − η
=

2bα/2c5bβ/2c17bγ/2c

v
, (11)

where, as usual, w denotes the complex conjugate of w.

Let (Lm)m≥0 be the Lucas sequence given by

Lm =
ηm − ηm

η − η
, for m ≥ 0 .

We recall that the Primitive Divisor Theorem for Lucas sequences ensures for
primes n ≥ 5, that there exists a primitive divisor for Ln, except for the finitely
many (defective) pairs (η, η) given in Table 1 of [11] (a primitive divisor of Ln is

a prime that divides Ln but does not divide (η − η)2
∏n−1
j=1 Lj). And a helpful

property of a primitive divisor p is that p ≡ ±1 (mod n).

For n = 5, we find in Table 1 in [11] that L5 has a primitive divisor except for
(u, d, v) = (1, 10, 1) which leads to a number η = 1+i

√
10 ∈ Q[i

√
10] (d = 10 is one

of the possible values of d described in the beginning of this proof), which gives
the solution with n = 5.

Apart from this case, let p be a primitive divisor of Ln, n ≥ 7. The identity
(11) implies that p ∈ {2, 5, 17} and so p = 17, since p 6≡ ±1 (mod n), for p = 2,5.
Hence, n is a prime dividing 17 ± 1 and so n = 2 or 3 which contradicts the fact
that n ≥ 7. This completes the proof of Theorem 1. �
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[21] M. Le: On Cohn’s conjecture concerning the Diophantine x2 + 2m = yn. Arch. Math.
(Basel) 78 (2002) 26–35.

[22] M. Le, H. Zhu: On some generalized Lebesgue-Nagell equations. Journal of Number
Theory 131/3 (2011) 458–469.
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