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Measures of noncompactness in locally convex

spaces and fixed point theory for the sum

of two operators on unbounded convex sets

Józef Banaś, Afif Ben Amar∗

Abstract. In this paper we prove a collection of new fixed point theorems for
operators of the form T + S on an unbounded closed convex subset of a Haus-
dorff topological vector space (E,Γ). We also introduce the concept of demi-τ -
compact operator and τ -semi-closed operator at the origin. Moreover, a series
of new fixed point theorems of Krasnosel’skii type is proved for the sum T + S

of two operators, where T is τ -sequentially continuous and τ -compact while S

is τ -sequentially continuous (and Φτ -condensing, Φτ -nonexpansive or nonlinear
contraction or nonexpansive). The main condition in our results is formulated
in terms of axiomatic τ -measures of noncompactness. Apart from that we show
the applicability of some our results to the theory of integral equations in the
Lebesgue space.

Keywords: τ -measure of noncompactness, τ -sequential continuity, Φτ -condensing
operator, Φτ -nonexpansive operator, nonlinear contraction, fixed point theorem,
demi-τ -compactness, operator τ -semi-closed at origin, Lebesgue space, integral
equation

Classification: 47H10

1. Introduction

Let (E, ‖ · ‖) be a Banach space and let Ω be a nonempty, bounded, closed
and convex subset of E. A well known theorem of Krasnosel’skii states [22] that
if T is a completely continuous operator on Ω and S is a contraction of Ω (i.e.
‖Sx− Sy‖ ≤ k‖x− y‖ for 0 < k < 1) and, if

(1.1) Tx+ Sy ∈ Ω for all x, y ∈ Ω

then T + S has a fixed point in Ω. Krasnosel’skii theorem has been extended to
abstract forms, in particular for the weak topology [6], [7], [10], [20], [26], [28] for
weakly sequentially continuous operators.

The aim of this paper is to present new generalized forms of the Krasnosel’skii
fixed point theorem using τ -measures of noncompactness, where T is assumed to
be τ -sequentially continuous and τ -compact operator while S is assumed to be

∗ Corresponding author.
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τ -sequentially continuous (and Φτ -condensing, Φτ -nonexpansive, nonlinear con-
traction or nonexpansive), defined on a convex subset of Hausdorff topological
vector spaces. Moreover, other assumptions imposed on operator S are also em-
ployed (demi-τ -compactness or τ -semi-closedness at the origin; cf. Definitions 3.1
and 3.3).

In our study the set Ω will be not necessarily bounded. Apart from this con-
dition (1.1) will be replaced with one of the following weaker conditions

(1.2) Tx+ Sx ∈ Ω for any x ∈ Ω,

(1.3) [y = Tx+ Sy, x ∈ Ω] =⇒ y ∈ Ω.

In the last section of the paper we show the applicability of our result (Corol-
lary 3.2) to the theory of nonlinear integral equations in the Lebesgue space.

It is worthwhile mentioning that the results obtained in the paper generalize
and encompass several ones obtained up to now by other authors (cf. [3], [5]–[7],
[10], [13], [14], [22], [26] for instance).

2. Preliminaries

Throughout this paper we assume that (E,Γ) is a Hausdorff topological vector
space (HTVS, in short) with zero element θ and τ is a weaker Hausdorff locally
convex vector topology on E (τ ≤ Γ). If E is a normed space, the symbol Br(z)
will denote the closed ball centered at z with radius r. To denote the convergence

in (E, τ) we write
τ

−→ while the symbol → denotes the convergence in (E,Γ).
In our considerations we accept the following definition of the concept of a

τ -measure of noncompactness (τ -MNC, in short).

Definition 2.1. Let C be a lattice with a least element denoted by 0. A function
Φτ defined on the family ME of all nonempty and bounded subsets of (E,Γ) with
values in C will be called a τ -MNC in E if it satisfies the following conditions:

(i) Φτ (conv
τ (Ω)) ≤ Φτ (Ω) for each Ω ∈ ME , where the symbol convτ (Ω)

denotes the closed convex hull of Ω in (E, τ);
(ii) Ω1 ⊂ Ω2 ⇒ Φτ (Ω1) ≤ Φτ (Ω2);
(iii) Φτ ({a} ∪ Ω) = Φτ (Ω) for any a ∈ E and Ω ∈ ME ;
(iv) Φτ (Ω) = 0 if and only if Ω is relatively τ -compact in E.

Observe that (i) still holds true if we have Φτ (conv
Γ(Ω)) ≤ Φτ (Ω).

In the case when C has additionally the structure of a cone in a linear space over
the field of real numbers, we will say that a τ -MNC Φτ is positively homogeneous

provided Φτ (λΩ) = λΦτ (Ω) for all λ > 0 and for Ω ∈ ME . Moreover, Φτ is
referred to as subadditive if Φτ (Ω1+Ω2) ≤ Φτ (Ω1)+Φτ (Ω2) for all Ω1,Ω2 ∈ ME .

As an example of τ -MNC we have the important and well know De Blasi
measure of weak noncompactness β (see [16]) defined onME (where E is a Banach



Measures of noncompactness in locally convex spaces . . . 23

space and τ is its weak topology) by the formula

β(Ω)= inf{ε > 0 : there exists a weakly compact set D such that Ω⊂D+Bε(θ)}.

It is well known that β has several useful properties. For example, it satisfies
the following conditions for all Ω1,Ω2 ∈ ME (cf. [16]):

(v) β(Ω1 ∪ Ω2) = max{β(Ω1), β(Ω2)};
(vi) β(λΩ) = |λ|β(Ω) for all λ ∈ R;
(vii) β(Ω1 +Ω2) ≤ β(Ω1) + β(Ω2).

Particularly, the function β is positively homogeneous and subadditive in the
sense of the above accepted definition.

Definition 2.2. Let Ω be a nonempty subset of E and let Φτ be a τ -MNC in E
with values in a lattice C which has a least element 0 and is a cone. If T maps Ω
into E, we say that:

(a) T is Φτ -Lipschitzian if T (D) ∈ ME for any bounded subset D of Ω and
there exists a constant k ≥ 0 such that Φτ (T (D)) ≤ kΦτ (D) for D ∈ ME ,
D ⊂ Ω;

(b) T is Φτ -contraction if T is Φτ -Lipschitzian with k < 1;
(c) T is Φτ -condensing if T is Φτ -Lipschitzian with k = 1 and Φτ (T (D)) <

Φτ (D) for D ∈ ME such that D ⊂ Ω and Φτ (D) > 0;
(d) T is Φτ -nonexpansive if T is Φτ -Lipschitzian with k = 1.

Observe that in the formulation of points (c) and (d) of the above definition
we do not need the assumption that C has cone structure.

Starting from now on we will always assume that a lattice C has cone structure
(i.e. C is a lattice with a least element 0 which is a cone in a real linear space)
provided we require that Φτ is a positively homogeneous or subadditive τ -MNC
in E.

Now we formulate other definitions needed in our considerations.

Definition 2.3. A topological space X is called angelic if for every A ⊂ X and
x ∈ A, there is a sequence {xn} ⊂ A such that xn −→ x.

All metrizable locally convex spaces equipped with the weak topology are an-
gelic (see the Eberlein-Šmulian theorem [19]).

Definition 2.4. Let Ω be a nonempty subset of E. An operator T : Ω → E is
said to be τ -compact if for any nonempty bounded subset D of Ω the set T (D) is
relatively τ -compact.

Definition 2.5. An operator T : Ω → E (where Ω is a nonempty subset of E)
is said to be τ -sequentially continuous on Ω if for each sequence (xn) ⊂ Ω with

xn
τ

−→ x and x ∈ Ω, we have that Txn
τ

−→ Tx.

Remark 2.1. It is worthwhile mentioning that in several situations it is rather
easy to show that a mapping between Banach spaces is weakly sequentially con-
tinuous, while the proof of weak continuity of that mapping is mostly very hard.
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In many applications involving integral equation problems, one of the reasons for
this difficulty is the fact that the Lebesgue dominated convergence theorem fails
to work for nets.

Remark 2.2. If X is angelic, then any sequentially continuous map on a compact
set is continuous.

Remark 2.3. Hereafter, by bounded sets in E, we will mean Γ-bounded sets.

3. Fixed point theory

We start with the following fixed point result.

Theorem 3.1. Let Ω be a nonempty convex subset of a Hausdorff topological
vector space (E,Γ) and let Φτ be a τ -MNC in E. Assume that compact sets in
(E, τ) are angelic. Then the following assertions hold, for every Φτ -condensing
and τ -sequentially continuous map T : Ω → Ω with bounded range:

(i) T has a τ -approximate fixed point sequence, i.e. a sequence (xn) ⊂ Ω such
that the sequence (xn − Txn) converges to θ in (E, τ);

(ii) if Ω is τ -closed, then the set F (T ) of fixed points of T is nonempty and
τ -compact.

Proof: (i) Fix arbitrarily x0 ∈ Ω and consider the family

F = {Q ⊂ Ω : Q is τ -bounded, convex, x0 ∈ Q and T (Q) ⊂ Q}.

We have F 6= ∅. To see this, first note that T (Ω) is τ -bounded since τ ≤ Γ. Thus,
since τ is locally convex, we get conv(T (Ω) ∪ {x0}) is also τ -bounded (cf. [15,
p. 15]). Now it is easy to see that conv(T (Ω) ∪ {x0}) ∈ F. Let now G =

⋂

Q∈F
Q

and let H = conv(T (G)∪{x0}). We claim that G = H . Indeed, since x0 ∈ G and
T (G) ⊂ G one sees that H ⊂ G. In particular, we get T (H) ⊂ T (G) ⊂ H . On the
other hand, since H ⊂ Ω and H is τ -bounded (notice H ⊂ conv(T (Ω) ∪ {x0})),
convex and x0 ∈ H , we have that H ∈ F and G ⊂ H . Therefore G = H as
claimed.

Now we claim that Φτ (H) = Φτ (T (H)). Clearly from Definition 2.1(ii), we
have Φτ (T (H)) ≤ Φτ (H) (since T (H) ⊂ H). Now using (i)–(iii) of Definition 2.1
and the fact that G = H , we get

Φτ (H) ≤ Φτ (conv
τ (T (G)∪{x0})) ≤ Φτ ((T (G)∪{x0})) = Φτ (T (G)) = Φτ (T (H)).

Keeping in mind that T is Φτ -condensing, we conclude (via Definition 2.1(iv))

that Φτ (H) = 0 and so H
τ
is τ -compact. Since T (H) ⊂ H we get that T/H :

H −→ H
τ
is a τ -sequentially continuous mapping. By Theorem 2.1 in [8], we get

θ ∈ {x− Tx, x ∈ H}.

Thus, there is a net (xσ) ⊂ H so that xσ − Txσ
τ

−→ θ.
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Claim. There exists a sequence (xn) ⊂ {x−Tx : x ∈ H} so that xn−Txn
τ

−→ θ.

Indeed, since H
τ
is compact, so is H

τ
−H

τ
. By assumption, this set is angelic.

In particular, since θ ∈ {xσ − Txσ : σ}
τ
⊂ H

τ
−H

τ
, there is a sequence in (xn)

so that xn − Txn
τ

−→ θ.

(ii) Let C = H
τ
. By redefining the set F to be

F∗ = {Q ⊂ Ω : Q is τ -bounded, τ -closed, convex, x0 ∈ Q and T (Q) ⊂ Q}.

We can prove (using the same argument as in the proof of (i) and the angelicity
of C) that T (C) ⊂ C. Hence T | C : C −→ C is τ -sequentially continuous map
on C. Again by Theorem 2.1 in [8], we get

θ ∈ {x− Tx, x ∈ C}
τ
.

Using this and once more the fact that C is angelic, we can find a point x ∈ C so
that Tx = x. So F (T ) is nonempty. In addition, we have T (F (T )) = F (T ) and
F (T ) is τ -bounded. Hence Φτ (F (T )) = 0 which means that F (T ) is relatively
τ -compact. Moreover in view of the τ -sequential continuity of T , we deduce that
F (T ) is τ -sequentially closed. Now we show that F (T ) is τ -closed. To this end

let x ∈ Ω be in F (T )
τ
. Since F (T )

τ
is τ -compact, by the angelicity of F (T )

τ
,

there exists a sequence (xn) ⊂ F (T ) such that xn
τ

−→ x. Hence x ∈ F (T ). Thus

F (T )
τ
= F (T ) which means that F (T ) is τ -compact. The proof is complete. �

Remark 3.1. Example 2.4 in [8] shows that the angelicity assumption in Theo-
rem 3.1 cannot be dropped.

Remark 3.2. Notice that Theorem 3.1 improves and generalizes Theorem 3.2 in
[11], Theorem 12 in [18], Theorem 3.1 in [5], Theorem 2 in [24] and Theorem 2.2
in [25] in the context of a Banach space equipped with its weak topology and the
De Blasi measure of weak noncompactness.

Corollary 3.1. Let Ω be a nonempty convex subset of a Hausdorff topological
vector space (E,Γ) and let Φτ be a τ -MNC in E. Assume that compact sets in
(E, τ) are angelic, Ω is τ -closed and T : Ω → Ω is τ -sequentially continuous and
τ -compact mapping with bounded range. Then the set F (T ) of fixed points of T
is nonempty and τ -compact.

Indeed, the above assertion is an immediate consequence of Theorem 3.1 since
T is obviously Φτ -condensing, where Φτ is an arbitrary τ -MNC in E.

Remark 3.3. Corollary 3.1 generalizes Arino, Gautier and Penot theorem [3],
Theorem 2.2 and Corollary 2.3 from [28].

Corollary 3.2. Let Ω be a nonempty convex subset of a Hausdorff topological
vector space (E,Γ) and let Φτ be a subadditive τ -MNC in E. Assume that
compact sets in (E, τ) are angelic and Ω is τ -closed. Let T : Ω → E and S : Ω → E
be two mappings satisfying the following conditions:
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(i) T is τ -sequentially continuous and τ -compact;
(ii) S is Φτ -condensing and τ -sequentially continuous;
(iii) (T + S)(Ω) is a bounded subset of Ω.

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: Obviously T + S is τ -sequentially continuous. Suppose D is a bounded
subset of Ω. Then we have

Φτ ((T + S)(D)) ≤ Φτ (T (D) + S(D)) ≤ Φτ (T (D)) + Φτ (S(D)) ≤ Φτ (S(D)),

since T (D) is relatively τ -compact. Thus, if Φτ (D) > 0, we get

Φτ ((T + S)(D)) < Φτ (D),

which yields that T + S is Φτ -condensing and we can apply Theorem 3.1 to
conclude that there exists x ∈ Ω such that x = Tx+ Sx. The proof is complete.

�

As a consequence of the above corollary we can state the following assertion.

Corollary 3.3. Let Ω be a nonempty, closed and convex subset of a Banach space
E and let T : Ω → E, S : E → E be weakly sequentially continuous mappings
satisfying the following conditions:

(i) T is weakly compact;
(ii) S is a nonlinear contraction, i.e. there exists a continuous nondecreasing

function Ψ : R+ → R+ = [0,∞) with Ψ(z) < z for z > 0 and such that
‖Sx− Sy‖ ≤ Ψ(‖x− y‖) for x, y ∈ Ω;

(iii) (T + S)(Ω) is a bounded subset of Ω.

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: Keeping in mind Corollary 3.2 it is sufficient to show that S is β-
condensing. To this end take a bounded subset D of Ω. Suppose that β(D) = d >
0. Let ε > 0, then there exists a weakly compact setK ofE withD ⊆ K+Bd+ε(θ).
So for x ∈ D there exist y ∈ K and z ∈ Bd+ε(θ) such that x = y + z and so

‖Sx− Sy‖ ≤ Ψ(‖x− y‖) ≤ Ψ(d+ ε).

It follows immediately, that

S(D) ⊆ S(K) +BΨ(d+ε)(θ).

Moreover, since S is a weakly sequentially continuous mapping and K is weakly
compact (see Remark 2.2) then S(K)w is weakly compact. Therefore, β(S(D)) ≤
Ψ(d + ε). Since ε > 0 is arbitrary, it follows that β(S(D)) ≤ Ψ(d) < d = β(D).
Accordingly, S is β-condensing and the proof is complete. �

Now, we formulate next results having other character than those given previ-
ously.
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Theorem 3.2. Let Ω be a nonempty convex subset of a Hausdorff topological
vector space (E,Γ) and let Φτ be a subadditive τ -MNC in E. Assume that
compact sets in (E, τ) are angelic and Ω is τ -closed. If T : Ω → E and S : Ω → E
are τ -sequentially continuous mappings satisfying the following conditions:

(i) T is τ -compact,
(ii) S is Φτ -condensing,
(iii) I − S is invertible on T (Ω),
(iv) [y = Tx+ Sy, x ∈ Ω] ⇒ y ∈ Ω,
(v) (I − S)−1T (Ω) is bounded,

then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: At the beginning we show that the mapping (I − S)−1T transforms Ω
into itself. In fact, by assumption (iii), for each y ∈ Ω the equation z = Ty + Sz
has a unique solution z. On the other hand assumption (iv) implies that z =
(I − S)−1Ty is in Ω.

Further, define the mapping F : Ω → Ω by putting

Fx = (I − S)−1Tx.

Let D = convτF (Ω). Observe that the set D is τ -closed, convex, τ -bounded
and F (D) ⊂ D ⊂ Ω. Next, denote D1 = convτF (D). Obviously, D1 is also
τ -closed, convex, τ -bounded and F (D1) ⊂ D1 ⊂ D ⊂ Ω.

We claim that D1 is τ -compact. If this is not the case, then Φτ (D1) > 0. Since
F (D) ⊂ T (D) + SF (D), we obtain

Φτ (D1) ≤ Φτ (F (D)) ≤ Φτ (T (D) + SF (D))

≤ Φτ (T (D)) + Φτ (SF (D)).

Since T is τ -compact, we have Φτ (T (D)) = 0. Thus, taking into account that S
is Φτ -condensing, we get

Φτ (D1) ≤ Φτ (F (D)) ≤ Φτ (S(F (D))) < Φτ (F (D)),

which is absurd. Hence we obtain that D1 is τ -compact.
In view of Corollary 3.1 it remains to show that F : D1 → D1 is τ -sequentially

continuous. To do this take a sequence (xn) ⊂ D1 such that xn
τ

−→ x and x ∈ D1.
Because the set {Fxn} is relatively τ -compact then applying the angelicity of
(E, τ) and passing to a subsequence (xnj

) of the sequence (xn), we get that

Fxnj

τ
−→ y, y ∈ D1. Hence we have that

−Txnj
+ Fxnj

τ
−→ −Tx+ y.

On the other hand, by virtue of the τ -sequential continuity of S we deduce that

SFxnj

τ
−→ Sy. Combining the above established facts with the equality

SF = −T + F,
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we derive that y = Fx.

Now we claim that Fxn
τ

−→ Fx. Suppose that this is not the case. Then
there exists a subsequence (xnk

) and a neighbourhood V of Fx in (E, τ) such

that Fxnk
/∈ V for all k. On the other hand we have that xnk

τ
−→ x, so arguing

as before we can find a subsequence (xnks
) such that Fxnks

τ
−→ Fx. Thus we

obtain a contradiction. Hence it follows that F is τ -sequentially continuous.
Finally, applying Corollary 3.1 we conclude that F has a fixed point x ∈ D1,

which means that Tx+ Sx = x. This completes the proof. �

Theorem 3.3. Let Ω be a nonempty, closed and convex subset of a Banach space
E and let T : Ω → E, S : E → E be weakly sequentially continuous mappings
satisfying the following conditions:

(i) T is weakly compact;
(ii) S is a nonlinear contraction;
(iii) there exists a bounded subset D of E such that T (Ω) ⊂ (I − S)(D);
(iv) [y = Tx+ Sy, x ∈ Ω] ⇒ y ∈ Ω.

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: First we show that I−S is invertible on T (Ω). To this end fix arbitrarily
y ∈ Ω and consider the mapping Sy : E → E, defined in the following way:

Syz = Ty + Sz.

Obviously Sy is a nonlinear contraction. Thus, by a result from [12] we infer that
the operator Sy has a unique fixed point z ∈ E. Joining this statement with
assumption (iv) we derive that z ∈ Ω.

This means that I − S is invertible on T (Ω).
Further observe that in view of the above facts and assumption (iv) we have

that

(I − S)−1T (Ω) ⊂ D.

Therefore, the conclusion of our theorem follows from Theorem 3.2. The proof is
complete. �

Remark 3.4. Theorem 3.3 extends and improves Theorem 2.1 from [28].

Now we define a class of operators playing an important role in our further
investigations.

Definition 3.1. Let Ω be a subset of a Hausdorff topological vector space E.
A mapping T : Ω → E is said to be demi-τ -compact whenever for any sequence

(xn) ⊂ Ω such that the sequence xn−Txn
τ

−→ y ∈ E, there exists a τ -convergent
subsequence of the sequence (xn). In the case when y = θ, we say that T is demi-
τ -compact at θ.

Definition 3.2. Let Ω be a subset of a Banach space E. A mapping T : Ω → E
is said to be demi-weakly compact whenever for any sequence (xn) ⊂ Ω such that

the sequence xn − Txn
w

−→ y ∈ E, there exists a weakly convergent subsequence
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of the sequence (xn). In the case when y = θ, we say that T is demi-weakly
compact at θ.

Theorem 3.4. Suppose Ω is a nonempty, closed and convex subset of a Banach
space E. Next assume that the operators T : Ω → E, S : E → E are weakly
sequentially continuous and satisfy the following conditions:

(i) T is weakly compact;
(ii) S is nonexpansive (i.e. ‖Sx − Sy‖ ≤ ‖x− y‖ for all x, y ∈ E) and demi-

weakly compact;
(iii) there exists a bounded subset D of E and a sequence (λn) ⊂ (0, 1) such

that λn → 1, T (Ω) ⊂ (I−λnS)(D) and [y = λnSy+Tx, x ∈ Ω] ⇒ y ∈ Ω
for all n = 1, 2, . . . .

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: Observe that from imposed assumptions it follows easily that for any
natural number n the mapping λnS is weakly sequentially continuous and is a
nonlinear contraction. Thus, applying Theorem 3.3 to the mapping T + λnS we
conclude that there exists a fixed point of this mapping belonging to Ω, i.e. there
exists xn ∈ Ω such that

(3.1) xn = Txn + λnSxn

for n = 1, 2, . . . .

Next, notice that (xn) is a bounded sequence in the set D mentioned in as-
sumption (iii).

Indeed, this statement is a consequence of the fact that I − λnS is invertible
on T (Ω) (to show this it is sufficient to adopt a suitable part of Theorem 3.3),
assumption (iii) and the equalities:

(I − λnS)xn = Txn ∈ (I − λnS)(D),

xn = (I − λnS)
−1Txn ∈ D

for n = 1, 2, . . . .
Now, in view of assumption (i), without loss of generality we can assume that

Txn
w

−→ y, y ∈ E. Since the sequence (Sxn) is bounded and λn → 1, in the light
of (3.1) we deduce that

xn − Sxn = Txn + (λn − 1)Sxn
w

−→ y,

where y ∈ E.
Further, taking into account the demi-weak compactness of the operator S, we

derive that there exists a weakly convergent subsequence (xnk
) of the sequence

(xn), i.e. xnk

w
−→ x, x ∈ Ω.

Obviously, we have

xnk
= Txnk

+ λnk
Sxnk

.
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Hence, using the weak sequential continuity of T and S, we conclude that x =
Tx+ Sx. Thus x is a fixed point of the operator T + S belonging to Ω.

The proof is complete. �

Our next result refines some above presented ones.

Theorem 3.5. Let Ω be a nonempty convex subset of a Hausdorff topological
vector space (E,Γ) and let Φτ be a positively homogeneous and subadditive τ -
MNC in E. Assume that compact sets in (E, τ) are angelic and Ω is τ -closed.
In addition, assume that T : Ω → E, S : Ω → E are τ -sequentially continuous
operators satisfying the following conditions:

(i) T is τ -compact;
(ii) S is Φτ -nonexpansive and demi-τ -compact;
(iii) there exists a bounded subset Ω0 of Ω and a sequence (λn) ⊂ (0, 1) such

that λn → 1 and (T + λnS)(Ω) ⊂ Ω0.

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: Define the sequence of operators by putting Gn = T + λnS for n =
1, 2, . . . . Assumption (iii) implies that Gn(Ω) is bounded for n = 1, 2, . . . .

Further, take an arbitrary bounded subset D of Ω. Then we obtain

Φτ (Gn(D)) ≤ Φτ (T (D) + λnS(D))

≤ Φτ (T (D)) + λnΦτ (S(D)) = λnΦτ (S(D)).

Hence, if Φτ (D) > 0, we get

Φτ (Gn(D)) < Φτ (D).

Thus Gn is Φτ -condensing on Ω. Obviously Gn is τ -sequentially continuous, so
by Theorem 3.1 we infer that Gn has a fixed point xn in Ω, for any n = 1, 2, . . . .

Now, repeating a suitable part of the proof of the preceding theorem we get
the desired conclusion. This completes the proof. �

Corollary 3.4. Let Ω be a nonempty, closed and convex subset of E and let
T : Ω → E, S : E → E be weakly sequentially continuous mappings satisfying
the conditions listed below:

(i) T is weakly compact;
(ii) S is nonexpansive and demi-weakly compact;
(iii) there exists a bounded subset Ω0 of Ω and a sequence (λn) ⊂ (0, 1) such

that λn → 1 and (T + λnS)(Ω) ⊂ Ω0 for n = 1, 2, . . . .

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: The proof follows immediately from Theorem 3.5, provided we show that
S is β-nonexpansive, where β is the De Blasi measure of weak noncompactness
in E.

To do this take D being a bounded subset of Ω and put d = β(D). Fix ε > 0.
Then there exists a weakly compact set K with D ⊂ K + Bd+ε(θ). This yields
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that for each x ∈ D there exist y ∈ K and z ∈ Bd+ε(θ) such that x = y + z.
Moreover, we have

‖Sx− Sy‖ ≤ ‖x− y‖ ≤ d+ ε.

Hence we obtain

S(D) ⊂ S(K) +Bd+ε(θ).

Since S is weakly sequentially continuous and K is weakly compact, then S(K)
is weakly compact (see Remark 2.2). This implies that β(S(D)) ≤ d + ε. In
view of the arbitrariness of ε we get that β(S(D)) ≤ d = β(D). Thus, S is
β-nonexpansive, which completes the proof. �

In what follows we will utilize the concept defined below.

Definition 3.3. Let Ω be a nonempty τ -closed subset of a Hausdorff topological
vector space E and let T : Ω → E be a τ -sequentially continuous operator. T will
be called a τ -semi-closed operator at θ (τ -sc, in short) if the conditions xn ∈ Ω,
xn − Txn → θ imply that there exists x ∈ Ω such that Tx = x.

It is worthwhile mentioning that the class of weakly semi-closed operators at
θ (wsc, in short) includes, as special cases, weakly sequentially continuous opera-
tors which are weakly compact, Φ-condensing operators (where Φ is a positively
homogeneous and subadditive weakly MNC) or those operators T for which the
set (I − T )(Ω) is weakly closed, among others (see [12]).

Now, we prove a result allowing us to indicate certain class of τ -semi-closed
mappings.

Lemma 3.1. Let Ω be a τ -closed subset of a Hausdorff topological vector space E
and let T : Ω → E be a τ -sequentially continuous mapping being demi-τ -compact
at θ. Then T is a τ -semi-closed mapping at θ.

Proof: Suppose (xn) is a sequence in Ω such that xn − Txn → θ. Since T is
demi-τ -compact we infer that there exists a subsequence (xnk

) of (xn) and an

element x ∈ E such that xnk

τ
−→ x.

We claim that x ∈ Ω and Tx = x. Indeed, since Ω is τ -closed, so x ∈ Ω.

Moreover, the τ -sequential continuity of T implies that Txnk

τ
−→ Tx. On the

other hand, we have

xnk
− Tx = (xnk

− Txnk
) + (Txnk

− Tx)
τ

−→ θ.

This yields that xnk

τ
−→ Tx. Hence we infer that Tx = x and the proof is

complete. �

Theorem 3.6. Let Ω be a nonempty convex subset of a Hausdorff topological
vector space (E,Γ) and let Φτ be a positively homogeneous and subadditive τ -
MNC in E. Assume that compact sets in (E, τ) are angelic and Ω is τ -closed.
Further, assume that T : Ω → E, S : Ω → E are τ -sequentially mappings
satisfying the following conditions:
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(i) T is τ -compact;
(ii) S is Φτ -nonexpansive;
(iii) T is τ -semi-closed at θ;
(iv) (T + S)(Ω) is a bounded subset of Ω.

Then there exists x ∈ Ω such that x = Tx+ Sx.

Proof: Fix z ∈ Ω and define Gn = λn(T + S) + (1− λn)z (n = 1, 2, . . . ), where
(λn) is a sequence in (0, 1) such that λn → 1. Since Ω is convex and z ∈ Ω, in
view of assumption (iv) we deduce that Gn maps Ω into itself. Moreover, Gn(Ω)
is bounded for any n = 1, 2, . . . . Obviously Gn is τ -sequentially continuous.

Now, assume that D is an arbitrary bounded subset of Ω. Then we have

Φτ (Gn(D)) = Φτ ({λn(T + S)(D)}+ {(1− λn)z})

≤ λnΦτ ((T + S)(D))

≤ λnΦτ (T (D)) + λnΦτ (S(D))

= λnΦτ (S(D))

≤ λnΦτ (D).

Thus, if Φτ (D) > 0, we get

Φτ (Gn(D)) < Φτ (D).

Therefore, Gn is Φτ -condensing on Ω and we can apply Theorem 3.1 to obtain a
sequence (xn) such that (xn) ⊂ Ω and Gnxn = xn for n = 1, 2, . . . . Consequently,
we obtain

xn − (T + S)xn = (λn − 1)[(T + S)xn − z] → 0,

since λn → 1 as n → ∞ and (T + S)(Ω) is bounded. Finally, keeping in mind
assumption (iii) we conclude that there exists x ∈ Ω such that Tx+Sx = x. The
proof is complete. �

Corollary 3.5. Let Ω be a nonempty, closed and convex subset of a Banach
space E. Let T : Ω → E and S : E → E be weakly sequentially continuous
mappings satisfying the following conditions:

(i) T is weakly compact;
(ii) S is nonexpansive;
(iii) T + S is wsc;
(iv) (T + S)(Ω) is a bounded subset of Ω.

Then there exists x ∈ Ω such that x = Tx+ Sx.

In order to obtain the conclusion of the above corollary it is sufficient to take
into account the fact that S is β-nonexpansive and apply Theorem 3.6.
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4. Application to the theory of integral equations in the Lebesgue

space

This section shows the applicability of our results proved in the preceding
section. More precisely, we are going to show that our main result contained
in Corollary 3.2 can be applied to the theory of nonlinear integral equations in
Lebesgue space.

At the beginning we recall notation, definitions and auxiliary facts which will
be used in our considerations (cf. [4], [5]).

Suppose that I is a bounded interval in R. For simplicity, we will assume that
I = [0, 1].

Denote by L1 = L1(I) the space of Lebesgue integrable real functions on the
interval I with the standard norm

‖x‖ =

∫ 1

0

|x(t)| dt.

The space L1 is also called the Lebesgue space.
Further, denote by S = S(I) the set of all real functions defined and Lebesgue

measurable on I. Let m(A) stand for the Lebesgue measure of a measurable
subset A of R. If we introduce in S the metric ρ by the formula

ρ(x, y) = inf{a+m({s ∈ I : |x(s)− y(s)| ≥ a}) : a > 0},

then S becomes a complete metric space [16]. Moreover, it is known that the
convergence in measure coincides with the convergence generated by the metric ρ.

Notice that convergence in measure of a sequence {xn} in L1 does not imply
the weak convergence of {xn} and conversely. However, we have the following
results [23].

Lemma 4.1. If a sequence {xn} ⊂ L1 converges weakly to x ∈ L1 and is compact
in measure then it converges in measure to x.

Lemma 4.2. A sequence {xn} ⊂ L1 converges strongly to x ∈ L1 (i.e. converges
in norm of L1 to x) if and only if {xn} converges in measure to x and is weakly
compact.

For our further purposes the following result, which is a consequence of Lem-
mas 4.1 and 4.2, will be very useful.

Lemma 4.3. Let X be a bounded subset of the Lebesgue space L1 which is
compact in measure. If an operator T : X → L1 is continuous then it is also
weakly sequentially continuous.

Now, we provide a few basic facts concerning the so-called superposition oper-
ator (cf. [2]).

Namely, assume that f(t, x) = f : I × R → R is a given function. For an
arbitrary function x : I → R denote by Fx the function defined on I by the
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formula (Fx)(t) = f(t, x(t)). The operator F defined in such a way is said to be
the superposition operator generated by the function f .

We say that the function f = f(t, x) satisfies Carathéodory conditions if it is
measurable in t for each x ∈ R and is continuous in x for almost all t ∈ I.

It is well known [2] that the superposition operator F generated by a function
f satisfying Carathéodory conditions transforms the metric space S(I) into itself.

The fundamental property of the superposition operator defined on the space
L1 is contained in the following theorem [19].

Theorem 4.1. Assume that f : I × R → R satisfies Carathéodory conditions.
Then the superposition operator F generated by f transforms the space L1 into
itself if and only if |f(t, x)| ≤ a(t) + b|x| for t ∈ I and x ∈ R, where a(t) is
a function from the space L1 and b is a nonnegative constant. Moreover, the
operator F is continuous on the space L1.

It is worthwhile mentioning that under assumptions of the above theorem the
superposition operator F has not to be weakly sequentially continuous on the
space L1 or on a ball of L1, for example. Indeed this fact is a consequence of the
following old result due to Shragin [27].

Theorem 4.2. Assume that f : I × R → R satisfies Carathéodory conditions.
Then the superposition operator F generated by f is weakly sequentially contin-
uous on L1 if and only if the generating function f has the form

f(t, x) = α(t) + β(t)x,

where α ∈ L1(I) and β ∈ L∞(I).

The above theorem shows that the class of functions generating weakly sequen-
tially continuous superposition operators is rather narrow. In order to extend this
class we are forced to consider superpositions operators on some subsets of the
space L1.

Now, we are going to present very convenient and handy formula expressing the
De Blasi measure of weak noncompactness (cf. Section 2) in the space L1 = L1(I).
This formula is based on the following criterion for weak noncompactness in L1

due to Dunford and Pettis [15].

Theorem 4.3. Let X be a bounded subset of L1. The set X is weakly compact
if and only if it has equiabsolutely continuous integrals, which means that for
each ε > 0 there is δ > 0 such that

∫

D
|x(t)| dt ≤ ε for any x ∈ X and for any

measurable subset D of the interval I with m(D) ≤ δ.

On the base of the above theorem Appell and De Pascale [1] showed that the De
Blasi Measure of weak noncompactness β in L1 can be expressed by the formula

β(X) = lim
ε→0

{

sup
x∈X

{

sup

[
∫

D

|x(t)| dt : D ⊂ I, m(D) ≤ ε

]}}

.



Measures of noncompactness in locally convex spaces . . . 35

Further, we pay our attention to the description of compactness in measure.
The complete description of that compactness was given by Fréchet [18] but for
our purposes the following sufficient condition will be useful [23].

Theorem 4.4. Let X be a bounded subset of the space L1. Suppose there is a
family of measurable subsets {Ωc}0≤c≤1 of the interval I such that m(Ωc) = c. If
for any c ∈ I and for any x ∈ X we have

x(t1) ≤ x(t2)

for t1 ∈ Ωc and for t2 /∈ Ωc, then the set X is compact in measure.

Now, let us fix r > 0 and denote by Qr the subset of the ball Br(θ) in L1

consisting of functions being a.e. nondecreasing (or a.e. nonincreasing) on the
interval I in the sense that there exists a subset P of I with m(P ) = 0 and such
that each function x ∈ Qr is nondecreasing on the set I \ P (or nonincreasing on
I \ P ).

Keeping in mind Theorem 4.4 it is easily seen that the set Qr is compact in
measure.

In what follows we will consider the nonlinear integral equation of the form

(4.1) x(t) = a(t) +

∫ 1

0

k(t, s)f(s, x(s)) ds +

∫ 1

0

u(t, s, x(s)) ds,

for t ∈ I.
Observe that Equation (4.1) contains both the component being a counterpart

of Hammerstein integral equation and a counterpart corresponding to Urysohn
equation. Indeed, if we define on the space L1 the operators H and U in the
following way

(Hx)(t) =

∫ 1

0

k(t, s)f(s, x(s)) ds,(4.2)

(Ux)(t) =

∫ 1

0

u(t, s, x(s)) ds,(4.3)

for x ∈ L1 and for t ∈ I, then H is the Hammerstein integral operator while U
represents the Urysohn one.

Henceforth we will assume that the functions involved in Equation (4.1) satisfy
the following conditions.

(i) a ∈ L1 is nonnegative and nondecreasing on the interval I.
(ii) f : I×R → R satisfies Carathéodory conditions and there exists a function

p ∈ L1 such that

|f(t, x)| ≤ p(t)

for t ∈ I and x ∈ R. Moreover, f : I × R+ → R+.



36 J. Banaś, A. Ben Amar

(iii) k : I × I → R+ is measurable with respect to both variables and such
that the integral operator K defined on the space L1 by the formula

(Kx)(t) =

∫ 1

0

k(t, s)x(s) ds

maps the space L1 into itself.

For further purposes let us recall that the above assumption implies [23] that
the operator K maps continuously the space L1 into itself.

In what follows we will denote by ‖K‖ the norm of the linear operator K.

Further, we formulate our remaining assumptions.

(iv) The function t → k(t, s) is a.e. nondecreasing on the interval I for almost
all s ∈ I.

(v) u(t, s, x) = u : I × I × R → R satisfies Carathéodory conditions, that is,
u is measurable with respect to (t, s) for any x ∈ R and is continuous in
x for almost all (t, s) ∈ I2.

(vi) u(t, s, x) ≥ 0 for (t, s) ∈ I2 and for x ≥ 0.
(vii) The function t → u(t, s, x) is a.e. nondecreasing on the interval I for

almost all s ∈ I and for each x ∈ R.
(viii) |u(t, s, x)| ≤ k1(t, s)(q(t) + b|x|) for (t, s) ∈ I2 and for x ∈ R, where q is a

nonnegative member of L1, 0 ≤ b = const. and a function k1 : I2 → R+

is measurable and such that the linear operator K1 generated by k1 maps
L1 into itself.

(ix) b‖K1‖ < 1.

Then we can formulate our existence result concerning Equation (4.1).

Theorem 4.5. Under assumptions (i)–(ix) Equation (4.1) has at least one solu-
tion x ∈ L1 such that x is a.e. nondecreasing on the interval I.

Proof: Observe that in view of (4.2) and (4.3) we can write Equation (4.1) in
the form

x = a+Hx+ Ux.

In order to show that Corollary 3.2 can be applied in our situation let us denote
by T the operator defined on L1 by the formula

(4.4) Tx = a+Hx.

Further, observe that the Hammerstein operatorH defined by (4.2) can be written
as the product H = KF of the superposition operator

(Fx)(t) = f(t, x(t))

and the linear operator

(Kx)(t) =

∫ 1

0

k(t, s)x(s) ds.
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Next, let us take an arbitrary function x ∈ L1. Then, in view of assumptions
(i)–(iii) and Theorem 4.1 we infer that Tx ∈ L1, where T is defined by (4.4).

On the other hand, keeping in mind assumptions (v) and (viii) and the majo-
rant principle (cf. [29]) we deduce that the Urysohn operator U transforms the
space L1 into itself and is continuous.

Further, let us consider the subset Ω of the space L1 consisting of all functions
x = x(t) being a.e. nonnegative and nondecreasing on the interval I. It is easily
seen that the operators T and U transform the set Ω into itself. In fact, this
statement is an easy consequence of assumptions (i), (ii), (iv), (vi) and (vii).

This allows us to infer that the sum T + U of these operators transforms the
set Ω into Ω.

Next, for an arbitrarily fixed x ∈ Ω, in view of imposed assumptions we obtain

|((T + U)(x))(t)| ≤ a(t) + (Hx)(t) + (Ux)(t), ∀t.

Thus

‖(T + U)(x)‖ ≤ ‖a‖+ ‖Hx‖+

∫ 1

0

u(t, s, x(s)) ds

≤ ‖a‖+ ‖KFx‖+

∫ 1

0

k1(t, s)(q(s) + bx(s)) ds

≤ ‖a‖+ ‖K‖‖Fx‖+

∫ 1

0

k(t, s)q(s) ds+ b

∫ 1

0

k1(t, s)x(s) ds

≤ ‖a‖+ ‖K‖

∫ 1

0

f(s, x(s)) ds+ ‖K1‖‖q‖+ b‖K1‖‖x‖

≤ ‖a‖+ ‖K‖

∫ 1

0

p(s) ds+ ‖K1‖‖q‖+ b‖K1‖‖x‖

≤ ‖a‖+ ‖K‖‖p‖+ ‖K1‖‖q‖+ b‖K1‖‖x‖

= A+ b‖K1‖‖x‖

where we denoted A = ‖a‖+ ‖K‖‖p‖+ ‖K1‖‖q‖. This implies

(4.5) ‖(T + U)(x)‖ ≤ A+ b‖K1‖‖x‖.

Further, denote by Ωr the set consisting of all functions x belonging to Ω and
such that ‖x‖ ≤ r, when r = A/(1 − b‖K1‖). Obviously the set Ωr is nonempty,
convex, closed and bounded. Moreover, linking (4.5) with the fact that T + U is
a self-mapping of the set Ω and taking into account assumption (ix) we deduce
that the operator T + U transforms the set Ωr into itself. Notice also that both
the operator T and U transforms the set Ωr into itself.

Now, by assumptions (ii) and (iii) (cf. also the fact stated after assumption (iii)
which asserts that the operator K is a continuous self-mapping of the space L1)
and taking into account Theorem 4.1 we infer that T transforms continuously the
set Ωr into Ωr.
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Apart from this, based on the facts established above, we deduce that the
Urysohn operator U transforms continuously the set Ωr into itself.

Thus, in virtue of the fact that Ωr is compact in measure (cf. Theorem 4.4
and remarks made before that theorem) we infer that the operators T and U
transform weakly continuously the set Ωr into itself.

Now, we show that the operator T is weakly compact on the set Ωr. Further-
more, the operator T is also weakly compact on the set Ω.

To prove this assertion let us take an arbitrary function x ∈ Ω. Then, for a
fixed t ∈ I we get:

(4.6)

|(Tx)(t)| ≤ a(t) +

∣

∣

∣

∣

∫ 1

0

k(t, s)f(s, x(s)) ds

∣

∣

∣

∣

≤ a(t) +

∫ 1

0

k(t, s)|f(s, x(s))| ds ≤ a(t) +

∫ 1

0

k(t, s)p(s) ds.

Hence, taking into account that the function t →
∫ 1

0 k(t, s)p(s) ds is an element

of the space L1, from estimate (4.6) and Theorem 4.3 we infer that the set T (Ω)
is weakly compact.

Thus we showed that the operator T is weakly compact on the set Ω.
In what follows take a nonempty set X ⊂ Ωr and fix ε > 0. Further, let D be

a measurable subset of the interval I such that m(D) ≤ ε. Then, for an arbitrary
x ∈ X , in view of assumption (viii) we obtain

∫

D

|(Ux)(t)| dt ≤

∫

D

(
∫ 1

0

k1(t, s)q(s) ds

)

dt+ b

∫

D

(
∫ 1

0

k1(t, s)x(s) ds

)

dt

= ‖K1q‖L1(D) + b‖K1x‖L1(D),

where by L1(D) we denoted the Lebesgue space of real functions defined on the
set D.

Now, taking into account that the operator K1 maps the space L1(D) into
itself and is continuous, we get

∫

D

|(Ux)(x)| dt ≤ ‖K1‖D‖q‖L1(D) + b‖K1‖D‖x‖L1(D)

= ‖K1‖D

∫

D

q(t) dt+ b‖K1‖D

∫

D

x(t) dt

≤ ‖K1‖

∫

D

q(t) dt+ b‖K1‖

∫

D

x(t) dt,

where the symbol ‖K1‖D stands for the norm of the linear operator K1 acting
from the space L1(D) into itself.
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Further, keeping in mind the fact that any singleton is weakly compact in the
space L1, in view of Theorem 4.3 we derive the following inequality

β(UX) ≤ b‖K1‖β(X),

where β denotes the De Blasi measure of weak noncompactness. Particularly, in
virtue of assumption (ix) this statement means that the operator U is condensing
with respect to β.

Finally, combining all the above established facts and applying Corollary 3.2
we complete the proof. �
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