Commentationes Mathematicae Universitatis Carolinas

Allami Benyaiche; Salma Ghiate
Thinness and non-tangential limit associated to coupled PDE

Commentationes Mathematicae Universitatis Carolinae, Vol. 54 (2013), No. 1, 41--51

Persistent URL: http://dml.cz/dmlcz/143151

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2013

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Thinness and non-tangential limit associated to coupled PDE

Allami Benyaiche, Salma Ghiate

Abstract

In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. $\triangle^{2} \varphi=0$) and equations of $\triangle^{2} \varphi=\varphi$ type.

Keywords: thinness, non-tangential limit, Martin boundary, biharmonic functions, coupled partial differential equations

Classification: Primary 31C35; Secondary 31B30, 31B10, 60J50

1. Introduction

Let D be a domain in $\mathbb{R}^{d}, d \geq 1$ and let $L_{j} ; j=1,2$, be two second order elliptic differential operators on D leading to harmonic spaces ($D, H_{L_{j}}$) with Green functions G_{j}. Moreover, we assume that every ball $B \subset \bar{B} \subset D$ is a L_{j}-regular set. Throughout this paper, we consider two positive Radon measures μ_{1} and μ_{2} such that $K_{D}^{\mu_{j}}=\int_{D} G_{j}(\cdot, y) \mu_{j}(d y)$ is a bounded continuous real function on D; $j=1,2$, and

$$
\left\|K_{D}^{\mu_{1}}\right\|_{\infty} \cdot\left\|K_{D}^{\mu_{2}}\right\|_{\infty}<1
$$

We consider the system:

$$
\left\{\begin{array}{l}
L_{1} u=-v \cdot \mu_{1} \tag{S}\\
L_{2} v=-u \cdot \mu_{2} .
\end{array}\right.
$$

Note that if U is a relatively compact open subset of $D, \mu_{1}=\lambda^{d}$, where λ^{d} is the Lebesgue measure, $\mu_{2}=0$, and $L_{1}=L_{2}=\triangle$, then we obtain the classical biharmonic case on U. In the case where $\mu_{1}=\mu_{2}=\lambda^{d}$, and $\lambda^{d}(D)<\infty$, we obtain equations of $\triangle^{2} \varphi=\varphi$ type. In this work, we shall study the thinness notion and the non-tangential limit associated with the balayage space given by the system (S). Let us note that the notion of a balayage space defined by J. Bliedtner and W. Hansen in [6], [11] is more general than that of a P-harmonic space. It covers harmonic structures given by elliptic or parabolic partial differential equations, Riesz potentials, and biharmonic equations (which are a particular case of this work). In the biharmonic case, a similar study can be done using
couples of functions as presented in [2], [7], [12]. We are also grateful to the referee for his remarks and comments.

2. Notations and preliminaries

For $j=1,2$, let $X_{j}=D \times\{j\}$, and let $X=X_{1} \cup X_{2}$, moreover, let i_{j} and π_{j} the mappings defined by:

$$
\begin{gathered}
i_{j}: D \longrightarrow X_{j} \text { and } \pi_{j}: X_{j} \longrightarrow D \\
x \longmapsto(x, j) \quad(x, j) \longmapsto x .
\end{gathered}
$$

Let \mathcal{U}_{0} be the set of all balls B such that $B \subset \bar{B} \subset D, \mathcal{U}_{j}$ be the image of \mathcal{U}_{0} by $i_{j} ; j=1,2$ and $\mathcal{U}=\mathcal{U}_{1} \cup \mathcal{U}_{2}$.

Definition 2.1. Let v be a measurable function on X. For $j, k \in\{1,2\}, j \neq k$ and $U \in \mathcal{U}_{j}$, we define the kernel S_{U}, on X_{j}, by:

$$
S_{U} v=\left(H_{\pi_{j}(U)}^{j}\left(v \circ i_{j}\right)\right) o \pi_{j}+\left(K_{\pi_{j}(U)}^{\mu_{j}}\left(v \circ i_{k}\right)\right) o \pi_{j} .
$$

Where $H_{\pi_{j}(U)}^{j}, j=1,2$, denote harmonic kernels associated with $\left(D, H_{L_{j}}\right)$ and

$$
K_{\pi_{j}(U)}^{\mu_{j}}(w)=\int G_{j}^{\pi_{j}(U)}(\cdot, y) w(y) \mu_{j}(d y) ; \quad j=1,2
$$

Here w is a measurable function on D and $G_{j}^{\pi_{j}(U)}$ is the Green function associated with the operator L_{j} on $\pi_{j}(U)$. Let $G_{j}, j=1,2$, be the Green kernel associated with L_{j} on D. The family of kernels $\left(S_{U}\right)_{U \in \mathcal{U}}$ yields a balayage space on X as defined in [6], [11].

For all open subset V of X, let ${ }^{*} \mathcal{H}(V)$ denote the set of all hyperharmonic functions on V :

$$
{ }^{*} \mathcal{H}(V):=\left\{v \in \mathcal{B}(X):\left.v\right|_{V} \quad \text { is l.s.c and } S_{U} v \leq v \quad \forall U \in \mathcal{U}(V)\right\} .
$$

Here $\mathcal{U}(V)=\{U \in \mathcal{U}: \bar{U} \subset V\}$ and $\mathcal{B}(X)$ denotes the set of all Borel functions on X. Let $\mathcal{S}(V)$ be the set of all superharmonic functions on X, i.e.

$$
\mathcal{S}(V):=\left\{s \in{ }^{*} \mathcal{H}(V):\left.\left(S_{U} v\right)\right|_{U} \in C(U) \quad \forall U \in \mathcal{U}(V)\right\},
$$

and $\mathcal{H}(V)$ be the set of all harmonic functions on X :

$$
\mathcal{H}(V):=\left\{h \in \mathcal{S}(V): S_{U} h=h \quad \forall U \in \mathcal{U}(V)\right\} .
$$

We denote ${ }^{*} \mathcal{H}^{+}(V)$ (resp. $\left.\mathcal{S}^{+}(V), \mathcal{H}^{+}(V)\right)$ the set of all hyperharmonic (resp. superharmonic, harmonic) positive functions on V. We denote also, for $V \subset$ $D,{ }^{*} \mathcal{H}_{j}^{+}(V)\left(\operatorname{resp} . \mathcal{S}_{j}^{+}(V), \mathcal{H}_{j}^{+}(V)\right)$ the set of all L_{j}-hyperharmonic (resp. $L_{j^{-}}$ superharmonic, L_{j}-harmonic) positive functions on V.

Let φ be a positive hyperharmonic function on X and let φ_{j} be the function defined on D by:

$$
\varphi_{j}:= \begin{cases}\varphi o i_{j}-K_{D}^{\mu_{j}}\left(\varphi o i_{k}\right) & \text { if } K_{D}^{\mu_{j}}\left(\varphi o i_{k}\right)<\infty \\ +\infty & \text { otherwise }\end{cases}
$$

where $j, k \in\{1,2\}$ and $j \neq k$. We note that $\varphi_{j}, j=1,2$ are L_{j}-hyperharmonic on D (see [4, Corollary 2.2]).

3. Reduit and thinness

Let $A \subset X$ and let f be a positive numerical function on X. The reduit R_{f}^{A} of f relative to A in X is defined by:

$$
R_{f}^{A}:=\inf \left\{\varphi \in^{*} \mathcal{H}^{+}(X): \varphi \geq f \text { on } A\right\}
$$

Let \widehat{R}_{f}^{A} be the lower semi-continuous regularization of R_{f}^{A}, i.e.

$$
\widehat{R}_{\varphi}^{A}(x):=\liminf _{y \rightarrow x} R_{\varphi}^{A}(y), \quad x \in X
$$

We denote ${ }^{j} R_{g}^{A}$ the reduit of a function g defined on D relative to a set A of D with respect to harmonic space $\left(D, H_{j}\right), j=1,2$ and ${ }^{j} \hat{R}_{g}^{A}$ the l.s.c. regularization of ${ }^{j} R_{g}^{A}$.

Proposition 3.1. Let f be a positive numerical function on X and $A=\left(A_{1} \times\right.$ $\{1\}) \cup\left(A_{2} \times\{2\}\right)$ with $A_{j} \subset D, j=1,2$. We have:

$$
{ }^{j} R_{f \circ i_{j}}^{A_{j}} \leq R_{f}^{A} \circ i_{j}, \quad j=1,2 .
$$

Proof: We consider the following sets:

$$
B_{1}=\left\{\varphi \circ i_{1}, \varphi \in^{*} \mathcal{H}^{+}(X), \varphi \geq f \text { on } A\right\}
$$

and

$$
B_{2}=\left\{g, g \in^{*} \mathcal{H}_{1}^{+}(D), g \geq f \circ i_{1} \text { on } A_{1}\right\} .
$$

For showing ${ }^{1} R_{f \circ i_{1}}^{A_{1}} \leq R_{f}^{A} \circ i_{1}$, it suffices to prove that $B_{1} \subset B_{2}$. Let $u \in B_{1}$, then there exists $\varphi \in{ }^{*} \mathcal{H}^{+}(X)$ such that $u=\varphi \circ i_{1}$ and $\varphi \geq f$ on A. Since $\varphi \in{ }^{*} \mathcal{H}^{+}(X)$, then $u \in^{*} \mathcal{H}_{1}^{+}(D)$ and $u=\varphi \circ i_{1} \geq f \circ i_{1}$ on A_{1}. So $u \in B_{2}$, and ${ }^{1} R_{f \circ i_{1}}^{A_{1}} \leq R_{f}^{A} \circ i_{1}$. In the same way, we show that ${ }^{2} R_{f \circ i_{2}}^{A_{2}} \leq R_{f}^{A} \circ i_{2}$.
Corollary 3.1. Let f be a positive numerical function on X and $A \subset X$. We have:

$$
{ }^{j} \hat{R}_{f \circ i_{j}}^{A_{j}} \leq \hat{R}_{f}^{A} \circ i_{j}, j=1,2
$$

Here $A=\left(A_{1} \times\{1\}\right) \cup\left(A_{2} \times\{2\}\right)$ and $A_{j} \subset D ; j=1,2$.

Definition 3.1. (i) Let A be a subset of X. We say that A is thin at a point $x \in X$ if and only if there exist an open neighbourhood U of x in X and a positive hyperharmonic function v on U such that $\hat{R}_{v}^{A \cap U}(x)<v(x)$.
(ii) Let B be a subset of D. We say that B is L_{j}-thin at point $z \in D, j=1,2$, if and only if there exist an open neighbourhood U of z in D and a positive L_{j}-hyperharmonic function v on U such that ${ }^{j} \hat{R}_{v}^{B \cap U}(z)<v(z)$.

Proposition 3.2. Let $A=\left(A_{1} \times\{1\}\right) \cup\left(A_{2} \times\{2\}\right)$ be a subset of X and $x=\left(x_{0}, j\right)$, $j=1,2$, where $x_{0} \in D$. If A is thin at point x, then A_{j} is L_{j}-thin at point x_{0}.

Proof: If A is thin at point $x=\left(x_{0}, 1\right)$ where $x_{0} \in D$, then there exist an open neighbourhood U of x in X and a positive hyperharmonic function φ on U such that $\hat{R}_{\varphi}^{A \cap U}(x)<\varphi(x)$. Hence there exist an open neighbourhood U_{1} of x_{0}, in D such that $\left(U_{1} \times\{1\}\right) \subset U$. From Corollary 3.1,

$$
{ }^{1} \hat{R}_{\varphi \circ i_{1}}^{A_{1} \cap U_{1}}\left(x_{0}\right) \leq\left(\hat{R}_{\varphi}^{A \cap U} \circ i_{1}\right)\left(x_{0}\right)<\left(\varphi \circ i_{1}\right)\left(x_{0}\right) .
$$

Since φ is a positive hyperharmonic function on U, then the function $\varphi \circ i_{1}$ is a positive L_{1}-hyperharmonic function on U_{1}. Therefore, A_{1} is L_{1}-thin at point x_{0}. In the same way, we show that A_{2} is L_{2}-thin at point x_{0}.

For $j, k \in\{1,2\}, j \neq k$, we denote by $P_{j, k}:=K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}$ and $G_{P_{j, k}}:=\sum_{n=0}^{+\infty}\left(P_{j, k}\right)^{n}$ which coincides with $\left(I-P_{j, k}\right)^{-1}$ on $\mathcal{B}_{b}(D)$. $\mathcal{B}_{b}(D)$ denotes the set of all bounded Borel measurable functions on D. We recall the following equalities:

$$
\begin{align*}
P_{j, k} G_{P_{j, k}} & =G_{P_{j, k}} P_{j, k}, \tag{1}\\
P_{j, k} G_{P_{j, k}}+I & =G_{P_{j, k}}, \tag{2}\\
G_{P_{j, k}}^{2}-P_{j, k} G_{P_{j, k}}^{2} & =G_{P_{j, k}} \tag{3}\\
K_{D}^{\mu_{j}} G_{P_{k, j}} & =G_{P_{j, k}} K_{D}^{\mu_{j}} . \tag{4}
\end{align*}
$$

Remark 3.1. (1) We note that if φ is a finite positive Borel measurable function on D such that $P_{j, k} \varphi$ is bounded, then $G_{P_{j, k}} \varphi<+\infty$.
(2) If s is a L_{j}-hyperharmonic positive function on D then $G_{P_{j, k}} s$ is L_{j} hyperharmonic on D.

Let $J=\left(J_{1} \times\{1\}\right) \cup\left(J_{2} \times\{2\}\right), J^{\prime}=\left(\left(J_{1} \cap J_{2}\right) \times\{1\}\right) \cup\left(\left(J_{1} \cap J_{2}\right) \times\{2\}\right)$ with $J_{j} \subset D, j=1,2$, and $J_{1} \cap J_{2} \neq \emptyset$. Let $t_{j}, j=1,2$, be two positive $L_{j}{ }^{-}$ hyperharmonic functions on D. We define two functions $v_{j, k}, j, k \in\{1,2\}, j \neq k$ on X by:

$$
v_{j, k}:= \begin{cases}\left(G_{P_{j, k}} t_{j}+P_{j, k} G_{P_{j, k}}^{2} t_{j}\right) o \pi_{j} & \text { on } X_{j} \\ \left(K_{D}^{\mu_{k}} G_{P_{j, k}}^{2} t_{j}\right) \circ \pi_{k} & \text { on } X_{k}\end{cases}
$$

From ([4, Corollary 2.2]), the functions $v_{j, k}$ are hyperharmonic on $(D \times\{1\}) \cup$ ($D \times\{2\}$).

Remark 3.2. Note that, if $P_{j, k} G_{P_{j, k}}^{2} t_{j}<\infty$, we have $v_{j, k} \circ i_{j}=G_{P_{j, k}}^{2} t_{j}$ and

$$
\left(v_{1,2}+v_{2,1}\right) \circ i_{j}-K_{D}^{\mu_{j}}\left(v_{1,2}+v_{2,1}\right) \circ i_{k}=P_{j, k} t_{j},
$$

$j, k \in\{1,2\}, j \neq k$.
Proposition 3.3. If $P_{j, k} G_{P_{j, k}}^{2} t_{j}<\infty$, we have

$$
R_{v_{j, k}}^{J^{\prime}} \circ i_{j} \leq{ }^{j} R_{G_{P_{j, k}} t_{j}}^{J_{j}}+P_{j, k} G_{P_{j, k}}^{2} t_{j}
$$

and

$$
R_{v_{j, k}}^{J^{\prime}} \circ i_{k} \leq K_{D}^{\mu_{k}} G_{P_{j, k}}^{2} t_{j}
$$

$j, k \in\{1,2\}, j \neq k$.
Proof: (1) We give the proof for $j=1$ and $k=2$. Let s be a L_{1}-hyperharmonic function on D such that $s=G_{P_{1,2}} t_{1}$ on J_{1} and $s \leq G_{P_{1,2}} t_{1}$. We consider on X the function

$$
f:= \begin{cases}\left(s+P_{1,2} G_{P_{1,2}}^{2} t_{1}\right) o \pi_{1} & \text { on } X_{1} \\ \left(K_{D}^{\mu_{2}} G_{P_{1,2}}^{2} t_{1}\right) o \pi_{2} & \text { on } X_{2}\end{cases}
$$

So $f \circ i_{1}=v_{1,2} \circ i_{1}$ on J_{1} and $f \circ i_{2}=v_{1,2} \circ i_{2}$. Hence $f=v_{1,2}$ on J^{\prime} and $f \leq v_{1,2}$.
On one hand, we have

$$
f \circ i_{1}-K_{D}^{\mu_{1}} f \circ i_{2}=s+P_{1,2} G_{P_{1,2}}^{2} t_{1}-P_{1,2} G_{P_{1,2}}^{2} t_{1}=s
$$

On the other hand, using the equalities (1), (2) and (3), we have

$$
\begin{aligned}
f \circ i_{2}-K_{D}^{\mu_{2}} f \circ i_{1} & =K_{D}^{\mu_{2}} G_{P_{1,2}}^{2} t_{1}-K_{D}^{\mu_{2}}\left(s+P_{1,2} G_{P_{1,2}}^{2} t_{1}\right) \\
& =K_{D}^{\mu_{2}} G_{P_{1,2}}^{2} t_{1}-K_{D}^{\mu_{2}} s-K_{D}^{\mu_{2}} P_{1,2} G_{P_{1,2}}^{2} t_{1} \\
& =K_{D}^{\mu_{2}}\left(G_{P_{1,2}}^{2} t_{1}-P_{1,2} G_{P_{1,2}}^{2} t_{1}\right)-K_{D}^{\mu_{2}} s \\
& =K_{D}^{\mu_{2}} G_{P_{1,2}} t_{1}-K_{D}^{\mu_{2}} s \\
& =K_{D}^{\mu_{2}}\left(G_{P_{1,2}} t_{1}-s\right) .
\end{aligned}
$$

Hence $f \circ i_{1}-K_{D}^{\mu_{1}} f \circ i_{2}$ and $f \circ i_{2}-K_{D}^{\mu_{2}} f \circ i_{1}$ are respectively L_{1} and L_{2} hyperharmonic on D and therefore the function f is hyperharmonic on X ([4, Corollary 2.2]). So

$$
R_{v_{1,2}}^{J^{\prime}} \circ i_{1} \leq{ }^{1} R_{G_{P_{1,2}} t_{1}}^{J_{1}}+P_{1,2} G_{P_{1,2}}^{2} t_{1}
$$

and

$$
R_{v_{1,2}}^{J^{\prime}} \circ i_{2} \leq K_{D}^{\mu_{2}} G_{P_{1,2}}^{2} t_{1}
$$

The following theorem results from the previous proposition.

Theorem 3.1. Let $t_{j}, j=1,2$, be two positive L_{j}-hyperharmonic functions on D such that $P_{j, k} G_{P_{j, k}}^{2} t_{j}<\infty, j, k \in\{1,2\}, j \neq k$. Then

$$
\hat{R}_{v_{1,2}+v_{2,1}}^{J^{\prime}} \circ i_{j} \leq{ }^{j} \hat{R}_{G_{P_{j, k}} t_{j}}^{J_{j}}+P_{j, k} G_{P_{j, k}}^{2} t_{j}+K_{D}^{\mu_{j}} G_{P_{k, j}}^{2} t_{k}
$$

Remark 3.3. (1) In the biharmonic case, i.e. $\mu_{1}=\lambda^{d}, \mu_{2}=0, L_{j}=\triangle$ for $j=1,2$ and $J=J_{1}=J_{2}$, the result is given by A. Boukricha [7, Proposition 5.6].
(2) All the previous results are still valid if we substitute D by any L_{j}-regular subset V of D.

Proposition 3.4. Let $J_{j}, j=1,2$ be two subsets of D such that $J_{1} \cap J_{2} \neq \emptyset$. Let $x_{0} \in D$. If J_{j} are L_{j}-thin at point x_{0} then the set $J^{\prime}:=\left(\left(J_{1} \cap J_{2}\right) \times\{1\}\right) \cup$ $\left(\left(J_{1} \cap J_{2}\right) \times\{2\}\right)$ is thin at points $\left(x_{0}, j\right), j=1,2$.

Proof: Since $J_{j}, j \in\{1,2\}$, is L_{j}-thin at point x_{0}, then there exist a L_{j}-regular open neighbourhood U_{j} of x_{0} in D and a positive L_{j}-hyperharmonic function s_{j} on U_{j} such that

$$
{ }^{j} \hat{R}_{s_{j}}^{J_{j} \cap U_{j}}\left(x_{0}\right)<s_{j}\left(x_{0}\right) .
$$

Letting $V:=U_{1} \cap U_{2}, V$ is a regular open neighbourhood of x_{0}. Let φ be the positive hyperharmonic function on $W:=(V \times\{1\}) \cup((V) \times\{2\})$ defined on $V \times\{j\}$ by:

$$
\varphi:=\left(G_{P_{j, k}} s_{j}+K_{V}^{\mu_{j}} G_{P_{k, j}}^{2} s_{k}+P_{j, k} G_{P_{j, k}}^{2} s_{j}\right) \circ \pi_{j}
$$

We have, from Theorem 3.1,

$$
\hat{R}_{\varphi}^{J^{\prime} \cap W} \circ i_{j} \leq{ }^{j} \hat{R}_{G_{P_{j, k}} s_{j}}^{s_{j}}+P_{j, k} G_{P_{j, k}}^{2} s_{j}+K_{V}^{\mu_{j}} G_{P_{k, j}, j}^{2} s_{k} .
$$

Since

$$
G_{P_{j, k}} s_{j}=s_{j}+P_{j, k} G_{P_{j, k}} s_{j}
$$

we have

$$
{ }^{j} \hat{R}_{G_{P_{j, k}} s_{j}}^{J_{j} \cap U_{j}}\left(x_{0}\right) \leq{ }^{j} \hat{R}_{s_{j}}^{J_{j} \cap U_{j}}\left(x_{0}\right)+{ }^{j} \hat{R}_{P_{j, k} G_{P_{j, k}} s_{j} \cap U_{j}}^{J_{j} U_{j}}\left(x_{0}\right) .
$$

Hence, from the hypothesis, we get

$$
{ }^{j} \hat{R}_{G_{P_{j, k}} s_{j}}^{J_{j} \cap U_{j}}\left(x_{0}\right)<s_{j}\left(x_{0}\right)+P_{j, k} G_{P_{j, k}} s_{j}\left(x_{0}\right)=G_{P_{j, k}} s_{j}\left(x_{0}\right) .
$$

Therefore, we conclude

$$
\hat{R}_{\varphi}^{J^{\prime} \cap W}\left(x_{0}, 1\right)<\varphi\left(x_{0}, 1\right)
$$

i.e. J^{\prime} is thin at point $\left(x_{0}, 1\right)$.

Note that our proof is direct. From Proposition 3.2 and Proposition 3.4 we have the following characterization of the thinness with respect to the system (S).

Theorem 3.2. Let J_{1} and J_{2} be two subsets of D such that $J_{1} \cap J_{2} \neq \emptyset$. The following propositions are equivalent.
(1) J_{1} is L_{1}-thin at point x_{0} and J_{2} is L_{2}-thin at point $x_{0} \in D$.
(2) The set $J^{\prime}:=\left(\left(J_{1} \cap J_{2}\right) \times\{1\}\right) \cup\left(\left(J_{1} \cap J_{2}\right) \times\{2\}\right)$ is thin at points $\left(x_{0}, j\right)$, $j=1,2$.

4. Minimal thinness

Let us fix $x_{0} \in D$. For all $x, y \in D$ and $j \in\{1,2\}$, we put:

$$
g^{j}(x, y):= \begin{cases}\frac{G_{j}(x, y)}{G_{j}\left(x_{0}, y\right)}, & \text { if } x \neq x_{0} \text { or } y \neq x_{0} \\ 1, & \text { if } x=y=x_{0}\end{cases}
$$

Let $\mathcal{A}_{j}=\left\{g^{j}(x, \cdot), x \in D\right\}$, and $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$.
As in [8], [9], we consider the Martin compactification \widehat{D} of D associated with \mathcal{A}. The boundary $\partial_{M} D:=\widehat{D}-D$ of D is called the Martin boundary of D associated with the system (S).

The function $g^{j}(x, \cdot), j=1,2, x \in D$ can be extended, on \widehat{D}, to a continuous function denoted $g^{j}(x, \cdot), j=1,2, x \in D$ as in [8]. Put $\tilde{\partial}_{M} D:=\partial_{M} D \times\{1\} \cup$ $\partial_{M} D \times\{2\}$. A couple of functions $\left(u_{1}, u_{2}\right)$ defined on $\partial_{M} D$ can be identified with a function f on $\tilde{\partial}_{M} D$ such that $f \circ i_{j}=u_{j}$, where $i_{j}, j=1,2$ denote always the mappings of $\partial_{M} D$ into $\partial_{M} D \times\{j\}$ defined by: $i_{j}(z)=(z, j) ; z \in \partial_{M} D$. We use also π, the mapping of $\tilde{\partial}_{M} D$ into $\partial_{M} D$ defined by: $\pi(Y)=\pi_{j}(Y)$, if $Y \in \partial_{M} D \times\{j\}$. Here $\pi_{j}(Y)=z$, if $Y=(z, j)$. We denote:

$$
\partial_{m}^{j} D=\left\{y \in \partial_{M} D: g^{j}(\cdot, y) \text { is } L_{j} \text {-minimal }\right\} .
$$

We note that, for all $y \in \partial_{M} D$, the function $g^{j}(\cdot, y)$ is L_{j}-harmonic on D. In the following, we suppose that, for all $y \in \partial_{M} D$, the function $K_{D}^{\mu_{j}} g^{k}(\cdot, y)$ is finite and the function $P_{k, j} g^{k}(\cdot, y)$ is bounded for $j \neq k, j, k \in\{1,2\}$. For all $Y \in \tilde{\partial}_{M} D$, we have $\pi(Y) \in \partial_{M} D$. Hence we can define on X, the following functions:

$$
\Phi_{Y}:= \begin{cases}\left(G_{P_{1,2}} g^{1}(\cdot, \pi(Y))\right) o \pi_{1} & \text { on } X_{1} \\ \left(K_{D}^{\mu_{2}} G_{P_{1,2}} g^{1}(\cdot, \pi(Y))\right) o \pi_{2} & \text { on } X_{2}\end{cases}
$$

and

$$
\Psi_{Y}:= \begin{cases}\left(G_{P_{1,2}} K_{D}^{\mu_{1}} g^{2}(\cdot, \pi(Y))\right) o \pi_{1} & \text { on } X_{1} \\ \left(G_{P_{2,1}} g^{2}(\cdot, \pi(Y))\right) o \pi_{2} & \text { on } X_{2}\end{cases}
$$

From [4, Theorem 3.1], Φ_{Y} and Ψ_{Y} are harmonic functions on X.
Definition 4.1. Let $Y \in \tilde{\partial}_{M} D$. We say that Y is a minimal point for $\tilde{\partial}_{M} D$ if Φ_{Y} is minimal or Ψ_{Y} is minimal.

Lemma 4.1. $Y=(y, j), j=1,2$ is a minimal point for $\tilde{\partial}_{M} D$, if and only if y is a minimal point for $\partial_{M} D$.

Proof: Let $Y=(y, j)$ be a minimal point for $\tilde{\partial}_{M} D, j=1,2$, then, by the definition, Φ_{Y} is minimal or Ψ_{Y} is minimal. Suppose that Φ_{Y} is minimal. So, from [4, Proposition 4.2], the function $\left(\Phi_{Y} \circ i_{1}-K_{D}^{\mu_{1}}\left(\Phi_{Y} \circ i_{2}\right)\right)$ is L_{1}-minimal. Since

$$
\Phi_{Y} \circ i_{1}-K_{D}^{\mu_{1}}\left(\Phi_{Y} \circ i_{2}\right)=G_{P_{1,2}} g^{1}(\cdot, y)-P_{1,2} G_{P_{1,2}} g^{1}(\cdot, y)
$$

then we have

$$
\begin{equation*}
\Phi_{Y} \circ i_{1}-K_{D}^{\mu_{1}}\left(\Phi_{Y} \circ i_{2}\right)=g^{1}(\cdot, y) \tag{4.1}
\end{equation*}
$$

Therefore, the function $g^{1}(\cdot, y)$ is minimal and we can deduce that the point y is a minimal point for $\partial_{M} D$. If we suppose that the function Ψ_{Y} is a minimal function, we show in an analogous way that the function $g^{2}(\cdot, y)$ is a minimal function, i.e. y is a minimal point for $\partial_{M} D$.

Conversely, let y be a minimal point for $\partial_{M} D$. Then $g^{1}(\cdot, y)$ is a L_{1}-minimal function or $g^{2}(\cdot, y)$ is a L_{2}-minimal function. If $g^{1}(\cdot, y)$ is minimal, then, by (4.1), the function $\left(\Phi_{Y} \circ i_{1}-K_{D}^{\mu_{1}}\left(\Phi_{Y} \circ i_{2}\right)\right)$ is L_{1}-minimal. Therefore, by [4, Proposition 4.2], Φ_{Y} is a minimal function. So Y is a minimal point for $\tilde{\partial}_{M} D$. Similarly, if we assume that the function $g^{2}(\cdot, y)$ is a minimal function we show that the function Ψ_{Y} is a minimal function, i.e. Y is a minimal point for $\tilde{\partial}_{M} D$.

Definition 4.2. Let J be a subset of X and let Y be a minimal point for $\tilde{\partial}_{M} D$. We say that J has a minimal thinness at point Y if $\hat{R}_{\Phi_{Y}}^{J} \neq \Phi_{Y}$ or $\hat{R}_{\Psi_{Y}}^{J} \neq \Psi_{Y}$.

5. Non-tangential limit

In this section, we take $L_{1}=L_{2}=\triangle$ and D is the half space in R^{d} defined by:

$$
D=\left\{\left(x^{\prime}, x_{d}\right): x^{\prime} \in R^{d-1} \text { and } x_{d}>0\right\}
$$

The Martin compactification of D can be identified with the closure of D and all Martin boundary points are minimal (see [1]). Let $x_{0}=\left(0^{\prime}, 1\right)$ with $0^{\prime}=$ $(0,0, \ldots) \in R^{d-1}$. We recall that the Martin Kernel in this case is given by:

$$
\begin{cases}M(x, y)=\frac{\left\|x_{0}-y\right\|^{d} \cdot x_{d}}{\|x-y\|^{d}}, & x \in D, y \in \partial D \\ M(x, \infty)=x_{d}, & x \in D\end{cases}
$$

For $a>0$ and $y \in \partial D$, we define

$$
\Gamma_{y, a}:=\left\{\left(x^{\prime}, x_{d}\right) \in R^{d-1} \times R^{*+}: x_{d}>\left\|x^{\prime}-y^{\prime}\right\|\right\}, y=\left(y^{\prime}, 0\right), y^{\prime} \in R^{d-1}
$$

and we define for $Y=(y, j) \in(\partial D \times\{1\}) \cup(\partial D \times\{2\})$,

$$
\Omega_{Y, a}:=\left(\Gamma_{y, a} \times\{1\}\right) \cup\left(\Gamma_{y, a} \times\{2\}\right) .
$$

We note that if h is a positive harmonic function on X, then the function $h_{j}=$ $h \circ i_{j}-K_{D}^{\mu_{j}}\left(h \circ i_{k}\right)$ is harmonic on D [4, Theorem 2.1]. Moreover, $K_{D}^{\mu_{j}}\left(h \circ i_{k}\right)<\infty$ for $j, k=1,2, j \neq k$.

Definition 5.1. (1) Let f be a function defined on X. We say that f has a fine minimal limit l at point $Y=(y, j)$ for $j=1,2$ and $y \in \partial D$, if there exist a subset J_{1} of D having a L_{1}-minimal thinness at point y and a subset J_{2} of D having a L_{2}-minimal thinness at point y such that

$$
\lim _{x \longrightarrow Y, x \in X \backslash J} f(x)=l .
$$

Here $J=\left(J_{1} \times\{1\}\right) \cup\left(J_{2} \times\{2\}\right)$.
(2) Let f be a function defined on X. We say that f has a non-tangential limit l at point $Y=(y, j)$ for $j=1,2$ and $y \in \partial D$ if

$$
\forall a>0, \lim _{x \longrightarrow Y, x \in \Omega_{Y, a}} f(x)=l .
$$

Remark 5.1. Let $Y=(y, j)$ for $j=1,2$ and $y \in \partial D$, then

$$
\lim _{(z, j) \longrightarrow(y, j),(z, j) \in \Gamma_{y, a} \times\{j\}} f(z, j)=\lim _{z \longrightarrow y, z \in \Gamma_{y, a}}\left(f \circ i_{j}\right)(z) .
$$

Theorem 5.1. Let $Y=(y, j)$ for $j=1,2, y \in \partial D$. Let u be a positive harmonic function on X and let h be a strictly positive harmonic function on X such that the function $\frac{u}{h}$ has a minimal fine limit l at point Y. Denote $h_{j}=h \circ i_{j}-K_{D}^{\mu_{j}}\left(h \circ i_{k}\right)$, $j, k=1,2, j \neq k$.

If $h_{1}>0$ and $h_{2}>0$ then the function $\frac{u}{h}$ has a non-tangential limit at point Y.
Remark 5.2. If $h_{j}>0, h_{k}=0$ and $Y=(y, j)$ for $j, k \in\{1,2\}, j \neq k$, then

$$
\lim _{z \longrightarrow y, z \in \Gamma_{y, a}} \frac{\left(u \circ i_{j}\right)(z)}{\left(h \circ i_{j}\right)(z)}=\lim _{x \longrightarrow Y,}\left(\Gamma_{y, a} \times\{1\}\right) \frac{u}{h}(x)=l .
$$

Proof: Let $Y=(y, j)$ for $j=1,2, y \in \partial D$. We suppose that $h_{1}>0$ and $h_{2}>0$. Since the function $\frac{u}{h}$ has a minimal fine limit l at point Y, there exist a subset J_{1} of D having a L_{1}-minimal thinness at point y and a subset J_{2} of D having a L_{2}-minimal thinness at point y such that

$$
\lim _{x \longrightarrow Y, x \in X \backslash J} \frac{u}{h}(x)=l .
$$

Here $J=\left(J_{1} \times\{1\}\right) \cup\left(J_{2} \times\{2\}\right)$. Therefore $\lim _{z \longrightarrow y} \frac{\left(u \circ i_{j}\right)(z)}{\left(h \circ i_{j}\right)(z)}=l$ on $D \backslash J_{j}$. We have

$$
\frac{\left(u \circ i_{j}\right)(z)}{\left(h \circ i_{j}\right)(z)}=\frac{u_{j}(z)+K_{D}^{\mu_{j}}\left(u \circ i_{k}\right)(z)}{h_{j}(z)+K_{D}^{\mu_{j}}\left(h \circ i_{k}\right)(z)}, j \neq k
$$

Here $u_{j}=u \circ i_{j}-K_{D}^{\mu_{j}}\left(u \circ i_{k}\right) ; j, k=1,2, j \neq k$. Using [10, 18.1] or [1, Corollary 9.3.8], we have

$$
\lim _{z \longrightarrow y \in \partial D} \frac{K_{D}^{\mu_{j}}\left(u \circ i_{k}\right)(z)}{h_{j}(z)}=\lim _{z \longrightarrow y \in \partial D} \frac{K_{D}^{\mu_{j}}\left(h \circ i_{l}\right)(z)}{h_{j}(z)}=0 ; \mu_{h_{j}}-\text { a.e. on } \partial_{m}^{j} D .
$$

Here $\mu_{h_{j}}$ denotes the measure on $\partial_{M}^{j} D$ corresponding to h_{j} in the Martin representation. So, we get

$$
\lim _{z \rightarrow y} \frac{u_{j}(z)}{h_{j}(z)}=l \text { on } D \backslash J_{j}
$$

Therefore, by Fatou Theorem (see [1, Theorem 9.7.4]) $\lim _{z \longrightarrow y} \frac{u_{j}(z)}{h_{j}(z)}=l$ on $\Gamma_{y, a}$. Since we have

$$
\begin{aligned}
\frac{u_{j}}{h_{j}} & =\frac{\left(u \circ i_{j}\right)-K_{D}^{\mu_{j}}\left(u \circ i_{k}\right)}{\left(h \circ i_{j}\right)-K_{D}^{\mu_{j}}\left(h \circ i_{k}\right)} \\
& =\frac{\frac{u \circ i_{j}}{h_{j}}-\frac{K_{D}^{\mu_{j}}\left(u \circ i_{k}\right)}{h_{j}}}{\frac{h \circ i_{j}}{h_{j}}-\frac{K_{D}^{\mu_{j}}\left(h \circ i_{k}\right)}{h_{j}}},
\end{aligned}
$$

we conclude that $\lim _{z \longrightarrow y} \frac{u \circ i_{j}(z)}{h \circ i_{j}(z)}=l$ on $\Gamma_{y, a}$.
In the same way, we show the assertions in the previous remark.

References

[1] Armitage D.H., Stephen J.G., Classical Potential Theory, Springer, London, 2001.
[2] Benyaiche A., Ghiate S., Frontière de Martin biharmonique, preprint, 2000.
[3] Benyaiche A., Ghiate S., Propriété de moyenne restreinte associée à un système d'E.D.P., Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 125-143.
[4] Benyaiche A., Ghiate S., Martin boundary associated with a system of PDE, Comment. Math. Univ. Carolin. 47 (2006), no. 3, 399-425.
[5] Benyaiche A., On potential theory associated to a coupled PDE, in Complex Analysis and Potential Theory, T.A. Azeroglu and P.M. Tamrazov, eds., Proceedings of the Conference Satellite to ICM 2006, World Sci. Publ., Hackensack, NJ, 2007, pp. 178-186.
[6] Bliedtner J., Hansen W., Potential Theory. An Analytic and Probabilistic Approach to Balayage, Universitext, Springer, Berlin, 1986.
[7] Boukricha A., Espaces biharmoniques, in G. Mokobodzki and D. Pinchon, eds., Théorie du Potentiel (Orsay, 1983), pp. 116-149, Lecture Notes in Mathematics, 1096, Springer, Berlin, 1984.
[8] Brelot M., On Topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics, 175, Springer, Berlin-New York, 1971.
[9] Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, New YorkHeidelberg, 1972.
[10] Doob J.L., Classical Potential Theory and its Probabilistics Conterpart, Springer, New York, 1984.
[11] Hansen W., Modification of balayage spaces by transitions with application to coupling of PDE's, Nagoya Math. J. 169 (2003), 77-118.
[12] Smyrnélis E.P., Axiomatique des fonctions biharmoniques, I, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, 35-98.

Ibn Tofail University, Department of Mathematics, B.P. 133, Kenitra, Morocco

E-mail: a_benyaiche@yahoo.fr
(Received December 26, 2011, revised November 7, 2012)

