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Spaces not distinguishing pointwise

and I-quasinormal convergence

Pratulananda Das, Debraj Chandra

Abstract. In this paper we extend the notion of quasinormal convergence via
ideals and consider the notion of I-quasinormal convergence. We then intro-
duce the notion of IQN (IwQN) space as a topological space in which every
sequence of continuous real valued functions pointwise converging to 0, is also
I-quasinormally convergent to 0 (has a subsequence which is I-quasinormally
convergent to 0) and make certain observations on those spaces.
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1. Introduction

We start by recalling the definition of asymptotic density as follows: If N

denotes the set of natural numbers and K ⊂ N then Kn denotes the set {k ∈ K :
k ≤ n} and |Kn| stands for the cardinality of the set Kn. The asymptotic density
of the subset K is defined by

d(K) = lim
n→∞

|Kn|

n

provided the limit exists.
Using this idea of asymptotic density, the notion of convergence of a real se-

quence had been extended to statistical convergence by Fast [19] (see also [31]) as
follows: A sequence {xn}n∈N of points in a metric space (X, ρ) is said to be statis-
tically convergent to ℓ if for arbitrary ε > 0, the set K(ε) = {k ∈ N : d(xk, ℓ) ≥ ε}
has asymptotic density zero. A lot of investigations have been done on this very
interesting convergence and its topological consequences after the initial works by
Fridy [20] and Šalat [30].

On the other hand, in [24] an interesting generalization of the notion of sta-
tistical convergence was proposed. Namely it is easy to check that the family
Id = {A ⊂ N : d(A) = 0} forms a non-trivial admissible (or free) ideal of N.

The research of the second author was done when the author was a junior research fellow of
the Council of Scientific and Industrial Research, HRDG, India. The first author is also thankful
to CSIR for granting the project No. 25(0186)/10/EMR-II during the tenure of which this work
was done.
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A family I ⊂ 2Y of subsets of a nonempty set Y is said to be an ideal in Y if
(i) A,B ∈ I implies A ∪ B ∈ I, (ii) A ∈ I, B ⊂ A implies B ∈ I. Here we
consider an ideal of N and without any loss of generality we also assume that⋃

A∈I
A = N which implies that {k} ∈ I for each k ∈ N. Such ideals were some-

times called admissible ideals in the literature [24], [26], [14] (which are also called
free ideals). If I is a proper ideal in Y (i.e. Y /∈ I, I 6= {∅}) then the family of
sets F(I) = {M ⊂ Y : there exists A ∈ I : M = Y \A} is a filter in Y . It is called
the filter associated with the ideal I. Thus one may consider an arbitrary ideal
I of N and define I-convergence of a sequence by replacing the sets of density
zero by the members of the ideal. Following the general line of [24] (see also [26]),
ideals were used to study nets in topological and uniform spaces ([27], [12], [13]),
to study certain variants of open covers and selection principles [16], [10], to study
convergence of sequences of functions and its applications to measure theory ([2],
[25], [28]).

The notion of quasinormal convergence was introduced by Bukovská in [3],
[4] though it should be mentioned that Császár and Laczkovich [8] defined the
same notion with the name ‘equal convergence’ in 1975 and again studied it in [9].
Bukovský, Reclaw and Repický introduced the notions of QN and wQN spaces in
[5] as topological spaces not distinguishing pointwise and quasinormal convergence
of real functions and established many fundamental and interesting properties of
these spaces in [5], [6] and recently more work was done on these spaces relating
them with certain covering properties by Bukovský and Hales [7]. A brief history
of studies of spaces not distinguishing between two types of convergences and
many important references can be found in the two beautifully written papers [5]
and [6].

As a natural consequence we try to unify both these lines of investigations and
first extend the notion of quasinormal convergence via ideals to I-quasinormal
convergence. Then we introduce the main notions of IQN (IwQN) spaces as
topological spaces in which every sequence of continuous real valued functions
pointwise converging to 0, is I-quasinormally convergent to 0 (has a subsequence
which is I-quasinormally convergent to 0). We make certain observations of these
spaces basically following the line of investigation of [5].

2. Basic definitions and properties

Throughout the paper N will denote the set of all positive integers and I will
stand for a non-trivial proper admissible ideal of N.

Recall that the usual definition of convergence of a sequence was extended in
two ways by using an ideal in [24] as follows: A sequence {xn}n∈N of real numbers
is said to be I-convergent to x ∈ R if for each ε > 0, the set A(ε) = {n ∈ N :
|xn − x| ≥ ε} ∈ I. The sequence {xn}n∈N is said to be I∗-convergent to x ∈ R

if there is a set M ∈ F(I), M = {m1 < m2 < · · · < mk < . . . } such that
limk→∞ xmk

= x.
An ideal I ⊂ 2N is called an AP -ideal (or said to satisfy the property (AP) [24])

if for any sequence {A1, A2, . . . } of mutually disjoint sets of I there is a sequence
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{B1, B2, . . . } of sets such that Ai∆Bi (i = 1, 2, . . . ) is finite and B =
⋃

j∈N
Bj ∈

I. These types of ideals have also been called P -ideals (see [2], [25], [28], [14]).
The ideal Ifin of all finite subsets of N as well as the ideal Id are simple examples
of AP -ideals. Other examples of AP -ideals can be seen from [25], [28]. Also a
very useful fact is that the notions of I and I∗-convergence of real sequences
coincide if and only if the ideal I is an AP -ideal (see [24], [26] and for more
applications [11]).

The following property of an ideal will play a very important role in many
results of this paper.

We say that a subset B of an ideal I is a “basis” if every element of I is a
subset of some element of B. We say that I satisfies the “Chain Condition” if
there exists a sequence {Ck}k∈N ⊂ I with C1 ⊂ C2 ⊂ C3 ⊂ . . . such that for any
A ∈ I there exists k ∈ N such that A ⊂ Ck. Therefore an ideal satisfies the Chain
Condition if and only if it possesses a countable basis. Note that the ideal Ifin
clearly satisfies the Chain Condition. Another non-trivial example of an ideal
with Chain Condition is the following. Let N =

⋃∞

j=1
Aj be a decomposition of N

such that each Aj is infinite and Ai ∩Aj = ∅ for i 6= j. Let I0 denote the class of
all A ⊂ N which intersect at most a finite number of Aj ’s. Then I0 is a non-trivial
ideal satisfying the Chain Condition. But this ideal is not an AP -ideal as can be
seen from [24], [26] where it was established that any metric space (or topological
space) with at least one limit point has a sequence which is I0-convergent but not
I∗
0 -convergent.
Following [24] the usual ideas of pointwise and uniform convergence of a se-

quence of functions were extended via ideals first in [2] and then studied in ([2],
[25], [28]) which we now recall. Let X be a nonempty set and let fn, f be real
valued functions defined on X . A sequence {fn}n∈N of functions is said to be
I-pointwise convergent to f if for each x ∈ X and for each ε > 0 there exists an
A = A(x, ε) ∈ I such that n ∈ N \ A implies |fn(x) − f(x)| < ε and in this case

we write fn
I
−→ f . The sequence {fn}n∈N is said to be I-uniformly convergent to

f if for any ε > 0 there exists A = A(ε) ∈ I such that for all n ∈ N \ A and for

all x ∈ X , |fn(x) − f(x)| < ε. In this case we write fn
I−u
−−−→ f .

The important notion of quasinormal convergence (which was earlier intro-
duced as equal convergence in [8]) was introduced in [3, 4] as follows. A function
f is said to be the quasinormal limit of the sequence {fn}n∈N if there is a sequence
of positive reals εn → 0 such that for every x ∈ X , there exists n0 = n0(x) with
|fn(x) − f(x)| < εn for n ≥ n0.

We are now in a position to introduce our main definitions.

Definition 2.1. Let X be a nonempty set and fn, f be real valued functions
defined on X . We say that {fn}n∈N is I-quasinormally convergent to f on X

(written as fn
IQN
−−−→ f on X) if there exists a sequence {εn}n∈N of nonnegative

reals I-converging to 0 such that for each x ∈ X , the set {n ∈ N : |fn(x)−f(x)| ≥
εn} ∈ I.
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This convergence can also be called I-equal convergence following the terminol-
ogy of [8] which has been very recently used to study certain properties concerning
I-equal limits of real functions in [15].

Definition 2.2. A topological spaceX is called an IQN space if for any sequence
{fn}n∈N of continuous real valued functions pointwise converging to zero on X ,

we have fn
IQN
−−−→ 0.

Definition 2.3. A topological space X is called an IwQN space if for any se-
quence {fn}n∈N of continuous real valued functions pointwise converging to zero
on X , there is an increasing sequence {nk}k∈N of positive integers such that

fnk

IQN
−−−→ 0 on X .

Definition 2.4. A set X ⊂ [0, 1] is called an IQN set if X with the subspace
topology induced from the usual topology is an IQN space.

Definition 2.5. A set X ⊂ [0, 1] is called an IwQN set if X with the subspace
topology is an IwQN space.

We start with two results providing some necessary and sufficient (Theorem 2.1)
and sufficient (Theorem 2.2) conditions for I-quasinormal convergence which will
play important roles throughout the paper.

Theorem 2.1. Let I be an ideal satisfying the Chain Condition. Let f, fn, n =
1, 2, 3, . . . be real valued functions defined on a set X . The following conditions

are equivalent.

(i) fn
IQN
−−−→ f on X .

(ii) There are sets Xk ⊂ X such that X =
⋃

k∈N
Xk and fn

I−u
−−−→ f on Xk for

every k = 1, 2, 3, . . . .
(iii) There are sets Xk ⊂ X such that X =

⋃
k∈N

Xk, X1 ⊂ X2 ⊂ X3 . . . and

fn
I−u
−−−→ f on Xk for every k = 1, 2, 3, . . . .

If X is a topological space and fn, n = 1, 2, 3, . . . are continuous, then (i), (ii),
(iii) are equivalent to:

(iv) There are closed sets Xk ⊂ X , k = 1, 2, 3, . . . , X =
⋃

k∈N
Xk, X1 ⊂ X2 ⊂

X3 . . . and fn
I−u
−−−→ f on Xk for every k = 1, 2, 3, . . . .

Proof: (i)⇒(iii) Assume (i), i.e. fn
IQN
−−−→ f . Then there is a sequence {εn}n∈N

of positive real numbers with I- limn→∞ εn = 0 and for every x ∈ X there is a
set Ax ∈ I such that |fn(x) − f(x)| < εn for all n ∈ N \Ax. Since I satisfies the
Chain Condition, there exists a sequence {Ck}k∈N in I with C1 ⊂ C2 ⊂ C3 ⊂ . . .
such that for every A ∈ I there exists some Ck ∈ I with A ⊂ Ck. Now define
Xk = {x ∈ X : |fn(x) − f(x)| < εn for all n ∈ N \ Ck}, k ∈ N. Then clearly
X1 ⊂ X2 ⊂ X3 ⊂ . . . . Further observe that for any x ∈ X , if Ax ∈ I is the
set witnessing I-quasinormal convergence as defined above, then Ax ⊂ Ck for
some k ∈ N. Consequently x ∈ Xk. Hence X =

⋃
k∈N

Xk. It is now easy to
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observe that fn
I−u
−−−→ f on Xk. Indeed, take ε > 0. Let B = {n ∈ N : εn ≥ ε}.

Then B ∈ I, since I- limn→∞ εn = 0. If x ∈ Xk, then |fn(x) − f(x)| < ε for
n ∈ (N \ Ck) ∩ (N \B) = N \ (Ck ∪B) and Ck ∪B ∈ I. This proves (iii).

(ii)⇒(i) Now assume (ii), i.e. suppose that X =
⋃

k∈N
Xk and |fn(x)−f(x)| ≤ εin

for all x ∈ Xi when n /∈ M(i) ∈ I, where {εin}n∈N is a sequence of positive reals
depending on i such that I- limn→∞ εin = 0 for a fixed i. We can select sets
Mk ∈ I such that M1 ⊂ M2 ⊂ · · · ⊂ Mk ⊂ . . . and εkn < 1

k
whenever n /∈ Mk,

for k = 1, 2, 3, . . . . Define

εn = 1 if n ∈ M2

=
1

k
if n ∈ Mk+1 \Mk

= 0 if n /∈
⋃

k∈N

Mk.

Then I- limn→∞ εn = 0 and furthermore |fn(x) − f(x)| ≤ εin < εn for x ∈ Xi

and if n /∈ M(i) ∪ Mi ∈ I which shows that fn
IQN
−−−→ f . So (i) follows. Since

(iii)⇒(ii), so it now follows that (i), (ii) and (iii) are equivalent.

Now let X be a topological space and fn, n = 1, 2, 3, . . . be continuous. Ev-
idently (iv) implies (iii). Assume (i). Let us define Xk = {x ∈ X : |fn(x) −
fm(x)| ≤ εn + εm for all m,n ∈ N \ Ck}, k ∈ N. Suppose as before I satisfies
the Chain Condition with the sequence {Ck}k∈N in I. Clearly Xk is closed for
k = 1, 2, 3, . . . as fn’s are continuous functions and X1 ⊂ X2 ⊂ X3 ⊂ . . . . If
x ∈ X then from the proof of (i)⇒(iii), it readily follows that x ∈ Xk for some

k ∈ N and fn
I−u
−−−→ f on each Xk. So (iv) is proved. Hence (i), (ii) and (iii) are

equivalent to (iv). �

Remark 2.1. The first part of the above theorem can be further generalized in
the following manner: Let X be a topological space and fn, n = 1, 2, 3, . . . be

real valued continuous functions defined on X such that fn
IQN
−−−→ f on X to some

real valued function f defined on X . If the ideal I has a basis of cardinality κ,

then there exists a family of sets K such that |K| = κ, X =
⋃
K and fn

I−u
−−−→ f

on every K ∈ K.

Note 2.1. Note that we require the additional hypothesis on the ideal to prove the
necessity part but we do not require any additional assumption for the sufficiency
part.

Corollary 2.1. Let X =
⋃

k∈N
Xk. If fn

IQN
−−−→ f on each Xk, k = 1, 2, 3, . . . ,

then fn
IQN
−−−→ f on X .

Example 2.1. This example shows that there exist functions f and fn, n =

1, 2, 3, . . . such that fn
I
−→ f but fn

IQN

9 f . Let I be an admissible ideal satisfying
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the Chain Condition and I 6= Ifin. Let C be an infinite member of I. Let
Q = {rk : k ∈ N ∪ {0}} be a one to one enumeration of rational numbers. Let

f(x) = 0 if x ∈ R \Q

= 2−k if x = rk, k = 0, 1, 2, . . . .

Clearly f is not continuous on any interval. For every n ∈ N\C choose a positive
real δn ≤ 2−n such that δn ≤ 1

2
|ri − rj |, i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , n, i 6= j.

Let

fn(x) = 0 if x ∈ R \
n⋃

i=0

(ri − δi, ri + δi)

= 2−i for x = ri, i = 0, 1, 2, . . . , n

= 2−i(1−
|x− ri|

δi
) for x ∈ (ri − δi, ri + δi), i = 1, 2, 3, . . . , n.

for n ∈ N \ C and fn = n for each n ∈ C.

Clearly fn
I
−→ f (though fn does not converge to f pointwise) on R. But

fn
IQN

9 f on R. Otherwise if fn
IQN
−−−→ f on R then by Theorem 2.1, R =

⋃∞

k=0
Ek

where Ek’s are closed and fn
I−u
−−−→ f on every Ek for k = 0, 1, 2, . . . . By the Baire

category theorem, there is k such that Int Ek 6= ∅, i.e. there are a, b, a < b such

that [a, b] ⊆ Ek. Since each fn is continuous and fn
I−u
−−−→ f on [a, b], it follows

that f being the I-uniform limit of continuous functions on [a, b] is continuous on
[a, b] (see [2]), which is a contradiction.

Example 2.2. This example shows that there exist f, fn, n = 0, 1, 2, . . . such

that fn
IQN
−−−→ f but fn

I−u

9 f . Let I be any admissible ideal and I 6= Ifin. Let
C be any infinite member of I. Take fn(x) = xn if n /∈ C and fn(x) = n for all

x ∈ [0, 1] if n ∈ C. Let f(x) = 0 for x ∈ [0, 1) and f(1) = 1. Clearly fn
IQN
−−−→ f

on [0, 1]. As f is not continuous, fn
I−u

9 f on [0, 1]. Note that {fn}n∈N does not
converge to f quasinormally.

A quasiordering ≤∗ is defined on NN by eventual dominance:

f ≤∗ g if f(n) ≤ g(n) for all but finitely many n.

We say that a subset Y of NN is bounded if there exists g in NN such that for each
f ∈ Y , f ≤∗ g. Otherwise we say that Y is unbounded. Moreover, b is defined as

b = min{|B| : B is an unbounded subset of NN}.

It is known that ℵ0 < b ≤ c but not necessarily b = ℵ1 ([31], see also [4], [5]).
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Theorem 2.2. Let I be an AP -ideal. Let X =
⋃

s∈S Xs, |S| < b. If the sequence

{fn}n∈N converges I-quasinormally to f on every Xs, s ∈ S, then it does so on X .

Proof: From hypothesis, for each s ∈ S, there is a sequence {εns}n∈N I-con-
verging to zero and witnessing I-quasinormal convergence on Xs. Since I is an
AP -ideal, {εns}n∈N is I∗-convergent to zero. So we can actually take {εns}n∈N

to be a decreasing sequence of positive reals witnessing the I-quasinormal con-
vergence on Xs. Now let us define

hs(k) = min{n ∈ N : εn
s ≤

1

k + 1
, n > hs(k − 1)}.

Since the family {hs : s ∈ S} is of power less than b, there exists a function
g : N → N with the above described condition. Moreover, we can assume that g
is strictly increasing. Define

εn = 1 if n < g(1),

=
1

k + 1
if g(k) ≤ n < g(k + 1).

If x ∈ X , then x ∈ Xs for some s ∈ S. Since fn
IQN
−−−→ f on Xs we have

A = {n ∈ N : |fn(x) − f(x)| ≥ εn
s} ∈ I. Consequently N \ A ∈ F(I) and

n ∈ N \ A implies |fn(x) − f(x)| < εn
s. Also there is a natural number k such

that hs(n) ≤ g(n) for n ≥ k. Since we have already observed that {εns}n∈N

is I∗-convergent to zero, so there exists a set Bs ∈ F(I) such that {εn
s}n∈Bs

converges to zero. Hence if n ∈ (N\A)∩Bs and n ≥ g(k) then g(l) ≤ n < g(l+1)
for some l ≥ k. Since g(l) ≥ hs(l), we have |fn(x) − f(x)| < εn

s ≤ 1

l+1
≤ εn and

this proves the theorem. �

Lemma 2.1. Continuous image of an IQN space is an IQN space.

The proof is omitted.

Lemma 2.2. Continuous image of an IwQN space is an IwQN space.

The proof is omitted.

Lemma 2.3. Every countable space (more generally a space of cardinality less

than b) is an IQN space (provided I is an AP -ideal).

Proof: Let X be countable and let X = {ak : k ∈ N}. Let {fn}n∈N be a
sequence of continuous real valued functions on X pointwise converging to zero.
Write X =

⋃∞

k=1
Xk, Xk = {ak} for k = 1, 2, 3, . . . . Each Xk is closed and

fn
I−u
−−−→ 0 on each Xk as Xk is a singleton. Hence by Theorem 2.1, fn

IQN
−−−→ 0

on X and so X is an IQN space.
If X is of cardinality less than b, say X = {as : s ∈ S}, where |S| < b.

Let {fn}n∈N be a sequence of continuous real valued functions on X pointwise
converging to zero. Write X =

⋃
s∈S Xs, where Xs = {as} for s ∈ S. Now
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fn
I−u
−−−→ 0 on each Xs and hence by Theorem 2.1 and Theorem 2.2, fn

IQN
−−−→ 0

on X . Hence X is an IQN space. �

Let X be a perfectly normal topological space. We define

Definition 2.6. Let non(IQN space) be the minimal cardinality of a perfectly
normal space which is not an IQN space.

Definition 2.7. Let non(IQN set) be the minimal cardinality of a subspace of
[0, 1] which is not an IQN set.

Definition 2.8. Let add(IQN space) be the minimal cardinal number α such
that there is a perfectly normal non-IQN space (i.e. a perfectly normal space
which is not an IQN space) which can be expressed as the union X =

⋃
ξ<α Xξ,

where Xξ’s are IQN spaces.

Definition 2.9. Let add(IQN set) be the minimal cardinal number α such that
there is a perfectly normal non-IQN set which can be expressed as the union
X =

⋃
ξ<α Xξ, where Xξ’s are IQN sets.

Theorem 2.3. We have that

(i) add(IQN set) ≥ add(IQN space) ≥ b, where the second inequality holds

provided I is an AP -ideal;

(ii) add(IQN set) ≤ non(IQN set).

Proof: (i) If X is an IQN set then it is obviously an IQN space. Hence
add(IQN set)≥ add(IQN space). By Theorem 2.2, if X =

⋃
s∈S Xs, |S| < b and

Xs is an IQN space for each s ∈ S, then X becomes an IQN space. So from
definition of add(IQN space) it follows that add(IQN space) ≥ b.

(ii) It follows directly from Definition 2.7 and Definition 2.9. �

3. Some further observations on IQN and IwQN spaces

Theorem 3.1. Let I be an AP -ideal.

(a) A closed subset of a perfectly normal IQN space is an IQN space.

(b) A closed subset of a perfectly normal IwQN space is an IwQN space.

(c) An Fσ subset of a perfectly normal IQN space is an IQN space.

Proof: (a) Let X be a perfectly normal IQN space and A ⊆ X is closed. Let
fn : A → R be a sequence of continuous functions and fn → 0 on A. Since A is
a closed subset of a perfectly normal space, there exist open sets B1 ⊃ B2 ⊃ . . .
such that

⋂∞

n=1
Bn = A. For each n ∈ N, let hn : X → R be continuous such that

hn |A= fn and hn(x) = 0 for all x ∈ X \ Bn. Then hn → 0 on X and since X is

an IQN space so hn
IQN
−−−→ 0 on X . Thus there exists a sequence {εn}n∈N with

εn ≥ 0 and εn
I
−→ 0 such that for each x ∈ X , the set {n : |hn(x)| ≥ εn} ∈ I. Thus

for each x ∈ A, {n : |fn(x)| ≥ εn} = {n : |hn(x)| ≥ εn} ∈ I. Hence fn
IQN
−−−→ 0

on A. Thus A is an IQN space.
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(b) The proof is similar to that of (a) and so is omitted.

(c) By Theorem 2.3(i), add(IQN space) ≥ b and b > ℵ0, so it is sufficient to
prove the assertions for closed subsets and by (a) the result holds. �

Remark 3.1. In [5] it was proved that b ≥ add(wQNset)≥add(wQNspace)≥ h

(see [5, Theorem 3.3]) which was subsequently used to prove that an Fσ subset of
a perfectly normal wQN space is a wQN space (see [5, Theorem 4.1]). We could
neither prove nor disprove a result similar to [5, Theorem 3.3] for IwQN spaces
and so we leave it as an open problem. It is easy to observe that if a similar result
can be established then Theorem 3.1(c) is also true for IwQN spaces.

Theorem 3.2. Let (X, ρ) be a separable metric space and let A be a subset of X
without isolated points. If A is an IwQN space then A is meager in X , provided

I satisfies the Chain Condition.

Proof: Let B = {rn : n ∈ N} be a countable dense subset of Ā. For every n ∈ N

choose a sequence {xn,m}m∈N from A such that xn,m → rn, xn,m 6= rn for each
m ∈ N. Let fn,m : X → [0, 1

2n−1 ] be a continuous function such that fn,m(xn,m) =
1

2n−1 and fn,m(x) = 0 for all those x ∈ X for which ρ(x, xn,m) ≥ 1

2
ρ(rn, xn,m).

Let us define hm(x) =
∑∞

n=1
fn,m(x), x ∈ X , m = 1, 2, 3, . . . . Then every hm is

a continuous function from X into [0, 2] and hm → 0 on X .
Suppose on the contrary that A is not meager inX though A is an IwQN space

i.e. there exists a subsequence {hmk
}k∈N of the sequence {hm}m∈N converging I-

quasinormally to zero on A. By Theorem 2.1, there exist closed sets Al ⊂ X ,
l = 1, 2, 3, . . . , A ⊂

⋃∞

l=1
Al such that

hmk

I−u
−−−→ 0 on A ∩ Al, l = 1, 2, 3, . . . .(1)

Moreover, we can assume that Al ⊂ Ā (otherwise we can just replace Al by
Al ∩ Ā). Since A is not meager, there exists a p ∈ N such that Int(Ap) 6= ∅. Since
B is dense in Ā, there is some rn ∈ Int(Ap). Consequently

xn,m ∈ Int(Ap) for all m ≥ m1 for some m1 ∈ N.(2)

Thus whenever m /∈ C where C = {1, 2, . . . ,m1} ∈ I, we have that sup{hm(x) :
x ∈ A ∩ Ap} ≥ hm(xn,m) ≥ fn,m(xn,m) = 1

2n−1 . The first inequality follows from
(2) and the second inequality follows from the definition of hm. Now

{mk : sup
x∈A∩Ap

hmk
(x) ≥

1

2n−1
} = N \ C /∈ I

as C ∈ I. So hmk

I−u

9 0 on A ∩ Ap which is a contradiction to (1). This implies
that A is not an IwQN space. This completes the proof of the theorem. �

Corollary 3.1. If A is an IwQN subspace of a separable metric space, then A
is perfectly meager. Especially, any IwQN set is perfectly meager, provided I is

an ideal satisfying the Chain Condition.
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Proof: If P is a perfect set, then P ∩ A = A0 ∪ A1, where A0 is countable and
A1 is dense in itself and closed in A. Since A0 is countable, it is meager. Again
since A1 is a closed subset of the IwQN space A, hence by Theorem 3.1(b), A1

is also an IwQN space. Observe that A1 being dense in itself has no isolated
points and hence by Theorem 3.2, A1 is meager. Thus P ∩A is the union of two
meager sets and so it is meager. As P ∩A is meager for any perfect set P , hence
A is perfectly meager.

Similarly we can prove the assertion for any IwQN set because [0, 1] with the
subspace topology is a separable metric space. �

Corollary 3.2. If A is an IwQN set, then for the Lebesgue measure ν on [0, 1],
the inner measure ν∗(A) of A is zero provided I is an ideal satisfying the Chain

Condition.

Proof: Suppose that ν∗(A) > 0. Then from regularity we can find a compact
set K such that K ⊂ A and 0 < ν∗(K) ≤ ν∗(A). The compact set K contains
a perfect subset K1. The perfect set K1 is not perfectly meager and hence it is
not an IwQN set. This is a contradiction to the fact that K1 is an IwQN set
by Theorem 3.1(b). Hence ν∗(A) = 0. �

Remark 3.2. The above result is also true for every Radon measure on [0, 1]
(by a Radon measure we mean a finite diffused regular Borel measure on [0, 1],
see [22]).

Corollary 3.3. If X is an IwQN set then X is zero dimensional provided I is

an ideal satisfying the Chain Condition.

The proof is similar to the proof of Corollary 3.2 and so we omit it.

Corollary 3.4. If X is completely regular IwQN space, then X has a basis

consisting of clopen sets. Moreover, if X is also perfectly normal then every open

subset of X can be expressed as countable union of clopen sets provided I is an

ideal satisfying the Chain Condition.

Proof: Let A be an open subset of X and let x ∈ A. As X is completely regular,
there is a continuous function f : X → [0, 1] such that f(x) = 0, f(y) = 1 for
y ∈ X \A. Clearly f(X) ⊂ [0, 1] and as f is continuous so by Lemma 2.2, f(X)
is an IwQN set. Then by Corollary 3.3, f(X) is zero dimensional. Since f(X)
is Hausdorff, there exists a basic open set U of f(X) such that 0 ∈ U but 1 /∈ U .
Also as f(X) is zero dimensional, U can be chosen as clopen in f(X). Now
f−1(U) is a clopen subset of A (because f(y) = 1 for all y ∈ X \ A and 1 /∈ U)
and x ∈ f−1(U) (as f(x) = 0 and 0 ∈ U). Thus for any x ∈ X and for any open
set A ⊂ X containing x, there is a clopen subset of A containing x. Hence X has
a basis consisting of clopen sets.

If X is perfectly normal then X is normal and every closed set in X is a Gδ

set in X . We know that in a normal space Z, we can always find a continuous
function g : Z → [0, 1] such that g(x) = 0 for x ∈ A and g(x) > 0 for x /∈ A if
and only if A is a closed and Gδ set in Z. Let A be open in X . Then X \ A is
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closed and so is a Gδ set in X . Now by the above stated property of the normal
space, there exists a continuous function f : X → [0, 1] such that f(x) = 1 for
x ∈ X \ A and f(x) < 1 if x ∈ A. Let c ∈ A. Then f(c) ∈ f(A) and so f(c) < 1
and consequently there exists a clopen set Uc ⊂ f(X) such that f(c) ∈ Uc and
1 /∈ Uc. Indeed, f(X) ⊂ [0, 1] is an IwQN space by Lemma 2.2, and so f(X)
is an IwQN set which implies that f(X) is zero dimensional by Corollary 3.3.
Now f−1(Uc) is a clopen subset of A containing c (because 1 /∈ Uc and f(x) = 1
for x ∈ X \ A). Then we have A =

⋃
c∈A f−1(Uc). Note that X \ A =

⋂
n∈N

Gn

where Gn is open for n = 1, 2, 3, . . . (since X \A being closed is also Gδ). Clearly
A =

⋃
n∈N

(X \Gn) where X \Gn is open for n = 1, 2, 3, . . . . Hence we can choose

countably many f−1(Ucn), n = 1, 2, 3, . . . such that A =
⋃

n∈N
f−1(Ucn) and so

A is the union of a countably many clopen sets. �

Let α ≤ c be a regular cardinal. We now consider the following definition.

Definition 3.1 ([5]). A set X ⊂ [0, 1] is called an α-Sierpiński set if |X | ≥ α and
for every zero Lebesgue measure set A, |A ∩X | < α.

It is known that Martin axiom implies the existence of a c-Sierpiński set [5].

Though an Egoroff-like theorem was established in [27] for ideals, a notion of
convergence weaker than I-uniform convergence was used there. This result was
called weak Egoroff’s theorem and it was observed ([27, Theorem 3.1]) that for ev-
ery analytic AP -ideal I, weak Egoroff’s theorem holds. Following the terminology
of [27] we say that Egoroff’s theorem holds for the ideal I if for any finite measure
space (X,S, ν) and for any real valued continuous functions f, fn, n = 1, 2, 3, . . .

defined almost everywhere on X such that fn
I
−→ f almost everywhere on X , for

every ε > 0 there is a measurable set Hε such that ν(X \Hε) < ε and fn
I−u
−−−→ f

on Hε.

Remark 3.3. In [27] it was further established that Egoroff’s theorem holds true
for a non-pathological ideal I if and only if it is isomorphic to Ifin or ϕ × Ifin
([27, Theorem 3.4]). It is still an open problem whether there exists a patholog-
ical analytic AP -ideal for which Egoroff’s theorem holds ([27, Problem 1]). We
establish the following result for an ideal for which Egoroff’s theorem holds. We
do not know whether the result can be proved for ideals for which weak Egoroff’s
theorem hold and leave it as an open problem.

Theorem 3.3. If X is b-Sierpiński set, then every subset is an IQN set, for an

AP -ideal I for which Egoroff’s theorem holds.

Proof: As in [5, Theorem 4.7] let A ⊂ X and fn : A → R be a continuous
function for n = 1, 2, 3, . . . and fn → 0 on A. We can assume that all fn are
defined and continuous on a Gδ set G ⊃ A. Let C ⊂ G be the Borel set of those
x ∈ G for which fn(x) → 0. Evidently A ⊂ C.

Now from our assumption of Egoroff’s theorem for I on the finite measure space
(C, ν), where ν stands here for the Lebesgue measure on C, for every n ∈ N we can



94 P. Das, D. Chandra

choose a measurable set Hn ⊂ C such that fn
I−u
−−−→ 0 on Hn and ν(C \Hn) <

1

n
.

Define H =
⋃

n∈N
Hn. Then fn

IQN
−−−→ 0 on H by Corollary 2.1 and ν(C \H) =

ν(
⋂

n∈N
C \Hn) ≤

1

n
for each n ∈ N and so ν(C \H) = 0. Since |A∩(C \H)| < b,

we have fn
IQN
−−−→ 0 on A∩(C\H) by Theorem 2.2. Thus fn

IQN
−−−→ 0 on A∩(C\H)

and also fn
IQN
−−−→ 0 on A ∩H . Consequently fn

IQN
−−−→ 0 on A which implies that

A is an IQN space. Clearly A ⊂ X ⊂ [0, 1], i.e. A is an IQN set. �

We have already proved that continuous image of an IQN space (IwQN space)
is also an IQN space (IwQN space) in Lemma 2.1 and Lemma 2.2. Below we
prove a related result.

Theorem 3.4. Let f : X → Y be a mapping from an IQN space X into a metric

space Y . If f is an I-quasinormal limit of a sequence of continuous mappings,

then f(X) ⊆ Y is an IQN space, provided I is an ideal satisfying the Chain

Condition.

Proof: Let fn : X → Y be continuous functions for n = 1, 2, 3, . . . and fn
IQN
−−−→

f on X . Then by Theorem 2.1, there exist closed sets Xk, k = 1, 2, 3, . . . , X =⋃
k∈N

Xk and fn
I−u
−−−→ f on Xk, k = 1, 2, 3, . . . . Now f being the I-uniform

limit of a sequence of continuous functions on Xk is continuous on each Xk, k =
1, 2, 3, . . . (see [2]). Since each Xk is closed in X which is an IQN space so Xk

is also an IQN space by Theorem 3.1 and also f(Xk) ⊂ Y is an IQN space by
Lemma 2.1. As f(X) =

⋃
k∈N

f(Xk), f(X) is an IQN space by Theorem 2.3(i).
�

Concluding remarks. This is only an introduction into what seems to be an
interesting line of investigation when one replaces the finiteness in a definition by
members of an ideal as was previously done in ([2], [10]–[16], [24]–[28]) and a lot
of investigation has to be done to understand the behaviors of the new notions. In
particular we would like to raise the following questions which seem very natural.

Problem 3.1. We proved almost all the results under some assumption on the
ideal (either taking it as an AP -ideal or requiring it to satisfy the Chain Condi-
tion). Are they essential? Can the results be proved for any admissible ideal (or
at least under weaker assumption)?

Problem 3.2. At least under certain suitable assumption, many properties and
behavior of QN spaces and IQN spaces (wQN spaces and IwQN spaces) appear
to be the same. Then is every IQN space actually a QN space? And is a IwQN
space a wQN space? We could neither prove nor disprove it.

Acknowledgment. We are thankful to the learned referee for pointing out some
mistakes and several valuable suggestions which improved the presentation of the
paper.
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Paris, 1941.
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