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Abstract. The paper deals with error estimates and lower bound approximations of
the Steklov eigenvalue problems on convex or concave domains by nonconforming finite
element methods. We consider four types of nonconforming finite elements: Crouzeix-
Raviart, Q5°%, EQ°" and enriched Crouzeix-Raviart. We first derive error estimates for the
nonconforming finite element approximations of the Steklov eigenvalue problem and then
give the analysis of lower bound approximations. Some numerical results are presented to
validate our theoretical results.
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1. INTRODUCTION

Steklov eigenvalue problems arise in a number of applications such as surface
waves [9], stability of mechanical oscillators immersed in a viscous fluid [16], the
vibration modes of a structure in contact with an incompressible fluid [10], the an-
tiplane shearing on a system of collinear faults under slip-dependent friction law [13],
vibrations of a pendulum [1], eigenoscillations of mechanical systems with boundary
conditions containing frequency [23].

The analysis of the conforming finite element methods for the Steklov eigenvalue
problems has been given by Bramble and Osborn [12], Andreev and Todorov [3].

This work has been supported in part by the National Science Foundation of China
(NSFC 11001259, 11031006, 2011CB309703).
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Furthermore, a posteriori error estimator for the linear finite element approxima-
tion has been proposed and analyzed by Armentano and Padra [6]. The boundary
element methods for the Steklov eigenvalue problems have also been given by Han
and Guan [21], Han, Guan and He [22], Huang and Lii [25], and Tang, Guan and
Han [32]. The extrapolation method applied to the Steklov eigenvalue problem has
been analyzed in [27]. Recently, the nonconforming finite element methods for the
Steklov eigenvalue problems have also been analyzed by Yang, Li and Li [36] on the
convex domain. So the first aim of this paper is to extend the error estimates of the
Steklov eigenvalue problems by nonconforming finite element methods to the convex

and concave domains.

The eigenvalue is a number, and thus it is credible if we get both the upper and
lower bounds. For the Steklov eigenvalue problems, due to the Rayleigh quotient and
minimum-maximum principle, it is natural to get the upper bounds by conforming
finite element methods. For the lower bounds, Beattie and Goerisch [8], Goerisch and
Albrecht [19], and Goerisch and He [20] give a type of variation method by choosing
special trial functions (means on special domains) to get the lower bounds of the
eigenvalues which needs solving eigenvalue problem twice and having some a priori
information of the eigenvalues. But for the lower bounds by nonconforming finite
element methods, only recently the work by Yang, Li and Li [36] gives some results
of lower approximating on the convex domains. So the second aim of this paper
is to analyze the lower bound approximations of Steklov eigenvalue problems by
nonconforming finite element methods on the general domains. Besides three types
of well-known nonconforming finite elements, a new type of nonconforming element
which has better property of lower bound approximations will be introduced and
analyzed for the Steklov eigenvalue problems.

In this paper we are concerned with the model problem

—Au+u=0 in Q,

1.1
(L.1) @ = A\u on 09,
ov

where 2 C R? is a bounded polygonal domain and (9/dv) is the outward normal
derivative on 0f2.

The corresponding weak form of the problem (1.1) is:

Find A € R and u € H*(Q) such that ||ul, = 1 and

(1.2) a(u,v) = Ab(u,v) Yov e HY(Q),

130



where
a(u,v) = / (VuVo + wv) dz dy,
Q

b(u,v) = / wods, |ullp = b(u, u)'/?
o0

Evidently the bilinear form a(-,-) is symmetric, continuous and coercive over the
product space H(2) x H'(Q).
From [9] and [12] we know the eigenvalue problem (1.2) has an eigenvalue se-
quence {\;}:
Og/\lg)\ggg)\kg, lim/\k:oo,

k—oo

and the associated eigenfunctions
UL, U2y v e ey Ujy e vy

where b(u;, u;) = 0;;.

Let 7, be a shape-regular decomposition of ) into triangles or rectangles. The
diameter of a cell K € 7; is denoted by hx. The mesh diameter h describes the
maximum diameter of all cells K € 7. Let &, denote the edge set of 7;, and
En = & UEL, where £ denotes the interior edge set and £? denotes the edge set
lying on the boundary 0.

In this paper, we consider four types of nonconforming finite elements: Crouzeix-
Raviart (CR), Q1 rotation (Q}°*), Extension @ rotation (EQ}°*) and the Enriched
Crouzeix-Raviart (ECR) elements.

e The CR element space, proposed by Crouzeix and Raviart [17], is defined by
Vh = {v € L*(Q) : v|g € span{l,x,y},

/UlKldsz/’U|K2d8ilemK2:F}.
F F

e The Q'°* element space, proposed by Rannacher and Turek [31] and Arbogast
and Chen [4], is defined by

vh = {v € L*(Q): v|k € span{l,z,y,2* — 3°},

/UlKldsz/U|K2d8ifK1ﬁK2:F}.
F F
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e The FQ'°" element space, proposed by Lin, Tobiska, and Zhou [29], is defined
by

Vvh = {v € L*(Q): v|k € span{l,z,y, 2%, y°},

/UlKldSZ/’U|K2d8ilemK2:F}.
F F

e The ECR element space, proposed by Hu, Huang and Lin [24], and Lin et
al. [30], is defined by

Vh = {v € L*(Q): v|k € span{l,z,y, 2> + 3°},

/’U|K1d8_/’U|K2dSifK1mK2_F}.
F F

Here Q°* and FQ°" elements are defined on rectangular meshes.
All the above nonconforming elements possess the following common properties:

(1) The space of shape functions contains the complete polynomials of degree 1;
(2) v € V" is integrally continuous at the common edge F between the neighboring
elements K; and Ko, i.e.,

/’U|K1dS:/U|K2dSifK1ﬁK2:F;
F F

(3) VI ¢ HY(Q), Vh C L*(Q), and V" C L?(09Q), where 6V" denotes the trace
of V" on the boundary 99.

The nonconforming finite element approximation of (1.2) is defined as follows:
Find A\, € R and uj, € V" with |Jup||, = 1 such that

(1.3) ah(uh,vh) = )\hb(uh, Uh) Yo, € Vh,
where

ap(up,vp) = Z /(Vuthh—l—uhvh)da:dy.
KeTy, K

Based on the bilinear form ay(-,-), we can define the following norm on V + V},
lonlli = an(vn, vn)-

Obviously, ay(-,-) is uniformly V"-elliptic.
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We know from [9] and [12] that the eigenvalue problem (1.3) has eigenvalues

O0<Apn<Aon <o < Apn << A,

)

and the corresponding eigenfunctions

UL,hy U2,y -+« s Uk By« -+ s UN Ry

where b(u; p,ujp) = 6ij, 1 <i,j < N :=dimsVh.

In the following, we use the standard notation ([7], [15], and [33]) for the Sobolev
spaces H™(Q)) (standard interpolation spaces for a real number m) and their as-
sociated norms || - ||,, and seminorms | - |,, for m > 0. The Sobolev space H°(Q)
coincides with L?(Q2), in which case the norm and the inner product are denoted
by |- |lo and (-, -), respectively. Throughout this paper, C' denotes a generic positive
constant independent of h, which may not be the same at each occurrence.

The rest of this paper is organized as follows. In Section 2, we analyze the er-
ror estimates for the corresponding source problem by nonconforming finite element
methods. Then the error estimates of the eigenvalue problem are given in Section 3.
Section 4 is devoted to analyzing the lower bound of the eigenvalues by nonconform-
ing finite element methods. Some numerical results are given in Section 5 to validate
our theoretical results and some concluding remarks are stated in the final section.

2. NONCONFORMING FINITE ELEMENT APPROXIMATIONS OF THE
CORRESPONDING SOURCE PROBLEM

In order to analyze the error estimates of eigenpair approximations by noncon-
forming finite elements, we need to consider the following source problem associated
with the eigenvalue problem (1.1):

Find u € H*(Q) such that
(2.1) a(u,v) = b(f,v) Yve HY(Q),

and the corresponding discrete source problem (2.2) associated with (1.3):
Find up, € V" such that

(2.2) ap(up,vn) = b(f,on) Yo, € vh.
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Lemma 2.1 ([12, (4.10)], [10, Proposition 4.4]). For the Steklov source prob-
lem (2.1), if f € L?(0%), then u € H'T/2(Q), r € (,1], and

(2:3) [ulligrs2 < ClIflo-
Furthermore, if f € H'/2(0Q), we have u € H'*7(Q) and

(2.4) lull14r < C| fll1/2,00-

In order to deduce the convergence order, we define the interpolation operators of
the four types of nonconforming finite elements.
> For the CR element and Q°* element, the interpolation operator I;,: H*(Q)) —
V" is defined by

(2.5) /Ihvds:/vds VE €&, and Vv € H(Q).
F F

> For the ECR and EQ'°" element, the interpolation operator Ij,: H(Q2) — V"
is defined by the above equality (2.5) and

(2.6) /Ihvda:dy:/ vdrdy VK €7, and Vv € H'(Q).
K K

According to the interpolation theory [15], we have the error estimates

(2.7) luj = Ihujllo < CRY M ugligr, 0 <7 <1,
1

(2.8) HU'] — Ih’U,th < Chr|uj|1+,«, 0<r<l1.
In order to give error estimates, we introduce the following trace inequality.
Lemma 2.2 ([33, Lemma 7.1.1], [36, Lemma 2.2]). For any w € H*(K),

[l ds < OOl + o) (<5 <)
K

where the positive constant C' is independent of w and the diameter hyi of K.

In the error estimate analysis of nonconforming finite element methods, we always
need to define the L2-projection operator on the edge F € &,:

1
(2.9) PoFf—m/Ffds, REf=f—PFf,

and on the element K € 7j:
1
(2.10) P()Kf:W/deﬂUd% REf=f—PEFS.

The operators P{" and P{ have the following properties.
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Lemma 2.3. If w € H*(K), the following error estimate holds:
(2.11) |REwlox < Ch*|w|sr, 0<s<1.
For any f € L?(F) we have the inequalities

(2.12) 125" fllo.r
(2.13) IR fllo,r

|f||0,Fa

|
1f = vllor ¥oe PR(K).

NN

In order to analyze error estimates of nonconforming finite elements on concave
domains, we also introduce the following trace inequality.

Lemma 2.4 ([11, Corollary 3.3|, [14, Lemma 2.1]). Let K € Tp, F' € 0K, and
0 <& < 3. Then for any w € H'*(K) with Aw € L*(K) there exists a positive
constant C' independent of w such that

IVw - vllem1jo.r < CIVwllex + his | Awlo,x)-

We define the consistency error term of nonconforming finite elements as [15], [33]
(214) Eh(u7 U) = ah(u7 U) - b(fa U)'

Theorem 2.1. Let u be a solution of (2.1) and u € H*"(2). Then E},(u,v) can
be estimated by

1/2
(2.15) Ep(u,v) < Chr|u|1+r< Z |v|%K> VYve HY Q)+ V.
KeTy,
Let u be a solution of (2.1) and u € H'*"/2(Q). Then the following estimate holds:
1/2
216 Bulwe) <O Plla( Y i) Yoe H@) 4V
KeT,
Proof. By Green’s formula we have
En (U'a U) = Qhp (U'a U) - b(f7 U)
= Z / (VuVo + uwv) de dy — fvds
K o9

KeTy,
ou ou
= —Au+u)vdedy + / —ovds — — vds.
/Q( ) 2 oK Ov a0 Ov

KeT,
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Since w is a solution of (2.1), we have [,(—Au+ u)vdzdy = 0. Thus

ou
2.17 Ep(u,v) E / —vds / —vds- /—vds
( ) n( ok O 90 0 Jr Ov ]

KEeT,
_ {Ihu} o] ds + {Ihu}
L= %f
(u— {Ihu}
= [v] ds
Zh

where [v] denotes the jump of v on F, [v] = (v|g+ —v|x-)|F, {v} denotes the average
of von F, {v} = $(v|g+ +v|x-)|F, and we also use the property 8, {I,u}|r = const
and
/ [V]ds=0 VF €& and Voe H' (Q)+ V"
F

Now we estimate [,(0(u — {I u})/0v)[v]ds, F € &}, on the right-hand side of (2.17).
From (2.10) we have

(2.18) [ e s - [ 2D R as,

14

PF([o]) = % /F [v] ds = 0.

Applying the Cauchy-Schwarz inequality, we find that

Ou — {Inu}) oo
J A e
= | [ P R as

<{ [ (P lly ds}m{ PRGN ds}m-
By Lemma 2.2 we have
(2.20) /F (W)Q d

1 O(u — Inu)\2 1 / O(u — Ipu)\2
< Z A\ R Z A" TR
= 2 /f;ﬂK‘*'( 81/-"_ ) ds * 2 FﬂK_( 8V_ ) ds
C{hi! IV (u = In)l§ s ore- + hE IV (= Inw) |7 e upe-

2r—1
Chy HUH%—‘,-T,K‘*'UK—'

where we use

(2.19)

<
<
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From (2.13), Lemma 2.2 with » = 1 and (2.11) with s = 1 we derive

(2.21) /F (RE([v]))? ds = /F (o] - BF([0))? ds
= [{0" =R ) — 7~ R )} as

<2 (v = Pf(vh))?ds+ [ (v- — Py (v7))*ds
F F

< 2{/ (vt — PE (v1))2ds + / (v — P()K‘(v))?ds}
F F
< CLhL |RET ()2 jer + B [RET (0112 104)

+ (ht RS )G k- + b IR (07); )}
< C{hK+|U+|iK+ + hK*|U_|%,K—}a

where v = v|g+, v7 = v|g-. Substituting (2.20) and (2.21) into (2.19), we get

(2.22)

8 u — I U

/ % [v] ds‘ < CRylulyyrxror - V)1 UK~ -
F v

Thus substituting (2.22) into (2.17) and the Cauchy-Schwarz inequality lead to (2.15).

Now we come to proving (2.16) for » < 1. From (2.19), Lemma 2.4, and (2.21) we
have

0.23) /F W[p]ds
-| [ 2 g oas
PR it

<||V<u — L)l jo o + e PN A @~ D)o, s o)
x b2\ RE ([0])lo.r
— ORIV (= Ty o, ke o~ + Pl A = Ta)llo s+ )
x hi 2| RE ([])llo.r
S Chr/z

Substituting (2.23) into (2.17), we arrive at (2.16) by the Cauchy-Schwarz inequality.
When r = 1, (2.16) can be obtained directly by Lemma 2.2 and the same proof as
for (2.15). O
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Now we can state the error estimates of the nonconforming finite element approx-
imation which are the main result of this section.

Theorem 2.2. Let u € H'™"(Q) be the solution of the source problem (2.1) and
up, the corresponding nonconforming finite element approximation defined by (2.2).
Then we have the estimate

(2.24) llup, — ulln < Ch" |uf14r.
Furthermore, the following error estimate in || - ||, holds:
(2.25) lun — ullo < CR32|uli 4.

Proof. First, from the Strang lemma we have

E
lu—vplln+ sup M)

(2.26) lu — unlln < c(
0£w,eVh l|wn |5

inf
v, €V
By the interpolation error estimate (2.8), we obtain
inf ||u—wvp|ln < JJu— Thullp < CR"|ul14r
v, VR
and we have the following estimate for consistent error by (2.15):

sup ) < Ch" uf14.

0F£w, eVh llwn||n

Combining the above two inequalities and (2.26), we arrive at (2.24).
Using the method developed by Nitsche (1974), Lascaux and Lesaint (1975) [15],
we have the estimate

1.
(2.27) lu—unlls < sup = inf {Cllu—upl|nlle — vl
02geL2(09) 19lb vevr
+ Eh(u7 ¥ — U) + Eh(%u - U’h)}a
where p € H'*"/2(Q) is the unique solution of the auxiliary problem
a(v,¢) =b(g,v) Vve H' (),
where g € L2(092) acts as the load function.
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Using (2.15) and the interpolation error estimate

(2.28) e — Inglln < CR2||@ll14r72 < Ch2| glls,
we get
(2.29) |En(u, ¢ — Ing)| < Ch" [uli4r |0 — Tn@lln < CR¥2|ul 14| g]b-

Combining (2.16) and (2.24) leads to
(2.30) |En(p,u — un)| < Ch?[uly 0| g]l-
From (2.24), (2.29), (2.30) and taking v = I in (2.27), we obtain (2.25). O

Theorem 2.3. Let u € H'*"/2(Q) be the solution of the source problem (2.1) and
uyp, the corresponding nonconforming finite element approximation defined by (2.2).
Then we have the estimate

(2.31) un — ulln < Ch"2|ulyyr 2.
Furthermore, the following error estimate in || - ||, holds:
(2.32) lun = ully < Ch"|uliyr 2

Proof. The proof is the same as the proof of Theorem 2.2 except that we
use (2.16) instead of (2.15). O

3. NONCONFORMING FINITE ELEMENT APPROXIMATIONS OF THE STEKLOV
EIGENVALUE PROBLEM

In order to derive the error estimates of eigenpair approximations by noncon-
forming finite element methods, we define the solution operators A and T and their
corresponding discrete versions Aj and T},.

Concerning the problem (2.1), we define the operator A: L?(9Q)— H*"/2(Q)
H'(Q) as

(3.1) a(Af,v) =b(f,v) Yve HY(Q).

Based on the definition of A, we can define T: L?(9Q) — H'Y/?*7/2(9Q) by
(3.2) Tf=(Af),

where the prime denotes the trace on 0.
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So the eigenvalue problem (1.2) can be written in the operator form [9], [12]:
(3.3) ATy = u.

Then we define the corresponding discrete pair of operators Aj: L2(092) — V*
and Tj,: L?(0Q) — dVh C L?(09Q) such that

(34) ah(Ahfv ’U) = b(fv ’U) Vv € th
and
(3.5) Tnf = (Anf)"

Similarly, the discrete eigenvalue problem (1.3) can be written as
(36) )\hThuh = Up-

Lemma 3.1. The operators T and T}, are self-adjoint operators. The following
approximation property holds:

(3.7) T — Ty — 0 as h— 0,

and the operator T is compact.

Proof. First, for any f,g € L?(09) we have

b(Tfa g) = b(gva) = a(AgvAf) = a(Af7 Ag) = b(fa Ag) = b(f7 Tg)'

This means the operator T is a self-adjoint operator. In a similar way we can also
prove that T}, is also self-adjoint.
With (2.32), the following estimate holds:

Thg—T Apg— A
||Th _ T”b _ sup H hg gHb _ 1 || hg g”b
0#£g€L2(69) llglls 0#£g€ L2 (99) llglls
Ch™||A .
< H 9||1+ /2 <O —0 (h—>0).
geL2(89) llglls

This is the desired result (3.7). Since T}, is a finite rank operator, T is a compact

operator. O

Now, we are in the position to prove the error estimates of the nonconforming finite
element approximations to the exact eigenpair. Let A; denote the jth eigenvalue of T,
let M();) be the corresponding eigenspace spanned by eigenfunctions of T" according
to A; and let 6M ()\;) denote the trace of M();) on 9.

We state the order-preserving convergence which comes from [18], [35], [36].
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Lemma 3.2 ([2], [18], [35], [36]). Let A; be the jth eigenvalue of (1.2), and \; 5, the
jth eigenvalue of (1.3) with the corresponding eigenfunctions u;n and ||ujnlls = 1.
Then there exists u; € M(\;) with ||u;||, =1 and

AjAjn
i S W i L1 N0 AJG 5 VRS
(3.8) Ajh = A b(uj, Uj,h) b(( h)u], u]) + Ry,
(3.9) llujn — ujlle < CXFNT — Th)uye,
(3.10) lwjn — wjlln = AjllAug — Apuglln + Ra,

where |Ry| < C|(T — Th)ujH% and |Ra| < C||(T — Th)uyllp-

Theorem 3.1. Under the assumptions of Lemma 3.2, the following error esti-

mates hold:

(3.11) [Njn = Al < C)\?hQTHUjH%/Q,aQa
(3.12) lluj —wjnlle < C/\§h3T/2|\uj|\1/2,aQ,
(3.13) luj —wjnlln < CAR luglliy2,00,

where C is a constant independent of h and A;.

Proof. From (2.24), (2.25), and (2.4), we have

(3.14) [ Auj — Apug|n
(3.15) [ Tuj — Thugllo

h" w1200

C
ChBr/Q

NN

llu;ll1/2,00-
Some calculations lead to

b(Tuj — Thuj,u;) = b(Tuj, uj) — b(Thuj, uj)
= ap(Au;, Auj) — ap(Apuj, Apuj)
= ap(Au; — Apuy, Auj) + ap(Apuj, Auj — Apu;j)
= 2ap(Au; — Apuy, Auj) — an(Au; — Apuy, Auj — Apuy).

For the first term we have

an(Auj — Apuj, Auy)
= ah(Auj — Ahu]‘, Auj) — b(Au] — AhUj, Uj) + b(Tu] — Thu]‘,u]‘)
= Ep(Au; — Apuy, Auj) + b(Tu; — Thuj, uyj).
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Then

b(Tuj; — Thuj,u;) = —2E,(Auj — Apuj, Auy) + ap(Auj — Apuj, Au; — Apuy),
which together with (2.15), (2.24), and (2.4) yields
(3.16) [b(Tuj — Thug, uz)| < CH*" ;3 )2, p0-

Therefore, substituting (3.15) and (3.16) into (3.8), we obtain (3.11). Similarly,
substituting (3.15) into (3.9), and (3.14) and (3.15) into (3.10), we obtain (3.12) and
(3.13), respectively. O

4. LOWER BOUNDS OF EIGENVALUES

Motivated by the recent interesting results about lower bounds of eigenvalues by
nonconforming finite element methods ([5], [24], [28], [34], [37], [38], [39]), we also
consider the lower bounds of the Steklov eigenvalue problems. First we need the
following eigenvalue error expansion.

Lemma 4.1 ([5], [39]). Let (\j,u;) € R x H*(Q) be an eigenpair of (1.2) and let
(Ajn,ujn) € R x V' be the corresponding approximation defined by (1.3). Then

(4.1) Aj = Non = llug = uinlli = Ajwllv = winlly
+ X (vllf = [lusl3) + 2an(u; — v,ujn) Vv e VP

Proof. Since ||u;lls = [|lujnlls = 1, an(uj,uj) = Aj, and ap(wjn, wjn) = A,
we have

Aj+ Ajh = an(uj — wjn, uy — wn) 4 2an(ug, ugn)
= [luj — ujnlli + 2an(v,ujn) + 2an(u; — v, ujn)
= [luj = wjnll}, + 22 nb(v, wjn) + 2an(uj — v, ujp)
= [luj — wjinlli, = Njnllo = wjnlls + Xjalluinl
+ A mllollE + 2an(uj — v, u;)
= luj —wjnlli = Njwllo —wjnlli + 2050

+ X (lolly = lluglly) + 2an(u; — v,ujn).

Then (4.1) can be obtained and we complete the proof. O
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Lemma 4.2. Let u € H*7(Q). Then we have the estimate

(4.2)  ap(u — Iyu,vp)| =

/(u — ), dzdy| < Che|ulyr|lvnlla Yo, € VR,
Q

where s = 1+7, d =0 for CR and Q'°" elements, and s = 2+, d = h for ECR and
EQ*°* elements.

Proof. Using Green’s formula, we obtain [5], [28], [30]

Z / V(u— Ihu)Vo,dedy =0 Yo, € V.
KeT, K

Thus

(4.3) ap(u— Inu,vp) = Z / V(u — Inu)Vuy, de dy + / (u — Inu)vp, dz dy
rer, VK Q

= /(u—Ihu)vhdxdy Yo, € VI
Q

For CR and Q'°' elements, we have

/(u — Inu)vy dxdy‘ < Ch1+"|u|1+r||vh|\0.
Q

This shows that (4.2) holds for s =14 r and d = 0.

On the other hand, for ECR and FQ'°* elements, we introduce a piecewise constant
interpolation operator IIy. Then

/Q(u — Ipu)vp, dx dy' =

/ (u — Inu)yvy de dy + / (u — Inu)(vy, — Hovy) dedy
Q Q

/(u — Inu)(vy, — Howp) dxdy‘ < Ch2+r|u|1+r||vh|\h.
Q

This shows that (4.2) holds for s =2+ and d = h. O
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Lemma 4.3. Let u; € H*"(Q) be an eigenfunction of (1.1). Then the following
estimate holds:

(4.4) = Inugllo < OB |14

Proof. For any g € L?(09) we have

(4.5) b(g, uj — Inu;) = a(Ag,u;) — an(Ang, Inu;)
= an(Ag,u; — Inuj) + an(Ag — Ang, Inu;)
= an(Ag,u; — Inu;) + an(Ag, Inu;) — b(g, Inu;)
= an(Ag,uj — Inuj) + Ep(Ag, u; — Inuj).

From (2.24), (2.31), and (4.2) we get

lan(Ag, uj — Inuj)| = lan(Ag — Ang, u; — Inuj) + an(Ang, uj — Inuy)|
< CR¥ 2 | 14r| gl

Combining (2.3), (2.16), and (2.8) leads to the estimate
| En(Ag,wj — Inuj)] < CH¥Plulisr g,
Substituting the above two inequalities into (4.5), we obtain
b(g,uj — Inuz) < CH*2|lugllierlglle Vg € L*(09).
This means we have (4.4) and complete the proof. O

Theorem 4.1. Under the conditions of Lemma 4.2, if h is sufficiently small, then
(4.6) A= N = |luj —ujnll + 2/ (uj — Inuj)ujpdedy + R,
Q

where |R| < C(h'+37/2 4 p37).

Proof. Taking v = Ihu; in (4.1), we estimate the second, third and fourth
terms on the right-hand side of (4.1). From (4.4) and (3.12) we have

1 Znu; — wjnlle < I nwj — ujlly + lug — wjnlls < CXIR2(|ujl1 /2,00
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In addition, we introduce the piecewise constant interpolation operator Iy on 9f2.
Then, from (4.4), we have

gl = Ml 5] = [26(Tnu; = ug, u5) = b(Tnwg = ujyu; = Dyuy)|
< 2[b(Inu; — ujyu; — Toug)| + Ch*" |l 1.,
< Clluy = Inusllolug = Tous s + CR Jlug 17y,
< OB |lug g hlugls,00 + CH* uglit
< OM*2 4 020 w34,
Thus from the previous estimates and (4.3) we obtain (4.6). O

Corollary 4.1. For ECR and EQ°* elements, if ||u; —ujp||n = C(hY/?F37/4=7 4
h3/27=7) (v is an arbitrary small positive number), we have

(4.7) /\j n< )\j,

)

when h is small enough.

Proof. From (4.2) and |R| < C(h'*3"/2 4 h%") we know that the second and
the third terms on the right-hand side of (4.6) are infinitesimals of higher order than
the order of the first term. So the sign of the right-hand side of (4.6) is determined
by the first term. Thus (4.7) holds. O

Corollary 4.2. For CR and Q°* elements, let us assume that there exists a
positive constant Cy independent of h and \; such that ||uj — ujp||? > Cl)\?hQT.
Then we have that
(4.8) Ajh <A

YE
when 1/2 < r < 1, or the eigenvalue \; is large enough and h small enough for r = 1.

Proof. When 1/2 < r < 1, we can obtain (4.8) by an analysis similar to the
proof of Corollary 4.1 concluding that the first term ||u; — u; |7 is the dominant
term.

When r =1 and the eigenvalue ); is large enough and h small enough the proof
is the same as that of Corollary 4.2 in [36]. O

Remark 4.1. Our lower bound results for the eigenvalue require the lower
bound of the discretization error of the eigenfunction by the finite element method.
In Kfizek, Roos and Chen [26], the lower bound of the linear and bilinear elements
has been obtained firstly. In our situation, different with the conforming elements,
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the nonconforming elements considered in this paper have the orthogonality property
of the corresponding interpolation:

Z/V(u—]hu)Vvhdxdy:O Yo, € Vh
KeTy, K

We define the following semi-norm in H' + V"

|v|ih: Z /K|Vv|2dxdy.

KeT,

Then the following estimate holds:

= Il < \

Z /K V(u — Iyu)V(u — Iyu) de dy

KeT, ‘

Z /K V(u— Ihu)V(u — up) dedy

‘KET;L ‘
< Ju — Tpuli,plu — uplip-

This yields
(4.9) |u —upli,n = |u— Ipuly .

So in order to get the lower bound of the discretization error of the eigenfunction
approximation by nonconforming elements, we only need to estimate the lower bound
of the interpolation error. In this way, we can obtain the assumptions in Corollary 4.1
and 4.2. These results will appear soon.

5. NUMERICAL RESULTS

In this section we give two numerical examples to illustrate the theoretical results
derived in this paper. The first example is defined on the unit square and the other
one on the L shape domain.

5.1. Numerical results on square domain

The first example is to consider the problem (1.1) on the domain = (0,1) x (0, 1).
We use four types of nonconforming finite element methods to solve the Steklov
eigenvalue problem. Each level of the computing meshes for CR and ECR elements

are generated by the Delaunay methods. The meshes for Q' and EQ'°' elements are
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all rectangular meshes. The corresponding numerical results are shown in Tabs. 1,

2, 3, and 4.
h ALk A2,k A3,k Ak
0.2 0.24021996706 | 1.4833779747 | 1.4837060811 | 2.0488192219
0.1 0.24011871553 | 1.4891264232 | 1.4892258566 | 2.0691540091
0.05 | 0.24008801770 | 1.4915364371 | 1.4915376961 | 2.0792813571
0.025 | 0.24008132236 | 1.4921016468 | 1.4921019657 | 2.0817452102
0.0125 | 0.24007963788 | 1.4922519846 | 1.4922520044 | 2.0824176986
Trend N /! /! /!
Table 1. CR element for the Steklov eigenvalue problem on unit square.
h )\Lh )\Q,h )\3,h )\4,h
0.2 0.24007905476 | 1.4832406183 | 1.4835453433 | 2.0484910082
0.1 0.24007901073 | 1.4891044540 | 1.4892020418 | 2.0691254277
0.05 | 0.24007906375 | 1.4915309007 | 1.4915321274 | 2.0792735726
0.025 | 0.24007907882 | 1.4920976970 | 1.4920980544 | 2.0817416011
0.0125 | 0.24007908367 | 1.4922516952 | 1.4922517151 | 2.0824174452
Trend /! /! /! /

Table 2. ECR element for the Steklov eigenvalue problem on unit square.

h )\l,h )\Q,h )\S,h )\4,h
1/8 x1/8 0.24022921553 | 1.4902910985 | 1.4902910985 | 2.0587073322
1/16 x 1/16 | 0.24011658591 | 1.4916252415 | 1.4916252415 | 2.0757319710
1/32x 1/32 | 0.24008845713 | 1.4921094845 | 1.4921094845 | 2.0807938684
1/64 x 1/64 | 0.24008142796 | 1.4922515168 | 1.4922515168 | 2.0821676688
1/128 x 1/128 | 0.24007967101 | 1.4922898159 | 1.4922898159 | 2.0825251579
Trend N /! /! /!
Table 3. QIiOt element for the Steklov eigenvalue problem on unit square.
h Ah A2,h A3 h Ad,h
1/8 x1/8 0.24007899921 | 1.4902177346 | 1.4902177346 | 2.0586553833
1/16 x 1/16 | 0.24007904431 | 1.4916067329 | 1.4916067329 | 2.0757187294
1/32x 1/32 | 0.24007907251 | 1.4921048465 | 1.4921048465 | 2.0807905398
1/64 x 1/64 | 0.24007908185 | 1.4922503566 | 1.4922503566 | 2.0821668354
1/128 x 1/128 | 0.24007908447 | 1.4922895257 | 1.4922895257 | 2.0825249495
Trend / / / /

Table 4. EQ‘{Ot element for the Steklov eigenvalue problem on unit square.
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From the numerical results on the square domain, only for ECR and EQ:° el-
ements we can obtain lower bound approximations for each eigenvalue but for CR
and Q'°" we obtain lower bound approximations only for sufficient large eigenvalues,
which validates the results presented in Corollaries 4.1 and 4.2.

5.2. Numerical results on L shape domain

The second example is to consider the problem (1.1) on the L shape domain
Q= (-1,1) x (—1,1) \ [-1,0] x [-1,0]. We also use four types of nonconforming
finite element methods to solve the Steklov eigenvalue problem. Each level of the
computing meshes for CR and ECR elements are also generated by the Delaunay
methods. The meshes for Q}°* and FQ:°* elements are also rectangular meshes. The
corresponding numerical results are shown in Tabs. 5, 6, 7, and 8.

h ALk A2,k A3,k A,k

0.4

0.34187686015

0.60455170710

0.97587945075

1.6559729552

0.2

0.34153539184

0.61154990008

0.98157021650

1.6771168478

0.1

0.34144698689

0.61492596140

0.98343509208

1.6872111659

0.05

0.34142342797

0.61616348440

0.98405859602

1.6907532008

0.025

0.34141779461

0.61656376012

0.98422268566

1.6917253859

Trend

N

/

/

/

Table 5

. CR element for the Steklov eigenvalue problem on L shape domain.

h

A1,h,

A2,k

A3

A4,h,

0.4

0.34115571455

0.60399355635

0.97530283904

1.6545456348

0.2

0.34133960789

0.61140129364

0.98142984916

1.6769133370

0.1

0.34139532086

0.61488843783

0.98340299514

1.6871801671

0.05

0.34141095827

0.61615457838

0.98405119353

1.6907472152

0.025

0.34141477640

0.61656161050

0.98422090237

1.6917241457

Trend

/

/

/

/

Table 6. ECR element for the Steklov eigenvalue problem on L shape domain.

h

ALk

A2,k

A3,k

Ad,h

1/4x1/4

0.34219848597

0.61264182772

0.98118784370

1.6703651787

1/8 x1/8

0.34161018614

0.61501267622

0.98325733469

1.6845229993

1/16 x 1/16

0.34146438263

0.61610489382

0.98398720715

1.6898735024

1/32 x 1/32

0.34142810103

0.61656024783

0.98420070247

1.6914738739

1/64 x 1/64

0.34141905352

0.61674346334

0.98425834079

1.6919097147

Trend

N

/

/

/

Table 7. Q‘{Ot element for the Steklov eigenvalue problem on L shape domain.
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h ALk A2,k A3,k Ad,h
1/4x1/4 | 0.34138721370 | 0.61207522624 | 0.98072422788 | 1.6700984490
1/8 x 1/8 | 0.34140753674 | 0.61487052906 | 0.98313965996 | 1.6844530544

1/16 x 1/16 | 0.34141373023 | 0.61606933092 | 0.98395766662 | 1.6898557890

1/32x 1/32 | 0.34141543854 | 0.61655135635 | 0.98419330927 | 1.6914694301

1/64 x 1/64 | 0.34141588792 | 0.61674124053 | 0.98425649197 | 1.6919086027
Trend /! /! /! /!

Table 8. EQ‘{Ot element for the Steklov eigenvalue problem on L shape domain.
Similarly, from the numerical results, only for ECR and FQ'°" elements we can
obtain lower bound approximations for each eigenvalue but for CR and Q°* we
can obtain lower bound approximations only for sufficiently large eigenvalues, which
validate the results presented in Corollaries 4.1 and 4.2. Notice that even on the
L shape domain, we find the convergence order of the first eigenvalue is full.

6. CONCLUDING REMARKS

In this paper we consider the nonconforming finite elements for the Steklov eigen-
value problems both on convex and concave domains. The lower bound approxi-
mation of the eigenvalues are also analyzed for four types of nonconforming finite
elements: CR, ECR, Q'°, and EQ'°". Based on our analysis, for ECR and EQ}°*
elements we can obtain lower bounds of the eigenvalues both on convex and concave
domains. This is also the first paper giving the analysis of the ECR element for the
Steklov eigenvalue problem. Especially, since the ECR element is defined on general
triangular meshes, it can be used in the adaptive finite element method. This should
be our future work.

Acknowledgement. We would like to thank the referees and Prof. M. Krizek.
Their suggestions and K¥izek’s method in [26] have made the paper sounder.
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