
Czechoslovak Mathematical Journal

Szymon Głab̧; Filip Strobin
Dichotomies for C0(X) and Cb(X) spaces

Czechoslovak Mathematical Journal, Vol. 63 (2013), No. 1, 91–105

Persistent URL: http://dml.cz/dmlcz/143172

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143172
http://dml.cz


Czechoslovak Mathematical Journal, 63 (138) (2013), 91–105

DICHOTOMIES FOR C0(X) AND Cb(X) SPACES

Szymon G ląb, Filip Strobin,  Lódź

(Received October 25, 2011)

Abstract. Jachymski showed that the set

{

(x, y) ∈ c0 × c0 :

( n
∑

i=1

α(i)x(i)y(i)

)∞

n=1

is bounded

}

is either a meager subset of c0 × c0 or is equal to c0 × c0. In the paper we generalize this
result by considering more general spaces than c0, namelyC0(X), the space of all continuous
functions which vanish at infinity, andCb(X), the space of all continuous bounded functions.
Moreover, we replace the meagerness by σ-porosity.
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MSC 2010 : 46B25, 28A25, 54E52

1. Introduction

Among linear topological spaces there are spaces X consisting of sequences or

functions such that a natural multiplication is defined on pairs (x1, x2) ∈ X2, how-

ever, its result need not necessarily belong to X . It is an interesting question about

the size of the set of such “bad” pairs, for example from the Baire category point of

view. Such a kind of studies was initiated in [1] and [5]. Balcerzak and Wachowicz

[1] proved that the set

{

(x, y) ∈ c0 × c0 :

( n
∑

i=1

x(i)y(i)

)∞

n=1

is bounded

}

is a meager subset of c0 × c0. This result was generalized by Jachymski in [5]:

The first author has been supported by the Polish Ministry of Science and Higher Edu-
cation Grant No. N N201 414939 (2010–2013). The second author has been supported
by the Polish Ministry of Science and Higher Education Grant No. N N201 528 738.
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Theorem 1.1 [5]. Assume that α is any sequence of reals and let

E :=

{

(x, y) ∈ c0 × c0 :

( n
∑

i=1

α(i)x(i)y(i)

)∞

n=1

is bounded

}

.

Then the following statements are equivalent:

(i) E is meager in c0 × c0;

(ii) E 6= c0 × c0;

(iii) α /∈ l1, that is
∞
∑

n=1
|α(n)| = ∞.

A natural question arise whether the above result can be further generalized, by

considering more general spaces and replacing Baire category by σ-porosity. In this

paper we give an affirmative answer to this question. The major idea is that we can

consider
n
∑

i=1

α(i)x(i)y(i) as an integral of the function αxy over the set {1, . . . , n} with

respect to the counting measure on N. Accordingly, we will consider the set E of pairs

(f, g) ∈ C0(X) × C0(X) (or (f, g) ∈ Cb(X) × Cb(X)) with a bounded sequence of

integrals
( ∫

Dn
(fgh) dµ

)

for some fixed sequence (Dn) and fixed function h. We will

show that E is equal to C0(X)×C0(X) (or Cb(X)×Cb(X)), if sup
∫

Dn
|h| dµ < ∞

or E is small (namely, σ-porous), if sup
∫

Dn
|h| = ∞.

We would like to mention that Balcerzak andWachowicz in [1] showed also that the

set {(f, g) ∈ L
1[0, 1]×L

1[0, 1] : f ·g ∈ L
1[0, 1]} is a meager subset of L

1[0, 1]×L
1[0, 1],

and that this result was also extended by Jachymski in [5] (he considered general

L
p(X) spaces and obtained a dichotomy analogous to that in Theorem 1.1).

In fact, Jachymski’s results are applications of his nonlinear version of the Banach-

Steinhaus principle. At first we were interested in finding a generalization of this

result in the direction of porosity, but it turned out that this is not possible (cf. [3]).

That is why we decided to investigate the possibility of generalizing its applications.

In particular, in [3] we extended the result from [5] connected with this Lp(X) spaces.

2. Notation and basic facts

Let X be a metric space. B(x, R) stands for the open ball with a radius R centered

at a point x. Let α ∈ (0, 1]. We say that M ⊂ X is α-lower porous [7] if

∀x ∈ M lim inf
R→0+

γ(x, M, R)

R
>

α

2
,

where

γ(x, M, R) = sup{r > 0: ∃z ∈ X, B(z, r) ⊂ B(x, R) \ M}.
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Clearly, M is α-lower porous iff

∀x ∈ M ∀β ∈ (0, α/2) ∃R0 > 0 ∀R ∈ (0, R0) ∃z ∈ X, B(z, βR) ⊂ B(x, R) \ M.

Now, let (X, ‖ ‖) be a normed linear space. We say that M is strongly ball porous if

∀R > 0 ∀x ∈ X ∀α ∈ (0, 1) ∃y ∈ X (‖x − y‖ = R and B(y, αR) ∩ M = ∅).

Finally, we say thatM is σ-α-lower porous or σ-strongly ball porous ifM is a count-

able union of α-lower porous sets or strongly ball porous, respectively. The notions

of strong ball porosity are closely related to the notion of R-ball porosity (cf. [7]) and

were discussed in [6] (cf. condition (2.7) in [6]). We say that (X, µ) is a topological

measure space, ifX is a topological space and the measure µ is defined on a σ-algebra

of subsets ofX containing the family of all Borel subsets ofX . We say that a topolog-

ical measure space (X, µ) is inner regular, if µ(A) = sup{µ(D) : D ⊂ A, D is closed}

for every A ∈ Σ with µ(A) < ∞.

Remark 2.1. Most authors define inner regularity by assuming that all mea-

surable sets can be approximated from below by compact sets. However, there are

measures (defined on locally compact spaces) which are inner regular in our sense,

and some measurable sets cannot be approximated from below by compact sets

(cf. [4, Sec. 53, Exercise 10]).

The proof of the following lemma is standard and straightforward, so we skip it.

Lemma 2.2. Let (X, µ) be inner regular and let h : X → R be measurable and

nonnegative. Then the space (X, η), where η(A) :=
∫

A
h dµ for measurable A ⊂ X ,

is also inner regular.

If (X, µ) is a topological Borel measure space, then by L
1
loc(X, µ) (L1

loc in short)

we denote the set of all locally integrable functions on X , that is, all measurable

functions h : X → R with
∫

K
|h| dµ < ∞ for every set K ∈ K(X) (by K(X) we

denote the set of all compact subsets of X). By Cb(X) (Cb in short) we denote the

set of all continuous real functions with bounded images. We view it as a Banach

space with the standard supremum norm:

‖f‖ := sup{|f(x)| : x ∈ X}.

By C0(X) (C0 in short) we denote the set of all continuous real functions on X

which vanish at infinity, that is

C0 := {f ∈ Cb : ∀ε > 0 ∃K ∈ K(X), ∀x ∈ X \ K |f(x)| < ε}.
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We view C0 also as a Banach space with the supremum norm. Note that the space

c0 can be viewed as C0(N), if we consider the discrete topology on N. Finally, we

view products C0 × C0 and Cb × Cb as Banach spaces with the maximum norm:

‖(f, g)‖ := max{‖f‖, ‖g‖}.

3. Results for products of C0 spaces

If (X, µ) is a topological measure space, h : X → R is any measurable function

and (Dn) is a sequence of measurable subsets of X , then we define

E0
h,(Dn) :=

{

(f, g) ∈ C0 × C0 :

(
∫

Dn

fgh dµ

)∞

n=1

is bounded

}

.

Remark 3.1. For every measurable function f and every measurable set D, if we

say that the integral
∫

D
f dµ has some properties, then we clearly assume that it is

well defined, i.e., the integral of the positive part of f is finite, or the integral of the

negative part of f is finite. Hence the statement “
( ∫

Dn
fgh dµ

)∞

n=1
is bounded” is

a shortcut for “for every n ∈ N,
∫

Dn
fgh dµ is well defined and

( ∫

Dn
fgh dµ

)∞

n=1
is

bounded”.

Theorem 3.2. Assume that (X, µ) is a topological measure space which is inner

regular and such that the topological space X is locally compact and σ-compact.

Let h ∈ L
1
loc and let (Dn) be a sequence of measurable subsets of X such that

sup
n∈N

∫

Dn
|h| dµ = ∞. Then the set E0

h,(Dn) is σ-strongly ball porous.

P r o o f. Since X is σ-compact and locally compact, it is normal and there exists

an increasing sequence of compact sets (Kn) such that for any n ∈ N, Kn ⊂ IntKn+1

and
⋃

n∈N

Kn = X ([2, Theorem 3.8.2 and Exercise 3.8.C]). To prove the result, we

have to consider two cases.

Case 1.
∫

Dn0
|h| dµ = ∞ for some n0 ∈ N. Note that

E0
h,(Dn) ⊂

{

(f, g) ∈ C0 × C0 :

∫

Dn0

|fgh| dµ < ∞

}

=
⋃

u∈N

F 0
u ,

where for any u > 0,

F 0
u :=

{

(f, g) ∈ C0 × C0 :

∫

Dn0

|fgh| dµ < u

}

.
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Hence it is enough to show that for every u > 0, the set F 0
u is strongly ball porous.

Let u > 0, R > 0, (f, g) ∈ C0 × C0 and α ∈ (0, 1). Put

A1
f := {x ∈ X : f(x) > 0} and A−1

f := X \ A1
f = {x ∈ X : f(x) < 0}.

In the same way we define A1
g and A−1

g . Then for some s ∈ {−1, 1}2, we have

∫

A
s(1)
f

∩A
s(2)
g ∩Dn0

|h| dµ = ∞.

Assume, without loss of generality, that s = (1, 1), and set C := A1
f ∩ A1

g ∩ Dn0 . By

the properties of the sequence (Kn) there is n ∈ N such that

(3.1)

∫

C∩Kn

|h| dµ >
u

((1 − α)R)2
.

Now since Kn and X \ IntKn+1 are closed and disjoint, by the Tietze theorem there

exists a continuous function w : X → [0, R] such that w(x) = R for x ∈ Kn and

w(x) = 0 for x /∈ IntKn+1. Put

f̃ := f + w and g̃ := g + w.

Since w is equal to 0 outside the compact set Kn+1, we get (f̃ , g̃) ∈ C0 × C0.

Moreover, since Kn 6= ∅, we have ‖f − f̃‖ = ‖g − g̃‖ = R. It is enough to show

that B((f̃ , g̃), αR) ∩ F 0
u = ∅. Let (a, b) ∈ B((f̃ , g̃), αR) and observe that for any

x ∈ C ∩ Kn,

a(x) > f̃(x) − αR = f(x) + R − αR > R(1 − α).

In the same way we get b(x) > (1 − α)R. Hence and by (3.1),

∫

Dn0

|abh| dµ >

∫

C∩Kn

((1 − α)R)2|h| dµ
(3.1)
> u,

so (a, b) /∈ F 0
u and the proof in Case 1 is complete.

Case 2.
∫

Dn
|h| dµ < ∞ for every n ∈ N. Note that for every (f, g) ∈ C0 × C0

there exists M > 0 such that for every x ∈ X , |f(x)|, |g(x)| < M . Hence for every

n ∈ N,
∫

Dn
|fgh| dµ 6 M2

∫

Dn
|h| dµ < ∞. Thus for every (f, g) ∈ C0 × C0 and

every n ∈ N, the integral
∫

Dn
fgh dµ is well defined. It is enough to show that for

each u > 0 the set

E0
u =

{

(f, g) ∈ C0(X) × C0(X) :

∣

∣

∣

∣

∫

Dn

fgh dµ

∣

∣

∣

∣

6 u for any n ∈ N

}
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is strongly ball porous. Let u > 0, R > 0, (f, g) ∈ C0 × C0 and α ∈ (0, 1). Then

there is a compact set K such that for any x ∈ X \ K,

(3.2) |f(x)| 6
1 − α

2
R and |g(x)| 6

1 − α

2
R.

Let M > 0 be such that |f(x)|, |g(x)| < M for all x ∈ X . Now since
∫

K
|h| dµ < ∞,

∫

Dn
|h| dµ < ∞ for every n ∈ N and sup

n∈N

∫

Dn
|h| dµ = ∞, there exists n ∈ N such

that

(3.3) ∞ >

∫

Dn\K

|h| dµ >
u +

(

2 +
∫

Dn∩K
|h| dµ

)

(M + 2R)2

1
4 (1 − α)2R2

+ 2.

By the properties of the sequence (Kn), there exists n1 ∈ N such that

(3.4)

∫

(Dn\K)∩Kn1

|h| dµ >

∫

Dn\K

|h| dµ − 1.

Put C := (Dn \ K) ∩ Kn1 , A1
h := {x ∈ X : h(x) > 0} and A−1

h := X \ A1
h. By

Lemma 2.2 there exist closed sets C+ ⊂ C ∩ A1
h and C− ⊂ C ∩ A−1

h with

(3.5)

∫

C\(C+∪C−)

|h| dµ < 1.

Then by (3.3), (3.4) and (3.5),

(3.6)

∫

C+∪C−

|h| dµ
(3.5)
>

∫

C

|h| dµ − 1
(3.4)
>

∫

Dn\K

|h| dµ − 2

(3.3)
>

u +
(

2 +
∫

Dn∩K
|h| dµ

)

(M + 2R)2

1
4 (1 − α)2R2

.

Since C+, C− and X \ IntKn1+1 are closed and disjoint, by the Tietze theorem there

exist continuous functions w1 : X → [−R, R] and w2 : X → [0, R] such that

⊲ w1(x) = w2(x) = R for x ∈ C+;

⊲ w1(x) = −R for x ∈ C−;

⊲ w2(x) = R for x ∈ C−;

⊲ w1(x) = w2(x) = 0 for x /∈ IntKn1+1.

Put

f̃ := f + w1 and g̃ := g + w2.

Since w1 and w2 are equal to zero outside the compact set Kn1+1, we get f̃ , g̃ ∈ C0.

Since C+∪C− is nonempty, we have that ‖f̃−f‖ = R and ‖g̃−g‖ = R. To prove the
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theorem it is enough to show that B((f̃ , g̃), αR)∩E0
u = ∅. Let (a, b) ∈ B((f̃ , g̃), αR)

and note that for any x ∈ C+ we have, by (3.2),

a(x) > f̃(x) − αR = f(x) + R − αR
(3.2)

> −
1 − α

2
R + (1 − α)R =

1 − α

2
R,

and (by the same computations) b(x) > 1
2 (1 − α)R. Moreover, for any x ∈ C− we

have

a(x) 6 f̃(x) + αR = f(x) − R + αR
(3.2)

6
1 − α

2
R − (1 − α)R = −

1 − α

2
R,

b(x) > g̃(x) − αR = g(x) + R − αR
(3.2)

> −
1 − α

2
R + (1 − α)R =

1 − α

2
R.

Hence for every x ∈ C+ ∪ C−,

(3.7) a(x)b(x)h(x) >
(1 − α)2

4
R2|h(x)|.

On the other hand, for any x ∈ X we have (recall that |f(x)|, |g(x)| < M for x ∈ X)

(3.8) max{|a(x)|, |b(x)|} 6 max{|f̃(x)|, |g̃(x)|} + αR

6 max{|f(x)|, |g(x)|} + 2R < M + 2R.

Finally, by (3.4), (3.5), (3.6), (3.7), (3.8) we obtain
∫

Dn

abh dµ =

∫

Dn\K

abh dµ +

∫

Dn∩K

abh dµ

=

∫

(Dn\K)\Kn1

abh dµ +

∫

C

abh dµ +

∫

Dn∩K

abh dµ

=

∫

(Dn\K)\Kn1

abh dµ +

∫

C+∪C−

abh dµ +

∫

C\(C+∪C−)

abh dµ

+

∫

Dn∩K

abh dµ

(3.7),(3.8) > − (M + 2R)2
∫

(Dn\K)\Kn1

|h| dµ +
(1 − α)2

4
R2

∫

C+∪C−

|h| dµ

− (M + 2R)2
∫

C\(C+∪C−)

|h| dµ − (M + 2R)2
∫

Dn∩K

|h| dµ

(3.4),(3.5) >
(1 − α)2

4
R2

∫

C+∪C−

|h| dµ − 2(M + 2R)2

− (M + 2R)2
∫

Dn∩K

|h| dµ

(3.6) > u.

Hence (a, b) /∈ E0
u. �
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As an immediate corollary we have the following strengthening of Theorem 1.1:

Corollary 3.3. Assume that (X, µ) and h are as in the formulation of Theo-

rem 3.2. Let (Dn) be a sequence of measurable sets. Then the following statements

are equivalent:

(i) E0
h,(Dn) is σ-strongly ball porous in C0 × C0;

(ii) E0
h,(Dn) 6= C0 × C0;

(iii) sup
n∈N

∫

Dn
|h| dµ = ∞.

P r o o f. Implication (i)⇒(ii) is trivial, implication (iii)⇒(i) is stated in Theo-

rem 3.2. Now let N > 0 be such that sup
n∈N

∫

Dn
|h| dµ < N and let (f, g) ∈ C0 × C0.

Then ‖f‖, ‖g‖ < M for some M > 0, so for every n ∈ N,

∣

∣

∣

∣

∫

Dn

fgh dµ

∣

∣

∣

∣

6 M2

∫

Dn

|h| dµ < M2N.

Hence (f, g) ∈ E0
h,(Dn). This gives (ii)⇒(iii). �

Corollary 3.4. Assume that (X, µ) is as in the formulation of Theorem 3.2.

Additionally, let µ(K) < ∞ for every compact set K ⊂ X , and let G0 := {(f, g) ∈

C0 × C0 : fg ∈ L
1}. Then the following statements are equivalent:

(i) G0 is σ-strongly ball porous;

(ii) G0 6= C0 × C0;

(iii) µ(X) = ∞.

P r o o f. The result follows from Corollary 3.3 by taking h = 1 and the sequence

(Dn) such that Dn = X for every n ∈ N. �

Remark 3.5. If X is a Banach space, then we say that M ⊂ X is c-porous if its

convex hull conv M is nowhere dense. In an obvious way we define σ-c-porous sets.

As we proved in [6], every c-porous set is strongly ball porous, and the converse is

not true. However, we did not know if there exists a set which is σ-strongly ball

porous and is not σ-c-porous. It turns out that the set

E :=

{

(x, y) ∈ c0 × c0 :

( n
∑

i=1

α(i)x(i)y(i)

)∞

n=1

is bounded

}

satisfies this condition. This result will be included in the paper which is under

preparation.
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4. Results for products of Cb spaces

Now we will investigate the case when the space C0 is replaced by the space Cb.

It turns out that very similar results hold, but obtained in a slightly different way.

On the one hand, the assumptions will be weaker, but on the other, the porosity will

be also weaker than the strong ball porosity.

Let (X, µ) be a topological measure space. If h : X → R is a measurable function

and (Dn) is a sequence of measurable sets, then we define

Eb
h,(Dn) :=

{

(f, g) ∈ Cb × Cb :

(
∫

Dn

fgh dµ

)∞

n=1

is bounded

}

.

Theorem 4.1. Assume that (X, µ) is a topological measure space which is inner

regular, and such that the topological space X is normal. Let h be any measurable

function on X and (Dn) a sequence of measurable sets such that sup
n∈N

∫

Dn
|h| dµ = ∞.

Then the set Eb
h,(Dn) is σ- 12 -lower porous in Cb × Cb.

P r o o f. Consider two cases:

Case 1.
∫

Dn0
|h| dµ = ∞ for some n0 ∈ N.

We deal with this case in a way similar (but even simpler) to that in the proof of

Case 1 of Theorem 3.2, so we skip the proof.

Case 2.
∫

Dn0
|h| dµ < ∞ for any n ∈ N.

Clearly, for every (f, g) ∈ C
b × C

b and every n ∈ N, the integral
∫

Dn
fgh dµ is

well defined. It is enough to show that for any u > 0, the set

Eu :=

{

(f, g) ∈ Cb × Cb :

∣

∣

∣

∣

∫

Dn

fgh dµ

∣

∣

∣

∣

6 u for any n ∈ N

}

is 1
2 -lower porous. Hence let u > 0. It is enough to show that

∀(f, g) ∈ Eu ∀R > 0 ∃f̃ , g̃ ∈ C
b
(

‖f − f̃‖ = ‖g − g̃‖ =
3

4

and B
(

(f̃ , g̃),
1

4
R

)

∩ Eb
u = ∅

)

.

Let (f, g) ∈ Eu and R > 0. Let n ∈ N be such that

(4.1)

∫

Dn

|h| dµ >
2u + 2 + 2R + R2 + 1

4R2

1
8R2

> 2.

Now define A1
f , A

−1
f , A

1
g, A

−1
g , A

1
h and A−1

h as in the proof of Theorem 3.2. Moreover,

for any s ∈ {−1, 1}3, define

As := Dn ∩ A
s(1)
f ∩ As(2)

g ∩ A
s(3)
h .
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Clearly, the family {As : s ∈ {−1, 1}3} is a decomposition of Dn into eight pairwise

disjoint measurable sets. For any s ∈ {−1, 1}3, let sgn(s) = s(1) · s(2) · s(3). In this

way we obtain a natural decomposition of Dn into two sets

C :=
⋃

sgn(s)=1

As and F :=
⋃

sgn(s)=−1

As.

Then for every x ∈ C,

(4.2) f(x)g(x)h(x) = |f(x)g(x)h(x)|,

and for every x ∈ F ,

(4.3) f(x)g(x)h(x) = −|f(x)g(x)h(x)|.

Clearly, we have that either
∫

C
|h| dµ > 1

2

∫

Dn
|h| dµ or

∫

F
|h| dµ > 1

2

∫

Dn
|h| dµ.

Assume, without loss of generality, that

(4.4)

∫

C

|h| dµ >
1

2

∫

Dn

|h| dµ.

Now we will define auxiliary sets

A1
f,1 :=

{

x ∈ A1
f : |f(x)| > 1

2R
}

and A1
f,2 :=

{

x ∈ A1
f : |f(x)| < 1

2R
}

.

In the same way we define A−1
f,1, A

−1
f,2, A

1
g,1, A

1
g,2, A

−1
g,1 and A−1

g,2.

Now put

As
p := Dn ∩ A

s(1)
f,p(1) ∩ A

s(2)
g,p(2) ∩ A

s(3)
h

for s ∈ {1,−1}3 and p ∈ {1, 2}2. Clearly, for any s ∈ {1,−1}3, the family {As
p : p ∈

{1, 2}2} is a decomposition of As into 4 pairwise disjoint measurable sets. By virtue

of the regularity of (X, µ) and Lemma 2.2 we can find closed sets Cs ⊂ As for

each s with sgn(s) = 1, and closed sets F s
p ⊂ As

p for each s with sgn(s) = −1 and

p ∈ {1, 2}2, such that

∫

Dn\(C′∪F ′)

|h| dµ < 1,(4.5)

∫

Dn\(C′∪F ′)

|fh| dµ < 1,(4.6)

∫

Dn\(C′∪F ′)

|gh| dµ < 1,(4.7)

∫

Dn\(C′∪F ′)

|fgh| dµ < 1,(4.8)
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where

C′ :=
⋃

{Cs : s ∈ {−1, 1}3, sgn(s) = 1} ⊂ C

and

F ′ :=
⋃

{F s
p : s ∈ {−1, 1}3, sgn(s) = −1, p ∈ {1, 2}2} ⊂ F.

Clearly, C′ ∪ F ′ is a closed subset of X . Hence and by the fact that the sets from

the family {Cs : sgn(s) = 1} ∪ {F s
p : sgn(s) = −1, p ∈ {1, 2}2} are closed and

pairwise disjoint, by the Tietze theorem we can define continuous functions w1 : X →
[

− 3
4R, 3

4R
]

and w2 : X →
[

− 3
4R, 3

4R
]

such that

⊲ if sgn(s) = 1, then for x ∈ Cs,

w1(x) =

{

3
4R, if f(x) > 0,

− 3
4R, if f(x) < 0,

and w2(x) =

{

3
4R, if g(x) > 0,

− 3
4R, if g(x) < 0,

⊲ if sgn(s) = −1 and p = (1, 1), then for x ∈ F s
p ,

w1(x) =

{

− 1
4R, if f(x) > 0,

1
4R, if f(x) < 0,

and w2(x) =

{

− 1
4R, if g(x) > 0,

1
4R, if g(x) < 0,

⊲ if sgn(s) = −1 and p = (1, 2), then for x ∈ F s
p ,

w1(x) =

{

1
4R, if f(x) > 0,

− 1
4R, if f(x) < 0,

and w2(x) =

{

− 3
4R, if g(x) > 0,

3
4R, if g(x) < 0,

⊲ if sgn(s) = −1 and p = (2, 1) or p = (2, 2), then for x ∈ F s
p ,

w1(x) =

{

− 3
4R, if f(x) > 0,

3
4R, if f(x) < 0,

and w2(x) =

{

1
4R, if g(x) > 0,

− 1
4R, if g(x) < 0.

We are ready to define functions f̃ and g̃. Put

f̃ := f + w1 and g̃ := g + w2.

By (4.1), (4.4) and (4.5),

(4.9)

∫

C′

|h| dµ
(4.5)
>

∫

C

|h| dµ − 1
(4.4)

>
1

2

∫

Dn

|h| dµ − 1
(4.1)
> 0,

so C′ is nonempty and therefore ‖f̃ − f‖ = 3
4R and ‖g̃ − g‖ = 3

4R. To complete

the proof, it is enough to show that B
(

(f̃ , g̃), 1
4R

)

∩ Eu = ∅. To do this, take any

(a, b) ∈ B
(

(f̃ , g̃), 1
4R

)

.
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Let s ∈ {−1, 1}3 be such that sgn(s) = 1. Then for any x ∈ Cs, we have:

if f(x) > 0, then a(x) > f̃(x) − 1
4R = f(x) + 1

2R,

if f(x) < 0, then a(x) 6 f̃(x) + 1
4R = f(x) − 1

2R,

if g(x) > 0, then b(x) > g̃(x) − 1
4R = g(x) + 1

2R,

if g(x) < 0, then b(x) 6 g̃(x) + 1
4R = g(x) − 1

2R.

Hence by (4.2), for every x ∈ Cs we have a(x)b(x)h(x) = |a(x)b(x)h(x)|, so

∫

Cs

abh dµ =

∫

Cs

|abh| dµ >

∫

Cs

(

|f(x)| +
1

2
R

)(

|g(x)| +
1

2
R

)

|h| dµ

>

∫

Cs

|fgh| dµ +

∫

Cs

1

4
R2|h| dµ

(4.2)
=

∫

Cs

fgh dµ +
1

4
R2

∫

Cs

|h| dµ.

Therefore we get

(4.10)

∫

C′

abh dµ >

∫

C′

fgh dµ +
1

4
R2

∫

C′

|h| dµ.

Let s ∈ {−1, 1}3 be such that sgn(s) = −1 and let p = (1, 1). By the definition of

As
p, for any x ∈ F s

p we have |f(x)| > 1
2R and |g(x)| > 1

2R. Then by the definition of

w1 and w2, for every x ∈ F s
p we have:

if f(x) > 0, then 0 6 a(x) 6 f(x) and if f(x) < 0, then 0 > a(x) > f(x),

if g(x) > 0, then 0 6 b(x) 6 g(x) and if g(x) < 0, then 0 > b(x) > g(x).

Hence by (4.3), for every x ∈ F s
p we have a(x)b(x)h(x) = −|a(x)b(x)c(x)|, so

∫

F s
p

abh dµ = −

∫

F s
p

|abh| dµ > −

∫

F s
p

|fgh| dµ
(4.3)
=

∫

F s
p

fgh dµ.

Let s ∈ {−1, 1}3 be such that sgn(s) = −1 and let p = (1, 2). Then for x ∈ F s
p we

obtain:

if f(x) > 0, then a(x) > f̃(x) − 1
4R = f(x) + 1

4R − 1
4R > 0,

if f(x) < 0, then a(x) 6 f̃(x) + 1
4R = f(x) − 1

4R + 1
4R 6 0,

and

if g(x) > 0, then b(x) 6 g̃(x) + 1
4R = g(x) − 3

4R + 1
4R 6 0,

if g(x) < 0, then b(x) > g̃(x) − 1
4R = g(x) + 3

4R − 1
4R > 0.
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Hence by (4.3), for every x ∈ F s
p we have a(x)b(x)h(x) = −|a(x)b(x)h(x)|, so

∫

F s
p

abh dµ > 0 > −

∫

F s
p

|fgh| dµ
(4.3)
=

∫

F s
p

fgh dµ.

In the same way we can show that for any s with sgn(s) = −1 and p = (2, 1) or

p = (2, 2) we have that

∫

F s
p

abh dµ > 0 >

∫

F s
p

fgh dµ.

As a consequence, we obtain

(4.11)

∫

F ′

abh dµ >

∫

F ′

fgh dµ.

Finally, by (4.1), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), we get

∫

Dn

abh dµ =

∫

C′

abh dµ +

∫

F ′

abh dµ +

∫

Dn\(C′∪F ′)

abh dµ

(4.10),(4.11) >
1

4
R2

∫

C′

|h| dµ +

∫

C′

fgh dµ +

∫

F ′

fgh dµ +

∫

Dn\(C′∪F ′)

abh dµ

(4.9) >
1

8
R2

(
∫

Dn

|h| dµ − 2

)

+

∫

Dn

fgh dµ −

∫

Dn\(C′∪F ′)

|fgh| dµ

−

∫

Dn\(C′∪F ′)

|abh| dµ

(4.8) >
1

8
R2

(
∫

Dn

|h| dµ − 2

)

− u − 1 −

∫

Dn\(C′∪F ′)

(|f | + R)(|g| + R)|h| dµ

>
1

8
R2

(
∫

Dn

|h| dµ − 2

)

− u − 1 −

∫

Dn\(C′∪F ′)

|fgh| dµ

− R

(
∫

Dn\(C′∪F ′)

|fh| dµ +

∫

Dn\(C′∪F ′)

|gh| dµ

)

− R2

∫

Dn\(C′∪F ′)

|h| dµ

(4.5)–(4.8) >
1

8
R2

∫

Dn

|h| dµ −
1

4
R2 − u − 1 − 1 − 2R − R2

(4.1)
> u.

Hence (a, b) /∈ Eu and the proof of part (ii) is complete. �

As an immediate corollary, we have the following dichotomies (we skip the proofs

since they are very similar to the proofs of the analogous corollaries in the previous

section).
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Corollary 4.2. Assume that (X, µ) and h are as in the formulation of Theo-

rem 4.1, and let (Dn) be a sequence of measurable sets. The following statements

are equivalent:

(i) Eb
h,(Dn) is σ- 12 -lower porous in Cb × Cb;

(ii) Eb
h,(Dn) 6= Cb × Cb;

(iii) sup
n∈N

∫

Dn
|h| dµ = ∞.

Corollary 4.3. Assume that (X, µ) is as in the formulation of Theorem 4.1. Let

Gb := {(f, g) ∈ Cb × Cb : fg ∈ L
1}.

Then the following statements are equivalent:

(i) Gb is σ- 12 -lower porous in Cb × Cb;

(ii) Gb 6= Cb × Cb;

(iii) µ(X) = ∞.

5. Final remarks

Let (X, Σ, µ) be a signed measure on X , i.e., µ is a countably additive functional

such that either sup{µ(A) : A ∈ Σ} < ∞ or inf{µ(A) : A ∈ Σ} > −∞. Then

there exist measurable disjoint sets X+ and X− such that X = X+ ∪X− and for all

A ⊂ X+ we have µ(A) > 0 and for all A ⊂ X− we have µ(A) 6 0 (this decomposition

is called a Hahn decomposition). Now let |µ| be a variation of µ, that is

|µ|(A) = µ(A ∩ X+) − µ(A ∩ X−) for a measurable set A.

(cf. [4, Sec. 28 and 29] for more information on signed measures). Set h(x) := 1 for

x ∈ X+ and h(x) := −1 for x ∈ X−. Then for every measurable function f we have

that
∫

X

fh d|µ| =

∫

X

f dµ.

It means that if one of the above integrals is defined, then the other is also defined

and they are equal.

This shows that every signed measure can be generated by some measurable func-

tion h, and hence the presented results can easily be adapted to signed measures.

However, note that the function h(x) = 1 for x > 0 and h(x) = −1 for x 6 0 does

not generate any signed measure on R. Hence our approach is more general.
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Also, it can easily be seen that the presented results remain valid with a very

similar but more technically complicated proofs, if we write them in a more general

way, namely, if we consider the sets (here k > 2)

{

(f1, . . . , fk) ∈ C0 × . . . × C0 :

(
∫

Dn

f1 . . . fkh dµ

)∞

n=1

is bounded

}

and

{

(f1, . . . , fk) ∈ Cb × . . . × Cb :

(
∫

Dn

f1 . . . fkh dµ

)∞

n=1

is bounded

}

.
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