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1. Introduction

Generalized open sets play a very important role in General Topology and they

are now the research topics of many topologists worldwide. Indeed, a significant

theme in General Topology and Real Analysis concerns the various modified forms

of continuity, separation axioms etc. by utilizing generalized open sets. One of the

best known notions and also an inspiration source is the notion of preopen sets [3]

introduced by Mashhour et al. in 1982. A subset A of a space X is called a preopen

set [3] if it is a set which is contained in the interior of its closure. So, many

mathematicians turned their attention to the generalizations of various concepts of

topology by considering preopen sets instead of open sets. Throughout this paper,

(X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed,

unless otherwise stated. If A ⊂ X , Cl(A) and Int(A) will denote the closure and

interior of A in (X, τ), respectively. The complement of a preopen set is called

a preclosed set. The intersection of all preclosed sets containing S is called the

preclosure of S and is denoted by p Cl(S). The preinterior of S is defined as the

union of all preopen sets contained in S and is denoted by p Int(S). The family of

all preopen subsets of X is denoted by PO(X). For each x ∈ X , the family of all
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preopen sets containing x is denoted by PO(X, x). In this paper, we obtain several

characteristics of pre-T2 of strongly preirresolute topological vector spaces and show

that the extreme point of convex subset of strongly preirresolute topological vector

space X lies on the boundary.

2. Preliminaries

Definition 2.1. A function f : X → Y is said to be

(1) preirresolute [6] if f−1(B) ∈ PO(X) for every B ∈ PO(Y ).

(2) p-continuous if f−1(B) is open in X for every B ∈ PO(Y ).

(3) M -preopen [5] if f(B) ∈ PO(Y ) for every B ∈ PO(X).

Definition 2.2. A topological space X is called pre-T2 [2] if for each two distinct

points x and y in X , there exist disjoint sets U, V ∈ PO(X) such that x ∈ U and

y ∈ V .

Definition 2.3. A topological space X is said to be strongly compact [4] if every

cover of X by preopen sets has a finite subcover.

Lemma 2.4 [3]. Let {Uα : α ∈ Λ} be a collection of preopen sets in a topological

space X . Then
⋃

α∈Λ

Uα is preopen.

Lemma 2.5 [3]. If U is preopen and U ∩ A = ∅, then U ∩ p Cl(A) = ∅.

3. Strongly preirresolute topological vector spaces

Definition 3.1. Let τ be a topology on a real vector space X such that

(1) the addition map S : X × X → X ,

(2) the scalar multiplication M : R× X → X

are both p-continuous. Then the pair (X, PO(X)) is called a strongly preirresolute

topological vector space (SPITVS).

Definition 3.2. A subset A of a SPITVS (X, PO(X)) is called a preneighbour-

hood (a neighbourhood) of x ∈ X , if there exists U ∈ PO(X) (U ∈ τ) such that

x ∈ U ⊂ A. The set of all preneighbourhoods of x ∈ X is denoted by Nx(X) or

simply Nx. In particular, the set of all preneighbourhoods of the zero vector of X is

denoted by N0(X) or N0.

The proof of the following theorem is obvious and hence omitted.
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Theorem 3.3. Let (X, PO(X)) be a SPITVS. For x ∈ X , the following assertions

hold:

(1) If U ∈ Nx, then x ∈ U .

(2) If U ∈ Nx and V is a neighbourhood of x, then U ∩ V ∈ Nx.

(3) If U ∈ Nx, then there exists V ∈ Nx such that U ∈ Ny for all y ∈ V .

(4) If U ∈ Nx and U ⊂ V , then V ∈ Nx.

(5) If U ∈ N0, then αU ∈ N0 for all α ∈ R, α 6= 0.

(6) U ∈ N0 if and only if x + U ∈ Nx.

Recall that a subset A of a vector space X is called balanced if αA ⊂ A for |α| 6 1

and absorbing if for every x ∈ X there exists ε > 0 such that αx ∈ A for |α| 6 ε. It

is called absolutely convex if it is both convex and balanced.

Theorem 3.4. Let (X, PO(X)) be a SPITVS. Then

(1) every U ∈ N0 is absorbing;

(2) for every U ∈ N0 there exists a balanced V ∈ N0 such that V ⊂ U .

P r o o f. The proof is clear. �

Theorem 3.5. Let (X, PO(X)) be a SPITVS. If A ⊂ X , then p Cl(A) =
⋂

U∈N0

(A + U). In particular, p Cl(A) ⊂ A + U for all U ∈ N0.

Theorem 3.6. Let (X, PO(X)) be a SPITVS. Then

(1) for every U ∈ N0 there exists V ∈ N0 such that V + V ⊂ U ;

(2) for every U ∈ N0 there exists a preclosed balanced V ∈ N0 such that V ⊂ U .

P r o o f. The proof is clear. �

Definition 3.7. A SPITVS (X, PO(X)) is called locally convex, if for all x ∈ X

every V ∈ Nx contains a convex U ∈ Nx.

Theorem 3.8. A SPITVS (X, PO(X)) is called locally convex if and only if every

V ∈ N0 contains a convex U ∈ N0.

The following result provides a characterization for pre-T2 of SPITVS.
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Theorem 3.9. Let X be a SPITVS. Then the following statements are equiva-

lent:

(1) X is pre-T2.

(2) If x ∈ X , x 6= 0, then there exists U ∈ N0 such that x ∈ U .

(3) If x, y ∈ X , x 6= y, then there exists V ∈ Nx such that y /∈ V .

P r o o f. By continuity of translation, it is suficient to prove the equivalence

between (1) and (2) only. Let x ∈ X, x 6= 0 by assumption; there exist U, V ∈ PO(X)

such that 0 ∈ U, x ∈ V and U ∩ V = ∅. Thus, U ∈ N0, V ∈ Nx and x /∈ U .

Conversely, let x, y ∈ X be such that x − y 6= 0. Then there exists U ∈ N0 such

that x − y /∈ U . But by part (1) of Theorem 3.6, there exists w ∈ N0 such that

w + w ⊂ U . By part (2) of Theorem 3.6, w can be assumed to be balanced. Let

V1 = x + w and V2 = y + w and note that V1 ∈ Nx, V2 ∈ Ny and V1 ∩ V2 = ∅,

since if a ∈ V1 ∩ V2 then −(z − x) ∈ w, as w is balanced and z − y ∈ w. It follows

that x − y = (z − y) + (−(z − x)) ∈ w + w ⊂ U , which is a contradiction. So, we

must have V1 ∩ V2 = ∅. Finally, by definition of the preneighbourhood, there exist

V ′

1 , V ′

2 ∈ PO(X) such that x ∈ V ′

1 ⊂ V1, y ∈ V ′

2 ⊂ V2 and V ′

1 ∩ V ′

2 = ∅. This shows

that X is pre-T2. �

The following result follows from Theorem 3.9.

Corollary 3.10. Let X be a SPITVS. Then the following statements are equiv-

alent:

(1) X is pre-T2.

(2)
⋂
{U : U ∈ N0} = {0}.

(3)
⋂
{U : U ∈ Nx} = {x}.

Theorem 3.11. A SPITVS X is pre-T2 if and only if every one-point set in X is

preclosed.

P r o o f. Let x ∈ X and y ∈ X − {x}. Then y − x 6= 0, and by assumption,

there exists U ∈ N0 such that y − x ∈ U . By part (2) of Theorem 3.6, there exists a

preclosed and balanced V ∈ N0 such that V ⊂ U . It follows that y − x /∈ V that is

y − x ∈ X − V . Thus y ∈ (X − V ) + {x}. But (x − V ) + {x} ∈ PO(X), since V is

preclosed, and (X −V )+ {x} ⊂ X −{x}. This shows that X −{x} ∈ PO(X), hence

{x} is preclosed. For the converse, let x ∈ X and assume that {x} is preclosed. Then

by Theorem 3.5 {x} = p Cl{x} =
⋂
{U + {x} : U ∈ N0} = {V : V ∈ Nx}, where

V = U + {x} ∈ Nx. By Corollary 3.10, X is pre-T2. �

Since translation is a prehomeomorphism and as a consequence of Theorem 3.11,

we have the following
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Corollary 3.12. A SPITVS X is pre-T2 if and only if {0} is preclosed.

Theorem 3.13. Let C, K be disjoint sets in a SPITVS X with C preclosed, K

strongly compact. Then there exists U ∈ N0(X) with (K + U) ∩ (C + U) = ∅.

P r o o f. If K = ∅, then there is nothing to prove. Otherwise, let x ∈ K by

the invariance with translation; we can assume x = 0. Then X \ C is a preopen

set of 0. Since addition is preirresolute and p-continuous, by 0 = 0 + 0 + 0, there

is a neighbourhood U and U ∈ N0(X) such that 3U = U + U + U ⊂ X − C. By

defining Ũ = U ∩ (−U) ⊂ U we have that Ũ is open, and hence preopen symmetric

and 3Ũ = Ũ + Ũ + Ũ ⊂ X − C. This means that ∅ = {3x, x ∈ Ũ} ∩ C = {2x, x ∈

UŨ} ∩ {y − x, y ∈ C, x ∈ Ũ} ⊃ Ũ ∩ (C + Ũ). This concludes the proof for a

single point. Since K is strongly compact, repeating the above argument for all

x ∈ K we obtain symmetric preopen sets Vx such that (x + 2Vx) ∩ (C + Vx) = ∅.

The sets {Vx : x ∈ K} are a preopen (and open) covering of K, but K is strongly

compact hence there is a finite number of points xi ∈ K, i = 1, . . . , n such that

K ⊂
n⋃

i=1

(xi + Vxi
). Define the preneighourhood V of 0 by V =

n⋂

i=1

Vxi
. Then

(K + V )∩ (C +V ) ⊂
n⋃

i=1

(xi + Vxi
+ V )∩ (C + V ) ⊂

n⋃

i=1

((xi + 2Vxi
)∩ (C ∩ Vxi

)) = ∅.

�

Corollary 3.14. Let C, K be disjoint sets in a SPITVS X with C preclosed, K

strongly compact. Then there exists U ∈ N0(X) with p Cl(K + U) ∩ (C + U) = ∅.

P r o o f. Since C +U is a union of preopen sets y +U for y ∈ C the proof follows

directly from Theorems 3.5 and 3.4. �

Corollary 3.15. A SPITVS X is a pre-T2 space.

P r o o f. Take K = {x} and C = {y} in Theorem 3.13. �

Let (X, ‖ · ‖) be a normed space over K. We denote by X∗ the vector space of all

linear maps from X to X . Space X∗ is called the algebraic dual of X . Note that for

any f ∈ X∗ and x ∈ X we write 〈x, f〉 = f(x) [1].

Theorem 3.16. Let (X, PO(X)) be a SPITVS and 0 6= f ∈ X∗. Then f(G) is

preopen in K whenever G is preopen in X .

P r o o f. Let G be a nonempty preopen set. Then one can assume that there

is 0 6= x0 ∈ X such that f(x0) = 1. For any a ∈ G, it is required to show that

f(a) ∈ p Int(f(G)). Since G ∈ Na(X) by Theorem 3.3 we have G − a ∈ N0(X).

Also by Theorem 3.4 G− a is absorbing, that is, absorbs x0, namely there exists an
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ε > 0 such that λx0 ∈ G − a whenever λ ∈ ℜ with |λ| 6 ε. Now for any β ∈ ℜ with

|β − f(a)| 6 ε we have (β − f(A))x0 ∈ G − a, hence f((β − f(a)x0)) ∈ f(G − a) ⇒

(β − f(a))f(x0) ∈ f(G− a) ⇒ (β − f(a))(1) ∈ f(G− a) = f(G)− f(a). This imples

that β ∈ f(G) and f(a) ∈ [β− ε, β + ε]. Thus f(a) ∈ Int(f(G)) ⊂ p Int(f(G)); hence

f(G) = p Int(f(G)). �

Lemma 3.17 [1]. Let X be a vector space and ∅ 6= K ⊂ X . For a ∈ K, the

following statements are equivalent:

(1) a is an extreme point of K,

(2) if x, y ∈ k are such that a = 1

2
(x + y), then a = x = y,

(3) let x, y ∈ k be such that x 6= y, let λ ∈ (0, 1) and a = λx + (1 − λ)y. Then we

have either λ = 0 or λ = 1.

Theorem 3.18. Let (X, PO(X)) be a SPITVS and K a convex subset of X .

Then (p Int(K)) ∩ (ðK) = ∅.

P r o o f. If p Int(K) = ∅, the result is trivial. Suppose that p Int(K) 6= ∅

and x ∈ p Int(K). Then there exists V ∈ N0(X) (a preneighbourhood) such that

x + V ⊂ K. As the map Φ: ℜ → X , where Φ(µ) = µx is continuous at µ = 1,

for this preneighbourhood x + V there is an r > 0 such that µx ∈ x + V whenever

|µ− 1| 6 r. In particular, we have (1 + r)x ∈ x + V ⊂ K and (1− r)x ∈ x + V ⊂ K.

Now consider x = λ(1 + r)x + (1 − λ)(1 − r)x and set λ = 1/2. Consequently, we

have x = 1/2(1 + r)x + (1 − 1/2)(1 − r)x, which implies that x is not an extreme

point of K. �
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