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Abstract. The k-core of a graph G, Ck(G), is the maximal induced subgraph H ⊆ G

such that δ(G) > k, if it exists. For k > 0, the k-shell of a graph G is the subgraph of G

induced by the edges contained in the k-core and not contained in the (k + 1)-core. The
core number of a vertex is the largest value for k such that v ∈ Ck(G), and the maximum

core number of a graph, Ĉ(G), is the maximum of the core numbers of the vertices of G.

A graph G is k-monocore if Ĉ(G) = δ(G) = k.
This paper discusses some basic results on the structure of k-cores and k-shells. In

particular, an operation characterization of 2-monocore graphs is proven. Some applications
of cores and shells to graph coloring and domination are considered.
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1. Introduction

One of the basic properties of graphs is the existence of subgraphs with specified

degree conditions. (See [11] and [29] for basic terminology.)

Definition 1.1. The k-core of a graph G, Ck(G), is the maximal induced sub-

graph H ⊆ G such that δ(G) > k, if it exists.

Cores were introduced by S. B. Seidman [26] and have been studied extensively

in [6]. They have mostly been studied in the context of random graph theory

(e.g. [21]).

Cores have applications outside of mathematics. Seidman briefly explores social

networks in his paper. Cores have applications in computer science to network

visualization [2], [17]. They also have applications in bioinformatics [1], [3], [31].

It is easy to show that the k-core is well-defined and that the cores of a graph are

nested.
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Definition 1.2. The core number of a vertex, C(v), is the largest value for k

such that v ∈ Ck(G). (This has also been named the coreness of v.) The maximum

core number of a graph, Ĉ(G), is the maximum of the core numbers of the vertices

of G. Given k = Ĉ(G), the maximum core of G is Ck(G).

It is immediate that δ(G) 6 Ĉ(G) 6 △(G). We can characterize the extremal

graphs for the upper bound. For simplicity, we restrict the statement to connected

graphs. (See also [29], p. 199.)

Proposition 1.1. Let G be a connected graph. Then Ĉ(G) = △(G) ⇐⇒ G is

regular.

P r o o f. If G is regular, then its maximum and minimum degrees are equal, so

the result is obvious.

For the converse, let Ĉ(G) = △(G) = k. Then G has a subgraph H with δ(H) =

△(G) > △(H), so H is k-regular. If H were not all of G, then since G is connected,

some vertex of H would have a neighbor not in H , implying that △(G) > △(H) =

δ(H) = △(G). But this is not the case, so G = H , and G is regular. �

We also consider the extremal graphs for the lower bound δ(G) 6 Ĉ(G).

Definition 1.3. A graph G is k-monocore if Ĉ(G) = δ(G). A graph is monocore

if it is k-monocore for some k.

There is a simple algorithm for determining the k-core of a graph, which we shall

call the k-core algorithm.

A l g o r i t hm 1.1 (k-Core Algorithm). Iteratively delete vertices of degree less

than k until none remain.

It is straightforward to show that this will produce the k-core if it exists. The

k-core algorithm can be implemented in polynomial time. If an adjacency matrix is

employed, it can be implemented in O(n2) time, while [4] showed that using an edge

list, it can be implemented in O(m) time, which is better for sparce graphs.

The core number algorithm successively deletes vertices of relatively small degree

in a graph until none remain. We can define a sequence that orders the vertices of a

graph based on this process. We may also wish to construct a graph by successively

adding vertices of relatively small degree.

Definition 1.4. A deletion sequence of a graph G is a sequence of its vertices

formed by iterating the operation of deleting a vertex of smallest degree and adding

it to the sequence until no vertices remain. A construction sequence of a graph is

the reversal of a corresponding deletion sequence.
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We can also consider the degrees of vertices when deleted in a deletion sequence.

Definition 1.5. A graph is k-degenerate if its vertices can be successively deleted

so that when deleted, each has degree at most k. The degeneracy of a graph is the

smallest k such that it is k-degenerate.

Graphs that are k-degenerate were defined in [20] and have been explored re-

cently in [5]. As a corollary of the k-core algorithm, we have the following min-max

relationship.

Corollary 1.1. For any graph, its maximum core number is equal to its degen-

eracy.

Definition 1.6. A graph is k-core-free if it does not contain a k-core.

A graph is maximal with respect to some property if no edge can be added without

violating this property. The k-core algorithm also implies that a graph G is k-

degenerate if and only if G is (k +1)-core-free, and maximal k-degenerate graphs are

equivalent to maximal (k + 1)-core-free graphs.

We now determine the cores of some special classes of graphs. It is immediate

that the k-core of a graph is the union of the k-cores of its components. It turns out

that many important classes of graphs are monocore. Table 1 summarizes some of

the most common. The verification of their core structure is straightforward.

Class of Graphs Maximum Core Number

r-regular r

nontrivial trees 1
forests (no trivial components) 1
complete bipartite Ka,b, a 6 b a

Ka1,...,an
, a1 6 a2 6 . . . 6 an a1 + . . . + an−1

wheels 3
maximal outerplanar, n > 3 2

Table 1. Classes of monocore graphs.

As a consequence of a much more difficult theorem of Mader ([8], pp. 21–24), it

follows that if a graph is minimally k-connected, then it is k-monocore. For more

general classes of graphs, we may only be able to bound the maximum core number.

For example, it is well-known that any planar graph G is 5-degenerate, that is,

Ĉ(G) 6 5.
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2. k-shells

We have seen that the cores of a graph are nested. This in turn can be used to

define a decomposition of a graph into subgraphs defined based on those parts of the

graph contained in one core and not in the next higher number core.

Definition 2.1. For k > 0, the k-shell of a graph G, Sk(G), is the subgraph of G

induced by the edges contained in the k-core and not contained in the (k + 1)-core.

For k = 0, the 0-shell of G consists of the vertices of the 0-core not contained in the

1-core.

Thus the 0-shell is simply the set of isolated vertices of G. If M = Ĉ(G), the

M -shell of G is just the maximum core of G. As intended, the k-shells of G form

a decomposition of G. Unless each k-shell is a separate component or components

of G, the shells of G will have some vertices in common.

Definition 2.2. The k-boundary of G, Bk(G), is the set of vertices contained in

both the k-shell and the (k + 1)-core.

Thus a vertex is contained in the k-boundary exactly when it is contained in the

(k + 1)-core and adjacent to a vertex in the k-core. Sometimes it is convenient to

exclude the boundary when considering the shell.

Definition 2.3. The proper k-shell of G, S′

k(G), is the subgraph of G induced

by the non-boundary vertices of the k-shell. The order of the k-shell of G is defined

to be the order of the proper k-shell.

Thus the vertices of the proper k-shells partition the vertex set of G. A vertex

has core number k if and only if it is contained in the proper k-shell of G. Thus the

proper k-shell is induced by the vertices with core number k.

Note that the proper k-shell was called the k-remainder of G by Seidman [26] in

the 1983 paper that introduced k-cores. That term does not appear to have been

used since.

We would like to know which graphs can be k-shells.

Theorem 2.1. A graph F with vertex subset B is a k-shell of a graph with

boundary set B if and only if no component of F has vertices entirely in B, δF (V (F )\

B) = k, and F contains no subgraph H with δH(V (H) \ B) > k + 1.

P r o o f. (⇒) Let F be a k-shell of graph G with boundary set B. If any

component of F had all vertices in B, it would be contained in the (k +1)-core of G.

If a vertex v ∈ V (F ) \ B had d(v) < k, it would not be in the k-core of G. If F had

such a subgraph H , it would be contained in the (k + 1)-core of G.
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(⇐) Let F be a graph satisfying these conditions. Overlap each vertex in B with a

distinct vertex of a (k +1)-core G with sufficiently large order. Then F is the k-shell

of the resulting graph. �

The 1-shell of a graph can be characterized in terms of a familiar class of graphs.

Corollary 2.1. The 1-shell of G, if it exists, is a forest with no trivial components

and at most one boundary vertex per component.

We can also characterize graphs that can be proper k-shells. Certainly such a graph

cannot contain a (k + 1)-core. This obvious necessary condition is also sufficient.

Proposition 2.1. A graph F is a proper k-shell if and only if F does not contain

a (k + 1)-core.

P r o o f. The forward direction is obvious. Let F be a graph that does not

contain a (k + 1)-core. Let M be a (k + 1)-core. For each vertex v ∈ V (F ), let

a(v) = max{k − d(v), 0}. For each vertex v ∈ V (F ), take a(v) copies of M and link

each to v by an edge between v and a vertex in M . The resulting graph G has F as

its proper k-shell. �

Corollary 2.2. A graph F can be a proper 1-shell if and only if F is a forest.

We can determine sharp bounds for the size of a k-shell.

Proposition 2.2. The size m of a k-shell with order n satisfies ⌈ 1
2k · n⌉ 6 m 6

k · n.

P r o o f. The non-boundary vertices of the k-shell of G can be successively

deleted so that when deleted, they have degree at most k. Thus m 6 k · n. The

non-boundary vertices have degree at least k, so there are at least 1
2k · n edges. �

The lower bound is sharp for all k. For k or n even, the extremal graphs have

every component k-regular, and no vertices adjacent to the (k + 1)-core, if it exists.

For k and n both odd, the extremal graphs have a single component with one vertex

of degree k+1 and all others of degree k, and no vertices adjacent to the (k+1)-core,

if it exists.

The upper bound is sharp for all k < Ĉ(G). The extremal graphs have vertices

having degree exactly k when deleted, so they can be constructed by reversing this

process. Thus they must have at least k boundary vertices. For k = Ĉ(G), the

maximum core is k-degenerate, so it can have size at most k · n −
(
k+1
2

)
. Thus we

have the following corollary.
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Corollary 2.3. Let sk be the order of the k-shell of G, 0 6 k 6 r = Ĉ(G). Then

the size m of G satisfies

r∑

k=1

⌈k · sk

2

⌉
6 m 6

r∑

k=1

k · sk −

(
k + 1

2

)
.

Both upper and lower bounds are sharp. The extremal graphs have each k-shell

extremal, as above.

The bound on the size of a k-shell can be improved by considering the number of

boundary vertices.

Proposition 2.3. The size m of a k-shell with order n and b boundary vertices

satisfies ⌈k · n + b

2

⌉
6 m 6 k · n −

(
k − b + 1

2

)
.

P r o o f. When deleted, the ith to last vertex can have degree at most b + i − 1.

Thus the upper bound must be reduced by
k−b∑
i=1

i = (k−b)(k−b+1)
2 =

(
k−b+1

2

)
. The

boundary vertices each contribute degree at least one to the lower bound. The result

follows. �

The lower bound is sharp for all k. If k ·n+b is even, then every component of the

extremal graphs connected to the (k + 1)-shell can be formed in the following way.

Start with a connected k-regular graph with an edge cut of bi edges. Take the half

of the graph on one side of the edge cut and add edges joining the vertices adjacent

to the cut to bi boundary vertices. Add enough components so that the number

of boundary vertices and non-boundary vertices sum to the appropriate values. If

k ·n+ b is odd, the construction is similar, but there must be one vertex with degree

k + 1.

The upper bound is sharp for all k, and the extremal graphs are graphs whose

vertices have the maximum possible degree for deletion at each step.

Corollary 2.4. Let sk be the order of the k-shell of G and let bk be the order of

the k-boundary of G, 0 6 k 6 r = Ĉ(G). Then the size m of G satisfies

r∑

k=1

⌈k · sk + bk

2

⌉
6 m 6

r∑

k=1

(
k · sk −

(
k − bk + 1

2

))
.

Note that the maximum core must have no boundary vertices.
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3. Applications of k-shells

Cores and shells can be applied to other problems in graph theory.

3.1. Vertex coloring. Cores are essential to a basic upper bound on chromatic

number. Establish a deletion sequence for a graph by successively deleting vertices

of smallest degree. This orders the vertices in terms of core number. Reverse this

sequence to obtain a construction sequence for the graph. Color the graph using this

sequence. We obtain a bound first proved by Szekeres and Wilf in 1968 [28], restated

in terms of cores.

Theorem 3.1 (The core number bound). For any graph G, we have χ(G) 6

1 + Ĉ(G).

P r o o f. Establish a construction sequence for G. Each vertex has degree at

most equal to its core number when colored. Coloring it uses at most one more

color. Thus χ(G) 6 1 + Ĉ(G). �

The core number bound implies the corollary that if G has a k-shell, then

χ(Sk(G)) 6 k + 1. This immediately implies that if G has a 2-core, then χ(G) =

χ(C2(G)). This is because any nonempty graph requires at least two colors, while

the 1-shell of a graph is a forest which requires at most two colors. Similarly, we

find that if G has a 3-core which is not bipartite, then χ(G) = χ(C3(G)). Thus the

problem of optimally coloring a graph can be readily reduced to coloring its 3-core.

Similar arguments apply to list coloring.

Definition 3.1. A list coloring of a graph begins with lists of length k assigned

to each vertex and chooses a color from each list to obtain a proper vertex color-

ing. A graph G is k-choosable if any assignment of lists to the vertices permits a

proper coloring. The list chromatic number χl(G) is the smallest k such that G is

k-choosable.

The same argument as before implies that χl(G) 6 1 + Ĉ(G). Hence we see

that every tree is 2-choosable. Thus it is immediate that if G has a 2-core, then

χl(G) = χl(C2(G)).

Erdős, Rubin, and Taylor [16] characterized 2-choosable graphs. The θ-graph θi,j,k

is the graph formed by identifying the endpoints of three paths of lengths i, j, and k.

They showed that a connected graph G is 2-choosable if and only if it is a tree or

its 2-core is an even cycle or θ2,2,2k for k > 1. Thus every 2-monocore graph G that

is not an even cycle or θ2,2,2k, k > 1, has χl(G) = 3. Note the theorem implies that

every 2-choosable graph has no 3-core. This implies that if G has a 3-core, then

χl(G) = χl(C3(G)).
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A more general problem than determining the chromatic number of a graph is

to determine the number of distinct colorings of a graph using k colors, for any k.

Specifically, the problem is to determine a function that gives the number of distinct

k-colorings of G in terms of k. This function must be a polynomial, so it is called

the chromatic polynomial of G. (See [12], pp. 211–216 for background.)

Algorithms exist to determine this polynomial, but they are not efficient, so deter-

mining the chromatic polynomial is difficult for large graphs. However, this problem

can readily be reduced to the 2-core. For each vertex of degree one, one choice is

excluded, so there are k − 1 colors available for it. This leads to the next theorem.

Theorem 3.2. Let G be a connected 1-core containing a 2-core, n1 the order of

its 1-shell. Then

χ(G, k) = (k − 1)n1χ(C2(G), k).

P r o o f. If n1 = 0, then

χ(G, k) = χ(C2(G), k) = (k − 1)0χ(C2(G), k).

Assume the result holds for order n1 = r and let G have a 1-shell of order r + 1.

Then G has a leaf vertex v. Let H = G − v and e = uv, the edge incident with v.

By the chromatic recurrence,

χ(G, k) = χ(G − e, k) − χ(G · e, k) = k · χ(H, k) − χ(H, k) = (k − 1) · χ(H, k)

= (k − 1)(k − 1)r · χ(C2(G), k) = (k − 1)r+1 · χ(C2(G), k).

�

3.2. Edge coloring. A proper edge coloring of a graph assigns a color to each

edge so that adjacent edges are colored differently. The edge chromatic number of

a graph, χ1(G), is the smallest number of edges that can be used in a proper edge

coloring. Clearly the edge chromatic number is at least as large as the maximum

degree. Vizing showed that it is never more than △(G) + 1. A graph is called class

one if χ(G) = △(G), and class two if χ(G) = △(G) + 1. Determining which of the

two is the case is a difficult problem in general.

Theorem 3.3. Let G be a graph with D the maximum degree in G of the vertices

in the 1-shell of G. Then

χ1(G) = max{D, χ1(C2(G))}.
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P r o o f. Certainly χ1(G) > D and since the 2-core of G is contained in G,

χ1(G) > χ1(C2(G)).

To show equality, color the 2-core of G with χ1(C2(G)) colors. Now color the 1-

shell using a construction sequence. Adding an edge adjacent to a boundary vertex

will require an additional color if and only if edges of every color used up to that

point are incident with v. This holds for adding any edge of the 1-shell. Thus we

have equality. �

It is not hard to see that every tree is class one. Since the 1-shell is a forest, we see

that G is class two if and only if the 2-core of G is class two and △(G) = △(C2(G)).

Similar techniques are useful for studying other coloring problems. These include

arboricity and point partition numbers (see [6]) and 2-tone coloring (see [7]).

3.3. Domination. A set of vertices of a graph is a dominating set if each vertex

of G is either in the set or adjacent to a vertex in the set. The domination number

of a graph γ(G) is the minimum size of a dominating set. See [18] for background.

Many authors have provided upper bounds for the domination number of graphs

with some minimum degree. These results are summarized in the table, where there

are seven small exceptional graphs for k = 2. Note also that after the bounds for

1 6 k 6 3 had been proved, it was conjectured in [18] that for k-cores, k > 1,

γ(G) 6 k
3k−1 n. The bound for large k, which can be proved by probabilistic means,

is superior to this conjecture for k > 7. The conjecture was verified for the cases

4 6 k 6 6 in three subsequent papers.

k Bound Citations

0 n

1 1
2n [23]

2 2
5n (G 6= C4, n 6= 7) [22]

3 3
8n [24]

4 4
11n [27]

5 5
14n [32]

6 6
17n [19]

large [1 − k( 1
k+1 )1+

1

k ]n [9, 10]

Table 2. Bounds on the domination number of k-cores

Combining these results allows us to obtain the following upper bound.
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Theorem 3.4. Let nk be the number of vertices in the (non-proper) k-shell of G

and suppose the 2-shell of G has no component being one of the seven exceptional

graphs for k = 2. Then

γ(G) 6 n0 +

6∑

k=1

k

3k − 1
nk +

∞∑

k=7

[
1 − k

( 1

k + 1

)1+1/k]
nk.

How good a bound is will depend on the graph. It depends on a construction that

dominates every boundary vertex at least twice, so it will tend to be worse when the

boundaries are larger.

We may improve this bound with more information on the structure of the shells.

Since the 2-core and 1-shell decompose a nontrivial connected graph, we consider

domination of trees. There is a straightforward algorithm to determine the domina-

tion number of a tree detailed in [18]. It starts from the leaves of the tree and works

inward, determining a minimal dominating set.

Corollary 3.1. Let G be a graph with a 1-shell composed of rooted trees Ti with

domination numbers γ(Ti). Let r′ be the number of roots or vertices adjacent to

roots contained in the dominating sets Di produced by the algorithm. Then

γ(C2(G)) +
∑

γ(Ti) − r′ 6 γ(G) 6 γ(C2(G)) +
∑

γ(Ti)

In particular, if no component of the 2-core is one of the seven exceptional graphs,

then γ(G) 6 2
5 |C2(G)| +

∑
γ(Ti).

P r o o f. The algorithm optimally dominates the 1-shell, possibly overlapping

the 2-core, producing an overestimate of the domination number. Removing the

vertices in the 2-core or dominating part of the 2-core produces an underestimate.

The final bound follows from the bound for k = 2. �

We note interesting contrast between vertex coloring and domination. In both

cases, we have employed the decomposition of a graph into its 1-shell and 2-core.

But when coloring, the trees of the 1-shell are simply annoying appendages to be

lopped off toward determining the chromatic number. In contrast, the trees provide

a cornerstone upon which to build the foundation of an optimal dominating set,

greatly reducing the number of possible dominating sets that need to be checked.
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4. The structure of 2-cores

We would like to understand the structure of k-cores. We have already seen several

structural results. Certainly G is its own 0-core, and the 1-core of G is formed by

deleting all isolated vertices of G. The structure of the 2-core of a graph is less

trivial. The following result was observed by Seidman [26].

Proposition 4.1. If G is connected and has a 2-core, then its 2-core is connected.

The 3-core of a connected graph need not be connected. For example, joining two

vertices of two (k + 1)-cliques by a path of length at least two yields a connected

graph with a disconnected k-core for k > 3.

One way to characterize 2-cores is with a local characterization. That is, describing

the structure of G ‘near’ an arbitrary vertex v.

Theorem 4.1. A vertex v of G is contained in the 2-core of G if and only if v is

on a cycle or v is on a path between vertices of distinct cycles.

P r o o f. (⇐) Let v be on a cycle or a path between vertices of distinct cycles.

Both such graphs are themselves 2-cores, so v is in the 2-core of G.

(⇒) Let v be in the 2-core of G. If v is on a cycle, we are done. If not, then

consider a longest path P in the 2-core through v. All the edges incident with v

must be bridges, so v is in the interior of P . An end-vertex u of P must have

another neighbor, which cannot be a new vertex, so it must be on P . If its neighbor

were on the opposite side of v, then v would be on a cycle. Thus its neighbor must

be between u and v on P . Repeating this argument for the other end of P shows

that v is on a path between vertices on cycles. �

This characterization does not extend easily to higher values of k. The key to the

local characterization for the 2-core is the fact that every 2-core contains a simple

subgraph that is itself a 2-core. But as we shall see later on, there are arbitrarily

large k-cores that do not contain any proper subgraph which is a k-core for k > 3.

It is also possible to offer a more global characterization of the structure of 2-cores.

Corollary 4.1. A graph G is a 2-core ⇐⇒ every end-block of G is 2-connected.

This leads to another corollary.

Definition 4.1. A block-tree decomposition of a 2-core G is a decomposition

of G into 2-connected blocks and trees so that if any tree T is nontrivial, each

end-vertex of T is shared with a distinct 2-connected block, if T is trivial, it is a cut-

vertex contained in at least two 2-connected blocks, and there are no two disjoint

paths between two distinct blocks.
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Corollary 4.2. Every 2-core has a unique block-tree decomposition.

P r o o f. Let F be the subgraph of a 2-core G induced by the bridges and cut-

vertices of G. Then F is acyclic, so it is a forest. Break each component of F into

branches at any vertex contained in a component of G − F . Also break G − F into

blocks, which must be 2-connected. By the previous corollary, each end-vertex of

each of the trees must overlap a 2-connected block. If any block contained two end-

vertices of the same tree, then there would be a cycle containing edges from the tree.

If there were two disjoint paths between two blocks, they would not be distinct. This

decomposition is unique because the block decomposition of a graph is unique and

any blocks that are K2 and on a path between 2-connected blocks that does not go

through any other 2-connected blocks must be in the same tree. �

These corollaries provide no help when the 2-core in question is itself 2-connected.

But there is a well-established description of the structure of 2-connected graphs.

See [29], p. 163 and [8], p. 15 for some such results.

We can state an operation characterization of 2-cores. An operation characteriza-

tion is a rule or rules that can be used to construct all graphs in some class of graphs.

An ear of a graph is a maximal path whose internal vertices have degree two.

Theorem 4.2. A graph G is a connected 2-core ⇐⇒ it is contained in the set S

whose members can be constructed by the following rules.

1. All cycles are in S.

2. Given one or two graphs in S, the result of joining the ends of a (possibly trivial)

path to it or them is in S.

P r o o f. (⇐) A cycle has minimum degree 2, and applying step 2 does not create

any vertices of lower degree, so a graph in S is a 2-core.

(⇒) This is clearly true if G has order 3. Assume the result holds for orders up to

r, and let G have order r + 1. Let P be an ear or cut-vertex of G. Making P = K2

is only necessary when G has minimum degree at least 3 and is 2-connected. In this

case, edges can be deleted until one of these conditions fails to hold. Then if P has

internal vertices, deleting them results in a component or components with order at

most r. The same is true if P is a cut-vertex, and G is split into blocks. Then the

result follows by induction. �

We can also describe 2-monocore graphs by an operation characterization.

Theorem 4.3. The set of connected 2-monocore graphs is equivalent to the set

S of graphs that can be constructed using the following rules.

1. All cycles are in S.
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2. Given one or two graphs in S, the graph H formed by identifying the ends of a

path of length at least two with vertices of the graph or graphs is in S.

3. Given a graph G in S, form H by taking a cycle and either identifying a vertex

of the cycle with a vertex of G or adding an edge between one vertex in each.

P r o o f. (⇐) We first show that if G is in S, then G is 2-monocore. Certainly

cycles are 2-monocore. Let H be formed from G in S by applying rule 2. Then H has

minimum degree 2 and since G is 3-core-free and internal vertices of the path have

degree 2, H is also 3-core-free. Thus H is 2-monocore. The same argument works

for adding a path between two graphs. Let H be formed from G in S by applying

rule 3. Then H has minimum degree 2 and since G is 3-core-free and all but one

vertex of the cycle have degree 2, H is also 3-core-free. Thus H is 2-monocore.

(⇒) We now show that if G is 2-monocore, it is in S. This clearly holds for all

cycles, including C3, so assume it holds for all 2-monocore graphs of order up to r.

Let G be 2-monocore of order r +1 and not a cycle. Then G has minimum degree 2,

so it has a vertex v of degree 2. Then v is contained in P , an ear of length at least

2, or C, a cycle which has all but one vertex of degree 2.

Case 1. G has an ear P . If G − P is disconnected, then the components of G are

2-monocore, and hence in S. Then G can be formed from them using rule 2, so G is

in S. If G − P is connected, then it is 2-monocore, and hence in S. Then G can be

formed from G − P using rule 2, so G is in S.

Case 2. We may assume that G has no such ear P . Then G has a cycle C with all

but one vertex of degree 2, and one vertex u of degree more than 2. If u has degree

at least 4 in G, then let H be formed by deleting all the vertices of C except u. Then

H is 2-monocore, and G can be formed from it using rule 3. If d(u) = 3, then its

neighbor not in the cycle has degree at least three, so G − C is 2-monocore, and G

can be formed from it by using rule 3. �

We can similarly describe the structure of 2-shells.

Corollary 4.3. The set of 2-shells is equivalent to the set S′ of graphs constructed

using the following rules.

1. All graphs in the set S from Theorem 4.3 and all 3-cores are in S′.

2. Given one or two graphs in S′, the graph H formed by identifying the ends of

a path of length at least two with vertices of the graph or graphs is in S′.

3. Given a graph G in S′, form H by taking a cycle and either identifying a vertex

of the cycle with a vertex of G or adding an edge between one vertex in each.

Finally, delete the 3-cores (keeping boundary vertices).

The proof is essentially the same as that of the previous theorem.
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For k > 3, only scattered results on the structure of k-cores exist. Dirac [14]

showed that every 3-core contains a subdivision of K4. For 4-cores, we have the fact

([8], p. 113) that if G is a 4-core other than K5, then G contains two independent

cycles.

5. Applications of monocore graphs

Some results naturally break into cases depending on whether a graph is monocore.

The core number bound is useful in proving an upper bound for the chromatic

number in terms of order and size only. This theorem is due to Coffman, Hakimi,

and Schmeichel [13]. The proof below is a simplification of the original proof.

Theorem 5.1. Let G be connected with a 2-core and order n, size m. If the

2-core of G is not a clique or an odd cycle, then

χ(G) 6

⌊3 +
√

1 + 8(m − n)

2

⌋
.

P r o o f. Let d = Ĉ(G). Deleting the 1-shell of G leaves m − n unchanged, so

we may assume G is a 2-core. If G is an even cycle then the bound is 2, which is

exact. If G is any other 2-monocore graph, then m > n + 1 and the bound is at

least 3, so the inequality holds. Now we may assume d > 3, and we wish to show

that m > n +
(
d
2

)
. Since G is not complete, d 6 n − 2.

Let H be the maximum core of G with order r > d + 1 and size at least 1
2r · d. If

G is d-monocore, then

m >

⌈n · d

2

⌉
= n +

⌈n(d − 2)

2

⌉
> n +

⌈ (d + 2)(d − 2)

2

⌉
> n +

(
d

2

)
.

If G is not monocore, the size of G−H is at least n− r+1 by Proposition 2.3. Then

m > n − r + 1 +
r · d

2
> n + 1 +

r(d − 2)

2
> n + 1 +

(d + 1)(d − 2)

2
= n +

(
d

2

)
.

Then d2 − d − 2(m − n) 6 0, so by the core number bound,

χ(G) 6 1 + d 6
3 +

√
1 + 8(m − n)

2
.

�
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There is another upper bound for the chromatic number worth considering. It

involves the eigenvalues of a graph. Any graph can be represented by its (square)

adjacency matrix, and its eigenvalues can be computed. The spectrum of a graph is

defined to be the sequence of eigenvalues λ1 > λ2 > . . . > λn, so that λ1 = λ1(G) is

the largest eigenvalue of the graph. The following theorem is due to Wilf [30].

Theorem 5.2 (The eigenvalue bound). Let G be a connected graph. Then

χ(G) 6 1 + λ1, with equality exactly for complete graphs and odd cycles.

The following results on eigenvalues of graphs are useful. See [25] for background.

Theorem 5.3 (Properties of eigenvalues of graphs).

(a) Let d̄ be the average degree of G and ∆ its maximum degree. Then d̄ 6 λ1 6 ∆

with equality in both cases exactly when G is regular.

(b) If G is connected, λ2 < λ1. If H is an induced subgraph of G, then λ1(H) <

λ1(G).

We can show that the core number bound is superior to the eigenvalue bound and

determine the extremal graphs. The proof uses monocore graphs.

Theorem 5.4. A connected graph G has 1 + Ĉ(G) 6 1 + λ1(G), with equality

exactly for regular graphs.

P r o o f. Let k = Ĉ(G), H = Ck(G). Then Ĉ(G) = Ĉ(H) = δ(H) 6 λ1(H) 6

λ1(G).

If G is regular, then Ĉ(G) = δ(G) = λ1(G) = ∆(G). Assume G is nonregular.

Suppose first that G is monocore. Then Ĉ(G) = δ(G) < d̄(G) < λ1(G). Next

suppose that G is not monocore. Then Ĉ(G) = Ĉ(H) = δ(H) 6 λ1(H) < λ1(G), so

the result holds in either case. �

A c k n ow l e d g em e n t. Thanks to Allen Schwenk for suggesting the topic of

k-cores of graphs for me to research and for being my doctoral advisor.
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