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Abstract. Given a nonempty convex set X in a locally convex Hausdorff topological
vector space, a nonempty set Y and two set-valued mappings T : X ⇒ X, S : Y ⇒ X we
prove that under suitable conditions one can find an x ∈ X which is simultaneously a fixed
point for T and a common point for the family of values of S. Applying our intersection
theorem we establish a common fixed point theorem, a saddle point theorem, as well as
existence results for the solutions of some equilibrium and complementarity problems.
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1. Introduction and preliminaries

Many existence problems in mathematics can be reduced to the following, so called

intersection problem: Let X and Y be nonempty sets and S : Y ⇒ X a set-valued

mapping with nonempty values. Now the question is: when does the family {S(y) :

y ∈ Y } have nonempty intersection, that is
⋂

y∈Y

S(y) 6= ∅? An intersection point can

be viewed as a fixed point, a coincidence point, an equilibrium point, a saddle point

etc. In 1961 [8], Ky Fan extended the famous Knaster-Kuratowski-Mazurkiewicz

(simply, KKM) theorem to arbitrary topological vector spaces obtaining a remarkable

intersection theorem for the family of values of a set-valued mapping. Since then

many intersection theorems have appeared (see [1], [5], [7], [13], [15], [17]). The main

theorem of our paper fits into this interesting group of results. More precisely, given

a nonempty convex set X in a locally convex Hausdorff topological vector space, a

nonempty set Y and two set-valued mappings T : X ⇒ X , S : Y ⇒ X we prove that

under suitable conditions one can find an x ∈ X which is simultaneously a fixed point

for T and a common point for the family of values of S. Applying our intersection

theorem we establish a common fixed point theorem, a saddle point theorem, as
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well as existence results for the solutions of some equilibrium and complementarity

problems.

For the remainder of this section we present some definitions and known results.

If X and Y are topological spaces, a set-valued mapping T : X ⇒ Y is said to

be: (i) upper semicontinuous if for every closed subset B of Y the set {x ∈ X :

T (x) ∩ B 6= ∅} is closed; (ii) closed if its graph (that is, the set GrT = {(x, y) ∈

X × Y : y ∈ T (x)}) is a closed subset of X × Y ; (iii) compact if T (X) is contained

in a compact subset of Y .

The following lemma collects known facts about upper semicontinuous mappings

(see [2]):

Lemma 1.1. Let T : X ⇒ Y be a set-valued mapping with nonempty values.

(i) If T has compact values, then T is upper semicontinuous if and only if for every

net {xt} in X converging to x ∈ X and for any net {yt} with yt ∈ T (xt) there

exist y ∈ T (x) and a subnet {ytα
} of {yt} converging to y.

(ii) If T is closed and compact then it is upper semiconinuous.

The proof of the main result of the paper will be relied on the following

Lemma 1.2. If X is a convex set in a locally convex topological vector space and

T : X ⇒ X is a compact upper semicontinuous mapping with nonempty compact

convex values then T has a fixed point.

The previous lemma is the well-known Himmelberg fixed point theorem [10]. When

X is compact, it reduces to the Kakutani-Fan-Glicksberg fixed point theorem.

Let X be a convex set in a vector space, Z a vector space and C a convex cone in

Z. A set-valued mapping F : X ⇒ Z is said to be:

(i) C-convex if λF (x1)+ (1−λ)F (x2) ⊆ F (λx1 + (1−λ)x2)+ C for all x1, x2 ∈ X

and λ ∈ [0, 1];

(ii) C-concave if F (λx1 +(1−λ)x2) ⊆ λF (x1)+(1−λ)F (x2)+C for all x1, x2 ∈ X

and λ ∈ [0, 1];

(iii) C-quasiconvex if for each x1, x2 ∈ X and λ ∈ [0, 1], either F (x1) ⊆ F (λx1 +

(1 − λ)x2) + C or F (x2) ⊆ F (λx1 + (1 − λ)x2) + C;

(iv) convex (concave, quasiconvex ) if it is C-convex (C-concave, C-quaiconvex, re-

spectively) with C = {0Z} (0Z being the zero element of the vector space Z).

In the case of the single-valued mappings (functions) the corresponding concepts are

obtained by replacing the inclusions ⊆ by ∈.
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2. Main result

Given a set-valued mapping S : Y ⇒ X , the fiber of S on x ∈ X is the set defined

by S−1(x) = {y ∈ Y : x ∈ S(y)}.

Theorem 2.1. Let X be a nonempty convex subset of a locally convex Hausdorff

topological vector space, Y a nonempty convex subset of a topological vector space

and T : X ⇒ X , S : Y ⇒ X two set-valued mappings. Assume that:

(i) T is a closed compact mapping with convex values;

(ii) the set D = {x ∈ X : x ∈ T (x)} is convex;

(iii) for all x ∈ X and y ∈ Y , T (x) ∩ S(y) 6= ∅;

(iv) S is a closed mapping and for all x ∈ X and all y ∈ Y the sets S(y) and

Y \ S−1(x) are convex sets.

Then there exists x̄ ∈ X such that x̄ ∈ T (x̄) ∩
⋂

y∈Y

S(y).

P r o o f. Notice first that, since T is a closed compact mapping, its values are

compact. Then, D is nonempty compact and convex. Indeed, D is nonempty, by

Himmelberg fixed point theorem. Since T is closed, it follows that D is closed. Thus,

D is compact, as a closed subset of the compact set T (X).

Suppose that the conclusion of the theorem is false. Hence, for each x ∈ D there

is y ∈ Y such that x /∈ S(y). Set S∁(y) = D \ S(y). Then D =
⋃

y∈Y

S∁(y). Since the

set-valued mapping S is closed, for any y ∈ Y the set S∁(y) is open in D. Since D is

compact, there exists a finite covering {S∁(y1), . . . , S
∁(yn)} of D and a partition of

unity {β1, . . . , βn} corresponding to this finite covering (i.e., each βi is a continuous

function from D into [0, 1] which vanishes outside of S∁(yi) and
n∑

i=1

βi(x) = 1 for all

x ∈ D). Set p(x) =
n∑

i=1

βi(x)yi for all x ∈ D. Then p is a continuous mapping from

D into Y .

Define a set-valued mapping P : D ⊸ D by

P (x) = S(p(x)) ∩ D, x ∈ D.

We show that P has nonempty values. Let x ∈ D be arbitrarily chosen. Define a

new set-valued mapping Qx : X ⊸ X by Qx(u) = T (u) ∩ S(p(x)) ∈ X . Then Qx

has nonempty (by (iii)) convex values. Since T is a closed mapping and S(p(x)) is

a closed set, it follows readily that the mapping Qx is closed. By Lemma 1.1, Qx

is upper semicontinuous. By the Himmelberg fixed point theorem, Qx has a fixed

point ux. Then ux ∈ T (ux), that is ux ∈ D and ux ∈ S(p(x)). Thus ux ∈ P (x),

hence P has nonempty values.
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Applying now the Kakutani-Fan-Glicksberg fixed point theorem, we get a point

x0 ∈ D for which x0 ∈ P (x0). Then x0 ∈ S(p(x0)), i.e., p(x0) ∈ S−1(x0). On

the other hand, if βi(x0) > 0, then x0 ∈ S∁(yi), that is yi ∈ Y \ S−1(x0). Since

Y \ S−1(x0) is a convex set, p(x0) ∈ co{yi : βi(x0) > 0} ⊆ Y \ S−1(x0). The

obtained contradiction proves the theorem. �

R em a r k 1. Condition (ii) in Theorem 2.1 is fulfilled if the set-valued mapping

T is convex. Indeed, in this case, for x1, x2 ∈ D and λ ∈ [0, 1] we have

λx1 + (1 − λ)x2 ∈ λT (x1) + (1 − λ)T (x2) ⊆ T (λx1 + (1 − λ)x2),

hence λx1 + (1 − λ)x2 ∈ D.

R em a r k 2. Let Q : X ⇒ Y be a set-valued mapping such that S : Y ⇒ X de-

fined by S(y) = {x ∈ X : y /∈ Q(x)} satisfies conditions (iii) and (iv) in Theorem 2.1.

Then Theorem 2.1 provides a point x̄ ∈ X which is simultaneously a fixed point for

T (that is, x̄ ∈ T (x̄)) and a maximal element for Q (that is, Q(x̄) = ∅).

When the convex set X is compact and T (x) = X for all x ∈ X , Theorem 2.1

reduces to

Corollary 2.2. Let X , Y be as in Theorem 2.1 and let S be a closed set-valued

mapping from Y into X . If S(y) and Y \ S−1(x) are convex sets for all x ∈ X and

all y ∈ Y then
⋂

y∈Y

S(y) 6= ∅.

3. Applications

The first application is a common fixed point theorem.

Theorem 3.1. Let X be a nonempty convex set in a normed vector space, T :

X ⇒ X a closed compact mapping with convex values and f : X → X a continuous

function. Assume that:

(i) the set {x ∈ X : x ∈ T (x)} is convex;

(ii) for each x, y ∈ X there exists u ∈ T (x) such that ‖u − f(u)‖ 6 ‖y − f(u)‖;

(iii) for each y ∈ X the set {x ∈ X : ‖x − f(x)‖ 6 ‖y − f(x)‖} is convex.

Then T and f have a common fixed point, that is, there exists x̄ ∈ X such that

f(x̄) = x̄ ∈ T (x̄).

P r o o f. Let S : X ⇒ X be defined by

S(y) = {u ∈ X : ‖u − f(u)‖ 6 ‖y − f(u)‖} for all y ∈ X.
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As the function f is continuous, S is closed. By (iii), S has convex values. For

each u ∈ X , the set X \ S−1(u) = {y ∈ X : ‖y − f(u)‖ < ‖u − f(u)‖} is convex.

Indeed, if ‖yi − f(u)‖ < ‖u − f(u)‖, i = 1, 2, then for any λ ∈ [0, 1] we have

‖λy1 + (1 − λ)y2 − f(u)‖ 6 λ‖y1 − f(u)‖ + (1 − λ)‖y2 − f(u)‖ < ‖u − f(u)‖. By

Theorem 2.1, there exists x̄ ∈ X such that x̄ ∈ T (x̄) and ‖x̄ − f(x̄)‖ 6 ‖y − f(x̄)‖

for every y ∈ X . Taking y = f(x̄) we get ‖x̄ − f(x̄)‖ 6 0, that is x̄ = f(x̄). �

Recall that (x̄1, x̄2) ∈ X1 × X2 is a saddle point for a real function f defined on

X1 × X2 if f(x1, x̄2) 6 f(x̄1, x2) for all x1 ∈ X1, x2 ∈ X2. We extend this concept

as follows:

Given two functions f, g : X1 × X2 → R, we say that a point (x̄1, x̄2) ∈ X1 × X2

is a saddle point for the pair (f, g) if f(x1, x̄2) 6 g(x̄1, x2) for all x1 ∈ X1, x2 ∈ X2.

E x am p l e. Let X1 = [0, 1], X2 = R and for each (x1, x2) ∈ X1 × X2, let

f(x1, x2) = x1 − ex1x2 and g(x1, x2) = ex1x2 − x1 − x2. For each x1 ∈ X1, x2 ∈ X2

we have

f(x1, 0) = x1 − 1 6 f(1, 0) = 0 = g(1, 0) 6 ex2 − 1 − x2 = g(1, x2).

Hence (1, 0) is a saddle point for the pair (f, g).

It is clear that in the case f = g the concept above reduces to the classical concept

of a saddle point. It is also worth mentioning that the existence of a saddle point for

the pair (f, g) implies the inequality inf
x2∈X2

sup
x1∈X1

f(x1, x2) 6 sup
x1∈X1

inf
x2∈X2

g(x1, x2).

Applying Theorem 2.1 we establish sufficient conditions for a point (x̄1, x̄2) ∈

X1 ×X2 to be simultaneously a fixed point for a set-valued mapping T : X1 ×X2 ⇒

X1 × X2 and a saddle point for a pair of functions (f, g).

Theorem 3.2. Let X1, X2 be nonempty convex sets in two locally convex Haus-

dorff topological vector spaces, let T : X1×X2 ⇒ X1×X2 be a set-valued mapping,

f, g : X1 × X2 → R continuous functions. Assume that:

(i) T is a closed compact mapping with convex values;

(ii) the set {(x1, x2) ∈ X1 × X2 : (x1, x2) ∈ T (x1, x2)} is convex;

(iii) for every (x1, x2), (y1, y2) ∈ X1 × X2 there is (u1, u2) ∈ T (x1, x2) such that

f(y1, u2) 6 g(u1, y2);

(iv) f is concave in the first variable and convex in the second variable;

(v) g is convex in the first variable and concave in the second variable.

Then there exists (x̄1, x̄2) ∈ X1 ×X2 which is a fixed point for T and a saddle point

for the pair (f, g).
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P r o o f. We will apply Theorem 2.1 when X = Y = X1×X2 and the set-valued

mapping S is defined by

S(y1, y2) = {(x1, x2) ∈ X1 × X2 : f(y1, x2) 6 g(x1, y2)}.

One can see that condition (ii) here is as (ii) in Theorem 2.1. The set-valued

mapping S is closed, as f and g are continuous functions. We now show that for

(y1, y2) ∈ X1 × X2, the set S(y1, y2) is convex. If (x1, x2), (x
′
1, x

′
2) ∈ S(y1, y2), then

f(y1, x2) 6 g(x1, y2), f(y1, x
′
2) 6 g(x′

1, y2). For any λ ∈ [0, 1] we have:

f(y1, λx2 + (1 − λ)x′
2) 6 λf(y1, x2) + (1 − λ)f(y1, x

′
2)

6 λg(y1, x2) + (1 − λ)g(y1, x
′
2) 6 g(y1, λx2 + (1 − λ)x′

2).

Similarly one can prove that X1×X2 \S−1(x1, x2) is a convex set for each (x1, x2) ∈

X1 × X2. The conclusion follows now from Theorem 2.1. �

Let X be a nonempty convex subset of a locally convex Hausdorff topological

vector space, let Y be a nonempty convex subset of a topological vector space, Z

a topological vector space and F : X × Y ⇒ Z, C : X ⇒ Z two set-valued map-

pings such that C(x) is a nonempty closed convex cone with nonempty interior. We

investigate the existence of a solution for the following vector equilibrium problem:

(EP) Find x̄ ∈ X such that x̄ ∈ T (x̄) and F (x̄, y) 6⊆ intC(x̄), for all y ∈ Y .

The above problem has been introduced in [6] as an intermediary problem between

an equilibrium and a quasi equilibrium problem.

Theorem 3.3. Assume that conditions (i) (ii) in Theorem 2.1 as well as conditions

(iii) and (iv) below are fulfilled:

(iii) for each (x, y) ∈ X × Y there exists u ∈ T (x) such that F (u, y) 6⊆ intC(u);

(iv) the set {(x, y) ∈ X × Y : F (x, y) 6⊆ intC(x)} is closed in X × Y and for all

x ∈ X and y ∈ Y the sets {v ∈ Y : F (x, v) ⊆ intC(x)} and {u ∈ X : F (u, y) 6⊆

intC(u)} are convex;

Then (EP ) has a solution.

P r o o f. Apply Theorem 2.1 when the mapping S is defined by:

(1) S(y) = {x ∈ X : F (x, y) 6⊆ intC(x)}.

�

The requirements encompassed in condition (iv) of the previous theorem can be

replaced by suitable conditions on the mappings F and C.

274



Theorem 3.4. Assume that the set-valued mapping T satisfies conditions (i) and

(ii) in Theorem 2.1 and F and C satisfy the following conditions:

(a) F is upper semicontinuous with nonempty compact values on X ×Y , convex in

the first variable and C(x)-concave in the second variable, for each x ∈ X ;

(b) the set-valued mapping W : X ⇒ Z defined by W (x) = Z \ intC(x) is closed

and convex;

(c) for each (x, y) ∈ X × Y there exists u ∈ T (x) such that F (u, y) 6⊆ intC(u).

Then there exists x̄ ∈ X such that x̄ ∈ T (x̄) and F (x̄, y) 6⊆ intC(x̄) for all y ∈ Y .

P r o o f. It suffices to show that the set-valued mapping S defined by (1) satisfies

(iv) in Theorem 2.1. We claim that the mapping S is closed. Indeed, let {(yt, xt)}t∈∆

be a net in GrS converging to (y, x) ∈ Y × X . For each t ∈ ∆ there exists zt ∈

F (xt, yt)∩W (xt). Since F is upper semicontinuous with nonempty compact values,

there exist z ∈ F (x, y) and a subnet {ztα
} of {zt} converging to z. As the mapping

W is closed, z ∈ W (x). Thus, F (x, y) ∩ W (x) 6= ∅, hence (y, x) ∈ Gr S.

Let y ∈ X and x1, x2 ∈ S(y). If zi ∈ F (x1, y) ∩ W (xi) for i = 1, 2, since F (·, y)

and W are convex mappings, for any λ ∈ [0, 1] we have λz1 + (1 − λ)z2 ∈ F (λx1 +

(1 − λ)x2, y) ∩ W (λx1 + (1 − λ)x2), hence S(y) is convex.

For any x ∈ X , the set X \ S−(x) = {y ∈ Y : F (x, y) ⊆ intC(x)} is convex.

Indeed, if y1, y2 ∈ X \ S−(x) then for any λ ∈ [0, 1] we have:

F (x, λy1 + (1 − λ)y2) ⊆ λF (x, y1) + (1 − λ)F (x, y2) + C(x)

⊆ λ int C(x) + (1 − λ) intC(x) + C(x) ⊆ intC(x).

Now we apply Theorem 2.1. �

In our opinion it is worth comparing the previous theorem with Theorem 6 in

[6], which has the same conclusion. There, X = Y and condition (c) is replaced by

another one involving the inward set O(T (x); x). Moreover, the techniques of the

proofs are different.

Let X be a nonempty convex subset of a locally convex Hausdorff topological

vector space E, let Z be a topological vector space, C a closed, convex, pointed cone

in Z (recall that a cone is pointed if C ∩ (−C) = {0Z}) and f : X × X → Z. We

consider the following vector complementarity problem as a general model for a large

class of problems of this type:

(VCP) Find x̄ ∈ X such that f(x̄, x̄) = 0Z and f(x̄, y) ∈ C, for all y ∈ Y .

It is well known that the cone C induces a partial order on Z defined by z1 6C z2

if and only if z2 − z1 ∈ C. Thus, problem (VCP) can be formulated as follows: find

x̄ ∈ X such that f(x̄, x̄) = 0Z and f(x̄, y) >C 0, for all y ∈ Y .
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Usually, in a complementarity problem, X is a closed convex cone but there is also

a large number of papers (see [3], [4], [9], [12], [16]) in which X is just a convex set.

The next theorem establishes sufficient conditions under which problem (VCP) has

a solution.

Theorem 3.5. Assume that the convex set X is compact and the following

conditions are fulfilled:

(i) f is continuous on X × X , affine in the first variable and C-quasiconvex in the

second variable;

(ii) the set {x ∈ X : f(x, x) ∈ −C} is convex;

(iii) for each x, y ∈ X there exists u ∈ X such that f(u, x) ∈ −C and f(u, y) ∈ C.

Then problem (VCP) has a solution.

P r o o f. Consider the set-valued mappings T, S : X ⇒ X defined by

T (x) = {u ∈ X : f(u, x) ∈ −C},

S(y) = {u ∈ X : f(u, y) ∈ C}.

As f is continuous, the set-valued mappings T and S are closed. Since f is affine in

the first variable, T and S has convex values.

We now show that for u ∈ X , the set X \ S−1(u) = {y ∈ X : f(u, y) /∈ C} is

convex. Assume that there exists y1, y2 ∈ X such that f(u, y1) /∈ C, f(u, y2) /∈ C

and for some λ ∈ (0, 1), f(u, λy1 + (1 − λ)y2) ∈ C. Since f is C-quasiconvex in the

second variable, for some i ∈ {1, 2} we have f(u, yi) ∈ f(u, λy1 +(1−λ)y2)+C ⊆ C;

a contradiction.

Observe that conditions (ii) and (iii) are nothing other than the conditions im-

posed in Theorem 2.1. By Theorem 2.1, there exists x̄ ∈ X such that f(x̄, x̄) ∈ −C

and f(x̄, y) ∈ C for all y ∈ X . The cone C being pointed implies f(x̄, x̄) ∈

(−C) ∩ C = {0}. �

R em a r k 3. One can easily prove that condition (ii) in Theorem 3.5 is fulfilled

when the function X ∋ x → f(x, x) is C-convex.

A nonempty subset B of a cone X is a base of X if X =
⋃

λ>0

λB. Recall that in

a Hausdorff locally convex space any proper pointed convex cone X which is locally

compact has a compact convex base which is the intersection of X with a closed

hyperplane (see [14]). It is also worth recalling that in a reflexive Hausdorff locally

convex space a closed convex cone X admits a compact convex base whenever its

dual has nonempty interior (see [11]). Further, we discuss the existence of a solution

of problem (VCP) when X is a closed convex cone in a locally convex Hausdorff

topological vector space.
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Theorem 3.6. Assume that the closed convex cone X has a compact convex

base. If the function f satisfies conditions (ii), (iii) of Theorem 3.5 as well as the

following conditions:

(i′) f is continuous on X × X , linear in the first variable and C-quasiconvex in the

second variable;

(iv) the set {x ∈ X : f(x, x) = 0Z} is compact,

then problem (VCP) has a solution.

P r o o f. Let B be a compact convex base of X . Denote by K the family of all

compact convex subsets K of X satisfying {0Z} ∪ B ⊆ K.

Let K ∈ K be arbitrarily fixed. Obviously, K is a base of X . Since f is linear in

the first variable, by (ii), for each x, y ∈ K there exists u ∈ K such that f(u, x) ∈ −C

and f(u, y) ∈ C. By Theorem 3.5 there exists xK ∈ K satisfying f(xK , xK) = 0Z

and f(xK , y) ∈ C for all y ∈ K.

It is clear that for any K, K ′ ∈ K, co (K ∪ K ′) ∈ K. Consequently, the ordered

set (K,⊆) is directed to the right. Since {xK}K∈K is a net in the compact D :=

{x ∈ X : f(x, x) = 0Z} we may assume without loss of generality that it converges

to an element x̄ of D. We claim that f(x̄, y) ∈ C for every y ∈ X . Indeed, we have

f(xK , y) ∈ C for every K ∈ K that contains y and since f is continuous and the

cone C is closed, passing to the limit we get f(x̄, y) ∈ C. �
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