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Abstract. The paper is devoted to an integral equation algorithm for studying the scatter-
ing of plane waves by multilayer diffraction gratings under oblique incidence. The scattering
problem is described by a system of Helmholtz equations with piecewise constant coefficients
in R

2 coupled by special transmission conditions at the interfaces between different layers.
Boundary integral methods lead to a system of singular integral equations, containing at
least two equations for each interface. To deal with an arbitrary number of material layers
we present the extension of a recursive procedure developed by Maystre for normal inci-
dence, which transforms the problem to a sequence of equations with 2×2 operator matrices
on each interface. Necessary and sufficient conditions for the applicability of the algorithm
are derived.
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1. Introduction

In this paper we study an integral equation method for the simulation of multilayer

diffraction gratings. The optical devices under consideration consist of different ma-

terial layers separated by non-intersecting and possibly non-smooth interfaces, which

are in Cartesian coordinates periodic in the x-direction and translation invariant in

the z-direction. We consider the so-called conical or off-plane diffraction, i.e., the

grating is illuminated by a plane wave whose direction is in general not orthogonal

to the z-axis.

If a grating is modeled as an infinite periodic structure, then the electromag-

netic formulation of conical diffraction can be reduced to a system of two Helmholtz

equations in R
2 with piecewise constant coefficients, which are periodic in x. Their
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quasiperiodic solutions have to satisfy radiation conditions and are coupled by trans-

mission conditions at the interfaces between different grating materials. A variational

formulation of this problem has been studied in [2] based on strong ellipticity esti-

mates, which are valid under some restrictions on the permittivities ε, 0 6 arg ε < π,

of the non-magnetic grating materials, which are specified in Section 2.

Using layer potentials with the quasiperiodic fundamental solution of the Helm-

holtz equation the diffraction problem for multilayer gratings can be transformed to

a system of integral equations over the interfaces. In [10] we proposed a combined

direct and indirect integral equation approach resulting in two integral equations

on each interface which contain besides the boundary integrals of the single and

double layer potentials also the tangential derivative of single layer potentials, which

are interpreted as singular Cauchy integrals. Besides the equivalence of the integral

with the electromagnetic formulation the strong ellipticity of the integral equation

system under the above condition was established.

But fortunately, the integral formulation can be analyzed under more general

conditions on the coefficients. Recent progress in the design of optical metamaterials

motivates us to admit magnetic materials with complex permeability µ, argµ ∈ [0, π),

and to consider also the case that ε or µ are negative, which was studied in [11] for

gratings with only one interface. It was shown that the system of singular integral

equations generates a Fredholm operator with index 0 in the corresponding energy

spaces if 0 6 arg ε, argµ < π, and the solution of the integral equations provides a

solution of the conical diffraction. This holds also in the case when the permittivity

ε or permeability µ of the grating substrate take values outside a closed interval of

the negative half axis, degenerating to a point if the profile is smooth. Moreover, the

solution is unique if the imaginary parts Im ε or Imµ of the substrate parameters

are positive.

The interest in integral formulations originates from the existence of efficient nu-

merical methods for in-plane grating theory, where the direction of the incident wave

is orthogonal to the z-axis. Integral methods were one of the first for the investigation

of diffraction gratings (cf. [9]) and have been used for gratings of extremely different

kind. But off-plane diffraction has not been tackled for a long time, which was one

of the real deficiencies of the method. Only recently, in [4], a numerical method

for one-profile gratings has been proposed, which solves the integral equations us-

ing a hybrid piecewise-trigonometric polynomial collocation method very efficiently,

including certain scenarios with unfavorably large ratio period over wavelength and

non-smooth profile.

For multilayer gratings with N interfaces the resulting system consists of 2N

singular integral equations, which makes its numerical solution a very expensive

computational task. For in-plane diffraction this problem was solved by D.Maystre,
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who developed recursive algorithms which treat in each step a discrete problem for

one interface between different materials. The algorithm in [8] is based on the use

of scattering matrices and applies to multilayer gratings with interfaces which can

be separated by horizontal planes y = const. Its generalization to conical diffrac-

tion with applications to multilayer gratings with photonics inclusions was described

in [12].

In the present paper we treat the case of general multilayer gratings following

the algorithm proposed in Maystre [7]. Combining direct and indirect boundary

integral approaches the conical diffraction is transformed to a sequence of equations

with 2 × 2 operator matrices on each interface, which are closely related to the

operator matrix of one-profile gratings. So the analysis of the recursive algorithm,

involving the inversion of operator matrices is performed similarly to [11]. Moreover,

the discretization methods from [4] can be used for the numerical realization of

the algorithm. Although the inversion of discretization matrices is required, the

actual demand for computer memory is comparatively small, which makes the conical

diffraction problem tractable with standard PC even for a large number of layers.

The outline of the paper is as follows. In Section 2 we recall the differential

formulation of the conical diffraction for multilayer gratings. Section 3 is devoted

to boundary integral operators of periodic diffraction and the description of the

recursive algorithm, which requires for each interface the solution of an operator

equation with a 2 × 2 matrix of singular integral operators. The applicability of

the algorithm is analyzed in Section 4. It is shown that the operator equations are

solvable if and only if the corresponding matrix operator is invertible and then the

algorithm provides the unique solution of the diffraction problem. Additionally we

derive necessary and sufficient conditions for the invertiblity of the singular integral

operator matrices.

2. Conical diffraction

We consider a multilayer periodic structure of N +1 homogeneous material layers

G0 ×R, . . . , GN ×R of electric permittivity εj and magnetic permeability µj , which

are complex-valued non-zero constants. In the following we suppose that 0 6 arg εj ,

argµj 6 π, so that arg εj + argµj < 2π allowing nearly all physically interesting ma-

terials. The case of negative refraction index materials, corresponding to εj , µj < 0,

requires some modified integral method and will be discussed elsewhere.

The geometry of the grating is characterized by functions ε and µ, which in

Cartesian coordinates (x, y, z) are piecewise constant functions not depending on

z, ε(x, y) = εj, µ(x, y) = µj , (x, y) ∈ Gj , which are d-periodic in x, i.e., ε(x+ d, y) =

ε(x, y) and µ(x + d, y) = µ(x, y).
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The layers are separated by d-periodic and non self-intersecting interfaces with the

cross sections Σ0, . . . ,ΣN (Fig. 1). We assume that the distance between different

curves Σj is always positive. We refer to the semi-infinite layers G0 and GN as

the top and bottom layer, respectively. Note that we allow the y-projections of the

interfaces Σj to be overlapping.

GN−1

G2 G1

G0

GN

E
iy

xd

n

ΣN−1

ΣN−2

Σ2

Σ1

Σ0

Figure 1. Cross section of a multilayer grating

The grating is illuminated by an electromagnetic plane wave with wavelength λ

and given polarization from G0 × R, which is filled with a lossless material, i.e.,

ε0, µ0 > 0. We consider the general case of conical diffraction, i.e., we allow that the

wave vector k = (α,−β, γ) of the incident electric field

Ei = p ei(αx−βy+γz)

is not in the (x, y)-plane. The polarization vector p satisfies p · k = 0 and k can be

expressed in terms of the incidence angles ϕ (the angle between k and its projection

on the (x, y)-plane) and θ (the angle of that projection with the y-axis):

k = ω(ε0µ0)
1/2(sin θ cosϕ,− cos θ cosϕ, sinϕ), ω =

2π

λ
.

We look for solutions eiωt(E,H) of the time-harmonic Maxwell equations

(2.1) ∇× E = iωµH and ∇× H = −iωεE,

with locally finite energy, i.e.

(2.2) E, H, ∇× E, ∇× H ∈ (L2
loc(R

3))3.
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Using the ansatz

E(x, y, z) = E(x, y)eiγz, H(x, y, z) = ZB(x, y)eiγz

with vector functions E,B : R
2 → C

3 and the scaling Z =
√
ε0/µ0, the solution of

(2.1) can be reduced to a problem in R2. For the following we introduce the piecewise

constant function taking the values

(2.3) κ(x, y) = κj =
√
εjµj − ε0µ0 sin2 ϕ, (x, y) ∈ Gj , j = 0, . . . , N,

where we choose the square root
√
z =

√
reiϕ/2 for z = reiϕ, 0 6 ϕ < 2π. Assuming

that everywhere κ 6= 0 it can be shown (cf. [2, 11]) that the finite energy condition

(2.2) is satisfied only if the z-components of E and B are H1-regular. Moreover,

Ez , Bz determine the other components of the electric and magnetic fields and are

solutions of the Helmholtz equations

(2.4) (∆ + ω2κ2)Ez = (∆ + ω2κ2)Bz = 0

in each of the domains Gj in which ε(x, y) and µ(x, y) are constant. Furthermore,

the continuity of the tangential components of E and H at the interfaces Σj between

the domains Gj and Gj+1 lead to transmission conditions for Ez and Bz

(2.5) [Ez ]Σj
= [Bz]Σj

= 0,
[ε∂nEz

κ2

]

Σj

= − ε0 sinϕ
[∂tBz

κ2

]

Σj

,
[µ∂nBz

κ2

]

Σj

= µ0 sinϕ
[∂tEz

κ2

]

Σj

,

which couple the Helmholtz equations (2.4). Here ∂n is the derivative in the direction

of the normal n = (nx, ny) to Σj pointing in Gj+1, ∂t the derivative in the direction

of the tangential vector t = (−ny, nx), and [ · ]Σj
denotes the jump of the boundary

values if crossing the interface Σj .

The z-components of the incoming field Ei
z(x, y) = pze

i(αx−βy), Bi
z(x, y) =

qze
i(αx−βy) are α-quasiperiodic functions of period d, i.e., they satisfy the relation

u(x+ d, y) = eidαu(x, y).

Therefore, Ez, Bz have to be α-quasiperiodic, too. Moreover, the scattered field has

to be bounded below and above the inhomogeneous grating structure, say for |y| > H .

This leads to the radiation condition, known as the outgoing wave condition,

(2.6) (Ez , Bz)(x, y) − (pz , qz)e
i(αx−βy)

=

∞∑

n=−∞

(E(0)
n , B(0)

n )ei(αnx+β(0)
n y), y > H,

(Ez, Bz)(x, y) =

∞∑

n=−∞

(E(N)
n , B(N)

n )ei(αnx−β(N)
n y), y < −H,
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with the so called Rayleigh coefficients E
(0)
n , B

(0)
n , E

(N)
n , B

(N)
n ∈ C, and

(2.7) αn = α+
2πn

d
, β(j)

n =
√
ω2κ2

j − γ2 − α2
n with 0 6 argβ(j)

n < π, n ∈ Z.

Note that β
(0)
n and β

(N)
n are real only for a finite number of integers n, hence the

diffracted far field is composed of a finite number of outgoing plane waves. The

corresponding Rayleigh coefficients indicate the efficiency and the phase shift of the

reflected propagating modes

(
E(0)

n , B(0)
n

)
ei(αnx+β(0)

n y+γz), y → ∞,

and of the transmitted modes

(
E(N)

n , B(N)
n

)
ei(αnx−β(N)

n y+γz), y → −∞,

which exist if ω2κ2
N − γ2 − α2

n > 0. All other modes are exponentially decaying.

Since the wave vectors of the propagating reflected or transmitted modes lie on the

surface of a cone whose axis is parallel to the z-axis, one speaks of conical diffraction.

To derive an integral formulation we rewrite the conical diffraction problem (2.4),

(2.5), (2.6) using the notation

Ez(x, y) =

{
u0 + ui,

uj,
Bz(x, y) =

{
v0 + vi in G0,

vj in Gj , j = 1, . . . , GN ,

with ui = pze
i(αx−βy), vi = qze

i(αx−βy). We seek α-quasiperiodic functions

{uj, vj}N
j=0 such that

(2.8) ∆uj + ω2κ2
juj = ∆vj + ω2κ2

jvj = 0 in Gj

subject to the transmission conditions on Σ0

(2.9) u1 = u0 + ui,
ε1∂nu1

κ2
1

− ε0∂n(u0 + ui)

κ2
0

=
ε0 sinϕ(κ2

1 − κ2
0)

κ2
1κ

2
0

∂tv1,

v1 = v0 + vi,
µ1∂nv1
κ2

1

− µ0∂n(v0 + vi)

κ2
0

= −µ0 sinϕ(κ2
1 − κ2

0)

κ2
1κ

2
0

∂tu1,

and on Σj , j = 1, . . . , N − 1,

(2.10) uj+1 = uj ,
εj+1∂nuj+1

κ2
j+1

− εj∂nuj

κ2
j

=
ε0 sinϕ(κ2

j+1 − κ2
j)

κ2
jκ

2
j+1

∂tvj+1,

vj+1 = vj ,
µj+1∂nvj+1

κ2
j+1

− µj∂nvj

κ2
j

= −
µ0 sinϕ(κ2

j+1 − κ2
j)

κ2
jκ

2
j+1

∂tuj+1,
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which satisfy the outgoing wave condition

(2.11) (u0, v0)(x, y) =

∞∑

n=−∞

(E(0)
n , B(0)

n )ei(αnx+β(0)
n y) for y > max

(x,t)∈Σ0

t,

(uN , vN )(x, y) =

∞∑

n=−∞

(E(N)
n , B(N)

n )ei(αnx−β(N)
n y) for y < min

(x,t)∈ΣN

t.

It was proved in [2] that for non-magnetic materials (µj = µ0) satisfying 0 6

arg κ2
j < π the problem (2.8)–(2.11) has anH1 regular solution {uj, vj}. The solution

is unique

⊲ if Imκ2
j > 0 for some j

⊲ for all but a countable set of frequencies ωℓ, ωℓ → ∞, if κ2
j are positive constants.

3. Integral equation method

The integral formulation is derived from potential representations of uj , vj in Gj .

In the following we suppose that the interfaces Σj are given by piecewise C
2

parametrizations

(3.1) σj(t) = (Xj(t), Yj(t)), Xj(t+ 1) = Xj(t) + d, Yj(t+ 1) = Yj(t), t ∈ R,

i.e., the functions Xj, Yj are piecewise C
2 with

|σ′
j(t)| =

√
(X ′

j(t))
2 + (Y ′

j (t))2 > 0.

Moreover, the interfaces do not intersect, i.e. σj(t1) = σk(t2) only if j = k and

t1 − t2 = dn. Additionally we suppose that, if a curve Σj has corners, then the

angles between adjacent tangents at the corners are strictly between 0 and 2π.

3.1. Potentials and boundary integrals. The single and double layer poten-

tials on one period Γj = {σj(t) : t ∈ [t0, t0 + 1]} of the interface Σj corresponding to

κm are denoted by

(3.2) SΓj ,mϕ(P ) = 2

∫

Γj

Ψm,α(P −Q)ϕ(Q) dσQ,

DΓj ,mϕ(P ) = 2

∫

Γj

ϕ(Q)∂n(Q)Ψm,α(P −Q) dσQ.
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Here Ψm,α is the α-quasiperiodic fundamental solution

(3.3) Ψm,α(P ) =
i

4

∑

n∈Z

H
(1)
0

(
ωκm

√
(X − dn)2 + Y 2

)
eidnα, P = (X,Y ),

of the Helmholtz operator −(∆ + ω2κ2
m) with the Hankel function of the first kind

H
(1)
0 , dσQ is the integration with respect to the arc length and ∂n(Q) denotes the

normal derivative with respect to the normal n at Q ∈ Σj .

The series (3.3) converges uniformly over compact sets in R
2 \ ⋃

n∈Z

{(dn, 0)} if the
condition

(3.4) ω2κ2
m 6= α2

n =
(
α+

2πn

d

)2
for all n ∈ Z

is satisfied. Moreover, with β
(m)
n =

√
ω2κ2

m − α2
n, Imβ

(m)
n > 0, Poisson’s summation

formula leads to the representation

(3.5) Ψm,α(P ) = lim
N→∞

i

2d

N∑

n=−N

eiαnX+iβ(m)
n |Y |

β
(m)
n

.

Therefore, in the following we assume that condition (3.4) holds for all κj , j =

0, . . . , N . Note that Ψ0,α and ΨN,α satisfy the radiation conditions (2.11).

In the following we use properties of the potentials and their restrictions to the

surfaces Σk. Define the function spaces

(3.6) Hs
α(Γj) = {eiαXjϕ : ϕ ◦ σj ∈ Hs

p(0, 1)},

where Hs
p(0, 1), s ∈ R, denotes the Sobolev space of 1-periodic functions.

Under (3.4), the potentials u = SΓj ,mϕ, ϕ ∈ H
−1/2
α (Γj), and u = DΓj ,mψ, ψ ∈

H
1/2
α (Γ), are outside Σj locally H

1 and α-quasiperiodic solutions of the Helmholtz

equation

(3.7) (∆ + ω2κ2
m)u = 0,

which satisfy the radiation condition

(3.8) u(x, y) =

∞∑

n=−∞

uneiαnx+iβ(m)
n |y|, |y| > H.

The interface Σj divides R
2 into an upper and lower parts denoted by G+

j and G
−
j .

If the α-quasiperiodic function u belongs locally to H1(G±
j ) with ∆u ∈ L2

loc(G
±
j ),
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satisfies the Helmholtz equation (3.7) almost everywhere and the radiation condition

(3.8), then

(3.9) ±1

2
(SΓj ,m∂nu−DΓj ,mu) =

{
u in G±

j ,

0 in G∓
j .

In particular, for an α-quasiperiodic solution u of (2.8) we have

(3.10)
1

2
(SΓj ,j∂nu−DΓj ,ju) −

1

2
(SΓj−1,j∂nu−DΓj−1,ju) =

{
u, P ∈ Gj ,

0, P /∈ Gj .

To treat the tangential derivatives in the transmission conditions (2.9), (2.10) we

introduce the potential

(3.11) TΓj ,mϕ(P ) = 2

∫

Γj

ϕ(Q)∂t(Q)Ψm,α(P −Q) dσQ = −SΓj ,m(∂tϕ)(P )

with ϕ ∈ H
1/2
α (Γj). If P /∈ Σj , then the equality follows from integration by parts

and the quasi-periodicity of Ψm,α and ϕ.

For P ∈ Γj we define the boundary integral operators

(3.12) V
(m)
jk ϕ(P ) = 2

∫

Γk

Ψm,α(P −Q)ϕ(Q) dσQ,

K
(m)
jk ϕ(P ) = 2

∫

Γk

ϕ(Q)∂n(Q)Ψm,α(P −Q) dσQ,

L
(m)
jk ϕ(P ) = 2

∫

Γk

ϕ(Q)∂n(P )Ψm,α(P −Q) dσQ,

H
(m)
jk ϕ(P ) = 2

∫

Γk

ϕ(Q)∂t(Q)Ψm,α(P −Q) dσQ.

If j = k, then the last integral is interpreted as the singular integral

2

∫

Γj

ϕ(Q)∂t(Q)Ψm,α(P −Q) dσQ = 2 lim
δ→0

∫

Γj\Γj(P,δ)

ϕ(Q)∂t(Q)Ψm,α(P −Q) dσQ,

where Γj(P, δ) denotes the subarc of Γj with the mid point P and the arc length 2δ.

In view of (3.11) the singular integral is connected with the single layer potential by

the relation

(3.13) H
(m)
jj ϕ(P ) = −V (m)

jj (∂tϕ)(P ).
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The operators V
(m)
jj , K

(m)
jj , H

(m)
jj and L

(m)
jj have properties which are quite similar

to those of the well-studied integral operators over closed curves corresponding to

boundary value problems for the Helmholtz equation (cf. [10], [11]). In particular,

V
(m)
jj : Hs−1

α (Γj) → Hs
α(Γj), L

(m)
jj : H−t

α (Γj) → H−t
α (Γj),

H
(m)
jj , K

(m)
jj : Ht

α(Γj) → Ht
α(Γj),

are bounded for s ∈ (0, 1), t ∈ [0, 1). In the case s = t = 1/2 the operators V
(m)
jj and

H
(m)
jj are Fredholm with ind V

(m)
jj = indH

(m)
jj = 0.

It is a quite rare case that the single layer potential operator V
(m)
jj is not invertible.

This is equivalent to the existence of nontrivial solutions in one of the domains G±
j

of the homogeneous Dirichlet problem

(3.14) ∆u+ ω2κ2
mu = 0, u|Σj

= 0, u(x, y) = eiαdu(x+ d, y)

with the radiation condition (3.8). For boundaries of rather special form such so-

lutions were constructed in [6]. On the other hand, the nonexistence of nontrivial

solutions is known if Imκ2
m > 0 or if the y-component ny of the normal to the profile

curve Σj satisfies ny(Q) 6 0 for all Q ∈ Σj , for example if Σj is given by a d-periodic

function y = fj(x), cf. [9, Section 2.4], [3].

If j 6= k, then the operators (3.12) have bounded continuous kernel functions and

map therefore compactly into Hs
α(Γj), s 6 1. If the profile curve Σj is smooth, then

V
(m)
jj : Hs−1

α (Γj) → Hs
α(Γj), H

(m)
jj : Hs

α(Γj) → Hs
α(Γj),

K
(m)
jj , L

(m)
jj : Hs

α(Γj) → Hs+2
α (Γj)

are bounded and for j 6= k the operators (3.12) are compact mappings into Hs
α(Γj)

for all s ∈ R.

Let us note the jump relations

(3.15) (SΓj ,mϕ)±(P ) = V
(m)
jj ϕ(P ), (TΓj ,mϕ)±(P ) = H

(m)
jj ϕ(P ),

(DΓj ,mψ)±(P ) = (K
(m)
jj ∓ I)ψ(P ), (∂nSΓj ,mϕ)±(P ) = (L

(m)
jj ± I)ϕ(P ),

where the upper sign + or − denotes the limits of the potentials for points in G±
j

tending in non-tangential direction to P ∈ Σj .

3.2. Integral equation algorithms. The jump relations and other layer rep-

resentations can be used to derive various integral formulations of the transmission
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problem (2.8)–(2.11) by direct or indirect boundary integral methods or combina-

tions of them. In [10] we considered the case of two profiles and derived a 4 × 4

system of singular integral equations, which can be extended to the general case of

N profiles using the ansatz

(3.16) u0 =
1

2
(SΓ0,0∂nu0 −DΓ0,0u0), v0 =

1

2
(SΓ0,0∂nv0 −DΓ0,0v0) in G0,

u1 = SΓ0,1ϕ0 + SΓ1,1ϕ1, v1 = SΓ0,1ψ0 + SΓ1,1ψ1 in G1,

u2 =
1

2
(SΓ2,2∂nu2 −DΓ2,2u2) −

1

2
(SΓ1,2∂nu2 −DΓ1,2u2)

v2 =
1

2
(SΓ2,2∂nv2 −DΓ2,2v2) −

1

2
(SΓ1,2∂nv2 −DΓ1,2v2)





in G2,

and so on

with unknown densities ϕj , ψj ∈ H
−1/2
α (Γj), j = 0, . . . , N − 1. In the bottom layer

GN we use the representations

uN = SΓN−1,NϕN−1, vN = SΓN−1,NψN−1

if N is odd, or otherwise

uN =
1

2
(DΓN−1,NuN − SΓN−1,N∂nuN), vN =

1

2
(DΓN−1,NvN − SΓN−1,N∂nvN ).

In view of (3.9) and (3.10) the Helmholtz equations (2.8) and the outgoing wave

condition (2.11) are satisfied. As shown in [10] for the special case N = 2, the trans-

mission conditions (2.9) and (2.10) lead to a 2N×2N system of integral equations on

the profiles Γj. The diagonal 2×2 blocks of the system, which correspond to singular

integral equations for the densities ϕj , ψj on the profile Γj , have been analyzed in

[11]. Analytical properties of the 2N × 2N system follow immediately from these

results, and some of them will be mentioned in the sequel. Also from the numerical

point of view the approach (3.16) is not of interest, since the discretization and so-

lution of this system in order to simulate grating structures with dozens of different

material layers is beyond the possibilities of modern workstations.

Instead, we present a recursive algorithm for solving (2.8)–(2.11), which in each

step treats a problem for one of the interfaces and therefore allows to solve conical

diffraction problems for gratings with an arbitrary number of layers on standard

PCs. The algorithm extends a method for in-plane diffraction, i.e., γ = 0, which was

proposed by Maystre in [7] and described in detail in [5].
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The starting point is to seek the solutions {uj, vj}N
j=0 of (2.8)–(2.11) in the form

u0 =
1

2
(SΓ0,0∂nu0 −DΓ0,0u0), v0 =

1

2
(SΓ0,0∂nv0 −DΓ0,0v0) in G0,(3.17)

uj =
1

2
(SΓj ,j∂nuj −DΓj ,juj) + SΓj−1,jϕj−1

vj =
1

2
(SΓj ,j∂nvj −DΓj ,jvj) + SΓj−1,jψj−1





in Gj , j = 1, . . . , N − 1,(3.18)

uN = SΓN−1,NϕN−1, vN = SΓN−1,NψN−1 in GN ,(3.19)

with certain densities ϕj , ψj ∈ H
−1/2
α (Γj). Again, the Helmholtz equations (2.8)

and the outgoing wave condition (2.11) are satisfied. Note that the representations

(3.18)–(3.19) are unique provided that the single layer potential operators V
(j)
j−1j−1

are invertible for j = 1, . . . , N , which will be assumed throughout.

The algorithm determines recursive relations

(3.20)

(
ϕj

ψj

)
= Qj−1

(
ϕj−1

ψj−1

)
, j = 1, . . . , N − 1,

such that the functions {uj, vj}N
j=0 fulfil the remaining transmission conditions (2.9)

and (2.10). The initial densities (ϕ0, ψ0) and the 2×2 operator matrices {Qj−1} are
obtained by the following scheme:

Introduce the coefficients

(3.21) aj =
εj+1κ

2
j

εjκ2
j+1

, bj =
µj+1κ

2
j

µjκ2
j+1

,

cj =
ε0
εj

(
1 −

κ2
j

κ2
j+1

)
sinϕ, dj =

µ0

µj

(
1 −

κ2
j

κ2
j+1

)
sinϕ,

and determine Qj−1 by a backward recurrence for j = N − 1, . . . , 1 as a solution of

the operator equation

(3.22) CjQj−1 = 2Vj−1,

with the 2 × 2 operator matrices

(3.23) Vj−1 =

(
V

(j)
jj−1 0

0 V
(j)
jj−1

)
,

Cj =

(
I +K

(j)
jj −cjH(j)

jj

djH
(j)
jj I +K

(j)
jj

)
Aj −

(
ajV

(j)
jj 0

0 bjV
(j)
jj

)
Bj.
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The initial values of the sequence of 2 × 2 operator matrices Aj and Bj are

(3.24) AN−1 =

(
V

(N)
N−1N−1 0

0 V
(N)
N−1N−1

)
,

BN−1 =

(
L

(N)
N−1N−1 − I 0

0 L
(N)
N−1N−1 − I

)
,

and the subsequent terms are derived by

Aj−1 =

(
V

(j)
j−1j−1 0

0 V
(j)
j−1j−1

)
(3.25)

− 1

2

((
K

(j)
j−1j −cjH(j)

j−1j

djH
(j)
j−1j K

(j)
j−1j

)
Aj −

(
ajV

(j)
j−1j 0

0 bjV
(j)
j−1j

)
Bj

)
Qj−1,

Bj−1 =

(
V

(j)
j−1j−1 0

0 V
(j)
j−1j−1

)−1( I +K
(j)
j−1j−1 0

0 I +K
(j)
j−1j−1

)
Aj−1(3.26)

− 2

(
I 0

0 I

)
.

Having found A0 and B0, the initial value (ϕ0, ψ0) of (3.20) is a solution of the

linear equation

(3.27) C0

(
ϕ0

ψ0

)
= 2

(
ui

vi

)
.

3.3. Derivation of the recursive algorithm. The scheme is based on the

ansatz

(3.28)

(
uj+1|Γj

vj+1|Γj

)
= Aj

(
ϕj

ψj

)
,

(
∂nuj+1|Γj

∂nvj+1|Γj

)
= Bj

(
ϕj

ψj

)
, j = 0, . . . , N − 1,

with certain 2 × 2 linear operator matrices Aj and Bj. Note first that the initial

values (3.24) follow from (3.19) and the jump relation (3.15) for ∂nSΓN−1,N .

Using (3.28) the transmission conditions (2.10) on Γj for j = 1, . . . , N − 1 can be

written in the form

(3.29)

(
uj|Γj

vj |Γj

)
= Aj

(
ϕj

ψj

)
,

(
∂nuj|Γj

∂nvj |Γj

)
=

(
aj 0

0 bj

)
Bj

(
ϕj

ψj

)
+

(
0 −cj∂t

dj∂t 0

)
Aj

(
ϕj

ψj

)
.
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The representation (3.18) and the jump relation (3.15) of the double layer potential

DΓj ,j imply that

uj|Γj
=

1

2
(V

(j)
jj ∂nuj − (K

(j)
jj − I)uj) + V

(j)
jj−1ϕj−1,

vj |Γj
=

1

2
(V

(j)
jj ∂nvj − (K

(j)
jj − I)vj) + V

(j)
jj−1ψj−1.

Hence (3.29) leads, in matrix notation, to the equation

(
ajV

(j)
jj 0

0 bjV
(j)
jj

)
Bj

(
ϕj

ψj

)
−
(
I +K

(j)
jj cjV

(j)
jj ∂t

−djV
(j)
jj ∂t I +K

(j)
jj

)
Aj

(
ϕj

ψj

)
= −2

(
V

(j)
jj−1ϕj−1

V
(j)
jj−1ψj−1

)
,

which is equivalent to (2.10). Using the singular integralH
(j)
jj = −V (j)

jj ∂t (see (3.13))

we obtain the relation

Cj

(
ϕj

ψj

)
= 2Vj−1

(
ϕj−1

ψj−1

)

which is satisfied by (
ϕj

ψj

)
= Qj−1

(
ϕj−1

ψj−1

)

provided that Qj−1 is a solution of the operator equation (3.22), which maps the

space (H
−1/2
α (Γj−1))

2 boundedly into (H
−1/2
α (Γj))

2. The solvability of (3.22) will

be discussed in the next section.

The formulas (3.25) and (3.26) for Aj−1 and Bj−1 are derived from the relations

on the upper boundary Γj−1 of Gj . The representation (3.18) and (3.29) give

(
uj |Γj−1

vj |Γj−1

)
=

1

2

((
V

(j)
j−1j 0

0 V
(j)
j−1j

)(
∂nuj |Γj

∂nvj |Γj

)
−
(
K

(j)
j−1j 0

0 K
(j)
j−1j

)(
uj|Γj

vj |Γj

))

+

(
V

(j)
j−1j−1ϕj−1

V
(j)
j−1j−1ψj−1

)

=
1

2

((
ajV

(j)
j−1j 0

0 bjV
(j)
j−1j

)
Bj −

(
K

(j)
j−1j cjV

(j)
j−1j∂t

−djV
(j)
j−1j∂t K

(j)
j−1j

)
Aj

)(
ϕj

ψj

)

+

(
V

(j)
j−1j−1 0

0 V
(j)
j−1j−1

)(
ϕj−1

ψj−1

)
,

which by (3.28), (3.20) and using H
(j)
j−1j = −V (j)

j−1j∂t leads to (3.25).

Now (3.26) follows from (3.10) and (3.18), since

V
(j)
j−1j−1ϕj−1 = −1

2
(V

(j)
j−1j−1∂nuj − (I +K

(j)
j−1j−1)uj),

V
(j)
j−1j−1ψj−1 = −1

2
(V

(j)
j−1j−1∂nvj − (I +K

(j)
j−1j−1)vj)
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imply that on Γj−1

(
∂nuj

∂nvj

)
= −2

(
ϕj−1

ψj−1

)

+

(
(V

(j)
j−1j−1)

−1(I +K
(j)
j−1j−1) 0

0 (V
(j)

j−1j−1)
−1(I +K

(j)
j−1j−1)

)
Aj−1

(
ϕj−1

ψj−1

)
.

Equation (3.27) follows from the relations

V
(0)
00 ∂nu

i − (I +K
(0)
00 )ui = −2ui, V

(0)
00 ∂nv

i − (I +K
(0)
00 )vi = −2vi

on the upper profile Γ0, which hold because u
i, vi satisfy the Helmholtz equation

(∆ + ω2κ2
0)u = 0 and the radiation condition (3.8) in G−

0 = R
2 \ G0. Hence the

transmission conditions (2.9) are fulfilled iff

(
I +K

(0)
00 −c0H(0)

00

d0H
(0)
00 I +K

(0)
00

)(
u1

v1

)
−
(
a0V

(0)
00 0

0 b0V
(0)
00

)(
∂nu1

∂nv1

)
= 2

(
ui

vi

)
,

i.e., if ϕ0, ψ0 satisfy (3.27).

R em a r k 3.1. If the material in the bottom layer GN is a perfect conductor,

then the z-components of E and B have to satisfy the boundary condition

(3.30) Ez = uN = 0, ∂nBz = ∂nvN = 0 on ΓN−1.

In this case it is easy to see that the relations (3.25) and (3.26) for j = N − 1 with

the coefficients aN−1 = 1, bN−1 = cN−1 = dN−1 = 0 and the initial values

AN−1 =

(
0 0

0 I

)
and BN−1 =

(
I 0

0 0

)

lead to AN−2 and BN−2 satisfying

(
uN−1|ΓN−2

vN−1|ΓN−2

)
= AN−2

(
ϕN−2

ψN−2

)
,

(
∂nuN−1|ΓN−2

∂nvN−1|ΓN−2

)
= BN−2

(
ϕN−2

ψN−2

)
.

Hence, the densities {ϕj , ψj}, j = 0, . . . , N − 2, are derived by the same scheme

(3.20)–(3.27).
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4. Analysis of the algorithm

We call the algorithm (3.20)–(3.27) applicable, if for j = N−1, . . . , 1 in descending

order there exist solutions Qj−1 : (H
−1/2
α (Γj−1))

2 → (H
−1/2
α (Γj))

2 of the operator

equations (3.22). Then the formulas (3.25), (3.26), (3.23) lead to bounded mappings

Bj−1 : (H−1/2
α (Γj−1))

2 → (H−1/2
α (Γj−1))

2,

Aj−1, Cj−1 : (H−1/2
α (Γj−1))

2 → (H1/2
α (Γj−1))

2,

and in the successive step one has to solve the equation (3.22) for Qj−2 or, if j = 1,

the equation (3.27). If there exists a solution ϕ0, ψ0 ∈ H
−1/2
α (Γ0), then the scheme

(3.20) leads by construction to anH1-regular solution of the conical diffraction (2.4)–

(2.6) for the multilayer grating given by

(4.1)





1

2

((
a0SΓ0,0 0

0 b0SΓ0,0

)
B0 −

( DΓ0,0 −c0TΓ0,0

d0TΓ0,0 DΓ0,0

)
A0

)(
ϕ0

ψ0

)

+

(
ui

vi

)
in G0,

1

2

((
ajSΓj ,j 0

0 bjSΓj ,j

)
Bj −

( DΓj ,j −cjTΓj ,j

djTΓj ,j DΓj ,j

)
Aj

)(
ϕj

ψj

)

+

(SΓj−1,j 0

0 SΓj−1,j

)(
ϕj−1

ψj−1

)
in Gj , j = 1, . . . , N − 1,

(SΓN ,N+1 0

0 SΓN ,N+1

)(
ϕN

ψN

)
in GN ,

with the layer potentials defined in (3.2) and (3.11).

Hence, if the operators V
(j+1)
jj are invertible, then the recursive algorithm is ap-

plicable if and only if the equations (3.22) and (3.27) are solvable. In this sec-

tion we derive conditions for the solvability of these equations, which follow from

the Fredholm properties of the operator matrices Cj. Recall that a linear operator

A : X → Y is Fredholm if its range R(A) ⊂ Y is closed, and its nullspace N(A)

and the factor space Y/R(A) are finite dimensional. The index of A is defined as

indA = dimN(A)−dim(Y/R(A)). We denote by Φ0(X,Y ) the set of bounded Fred-

holm operators of index 0 mapping the space X into Y , and set Φ0(X) = Φ0(X,X).

The Fredholm properties of Cj will be studied similarly to the 2 × 2 system of

singular integral equations for one-profile gratings in [10, 11], using the associated

boundary integral operators of the Laplacian over a closed curve. We introduce the

system of non-intersecting closed curves in R
2

Γ̃j = {e−Yj(t)(cosXj(t), sinXj(t)) : t ∈ [0, 1]},

294



which is the image of the grating interfaces {Σj} under the conformal mapping eiz ,

z ∈ C. Obviously, Γ̃j has the same smoothness as Σj and the angles in G
+
j at corner

points of Σj and the interior angles at the corresponding corner points of Γ̃j coincide.

We introduce the single and double layer potentials of the Laplacian over Γ̃j

S̃jϕ(P ) =

∫

Γ̃j

Ψ(P −Q)ϕ(Q) dσQ,(4.2)

D̃jϕ(P ) =

∫

Γ̃j

ϕ(Q)∂n(Q)Ψ(P −Q) dσQ,

with the fundamental solution Ψ(P ) = − log |P |/2π, and similarly to (3.12) the

corresponding integral operators Ṽjk, K̃jk, L̃jk, and H̃jk = −Ṽjk∂t, which map

functions on Γ̃k to functions on Γ̃j .

For completeness we give some well known properties of these operators. If j 6= k,

then the mappings are compact from Hs(Γ̃k) into H1(Γ̃j), since their kernels are

bounded and continuous. For j = k one has in the energy spaces H±1/2(Γ̃j) that

Ṽjj : H−1/2(Γ̃j) → H1/2(Γ̃j), and K̃jj , H̃jj : H1/2(Γ̃j) → H1/2(Γ̃) are bounded.

With respect to the L2-duality, L̃jj is the adjoint of K̃jj , whereas Ṽjj is sym-

metric. Furthermore, N(I + K̃jj) = N(Hjj) = P0, where P0 denotes the set of

constant functions, and the operators Ṽjj , H̃jj are Fredholm with index 0, Ṽjj ∈
Φ0(H

−1/2(Γ̃j), H
1/2(Γ̃j)), H̃jj ∈ Φ0(H

1/2(Γ̃j)). In the following the relations be-

tween the integral operators

(4.3) Ṽjj L̃jj = K̃jj Ṽjj , H̃jjK̃jj = −K̃jjH̃jj , K̃2
jj − H̃2

jj = I

will be used, the second and third identity can be found in [11].

Using the double layer potential operators K̃jj over Γ̃j the main result can be

formulated as follows:

Theorem 4.1. Let the grating parameters εj, µj with arg εj , argµj ∈ [0, π],

arg εj + argµj < 2π, be such that the operators V
(j+1)
jj are invertible and that

(4.4) (εj+1 + εj)I + (εj+1 − εj)K̃jj ∈ Φ0(H
1/2(Γ̃j)),

(µj+1 + µj)I + (µj+1 − µj)K̃jj ∈ Φ0(H
1/2(Γ̃j))

for all j = 0, . . . , N − 1. The algorithm (3.20)–(3.27) is applicable if and only if

N(Cj) = {0}, j > 1. Then the equation (3.27) is solvable and any solution (ϕ0, ψ0)

provides via (3.20), (4.1) a solution of the conical diffraction problem (2.4)–(2.6).
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Since for a closed Lipschitz curve Γ̃j the operator λI + K̃jj ∈ Φ0(H
1/2(Γ̃j)) if

λ /∈ (−1, 1) (see [11, Lemma 5.1]), conditions (4.4) are satisfied if the ratios

(4.5)
εj

εj+1
,
µj

µj+1
/∈ (−∞, 0) for all j.

Note that λI + K̃jj ∈ Φ0(H
1/2(Γ̃j)) for a closed, sufficiently smooth curve Γ̃j

and all λ 6= 0. Since the single layer potentials on function profiles are invertible,

Theorem 4.1 leads to

Corollary 4.1. Suppose that the profile curves Σj are given by d-periodic C
2-

functions and let εj+1 6= −εj and µj+1 6= −µj. If N(Cj) = {0}, j = N − 1, . . . , 1,

then the algorithm (3.20)–(3.27) provides a solution of the conical diffraction problem

(2.4)–(2.6).

R em a r k 4.1. For a piecewise C2-curve one can expect the existence of ̺ < 1

depending on the angles of Γ̃j , such that for λ /∈ (−̺, ̺) the operator λI + K̃jj

is Fredholm with index 0. For example, in the space C(Γ̃j) the parameter ̺ is

equal to max |π − αs|/π, where the maximum is taken over all interior angles αs

of Γ̃j , see [1]. However, the precise bounds for the Sobolev space H
1/2(Γ̃j) are

unknown.

The proof of Theorem 4.1 consists of two parts. First we show in Proposition 4.1

that (4.4) is necessary and sufficient in order that the operators Cj be Fredholm with

index 0, provided of course that Qj exist for j < N − 2. Then Proposition 4.2 states

that the equations (3.22) are solvable only if R(Cj) = ((H
1/2
α (Γj)))

2 and that the right

hand side (ui, vi), of (3.27), belongs to the range of C0 also if N(C0) 6= {0}. Finally, in
Subsection 4.3 we consider the case that N(Cj) 6= {0} and discuss conditions ensuring
that the nullspaces N(Cj) are trivial.

4.1. Fredholm properties of Cj.

Proposition 4.1. Let j = N − 1, . . . , 0 and assume the existence of bounded

operators Qj : (H
1/2
α (Γj))

2 → (H
1/2
α (Γj+1))

2 for j < N − 1. The operator matrix

Cj ∈ Φ0((H
−1/2
α (Γj))

2, (H
1/2
α (Γj))

2) if and only if (4.4) holds.

To connect diffraction boundary integrals over Γj with boundary integrals of the

Laplacian over Γ̃j we use the mappings

(4.6) ϑ∗jϕ(P ) := eiαXjϕ(ϑj(P ))

with ϑj : Γj ∋ P = (Xj , Yj) → e−Yj (cosXj , sinXj) ∈ Γ̃j ,
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which generate isomorphisms ϑ∗j : Hs(Γ̃j) → Hs
α(Γj), and the multiplication opera-

tors

(4.7) Mjϕ(P ) = eYjϕ(P ), P = (Xj , Yj) ∈ Γj ,

which are invertible in Hs
α(Γj). The asymptotics of the fundamental solution Ψm,α

implies that

(4.8) V
(m)
jj − ϑ∗j Ṽjj(ϑ

∗
j )

−1Mj : Hs−1
α (Γj) → Hs

α(Γj),

K
(m)
jj − ϑ∗jK̃jj(ϑ

∗
j )

−1, H
(m)
jj − ϑ∗j H̃jj(ϑ

∗
j )

−1 : Ht
α(Γj) → Ht

α(Γj),

L
(m)
jj −M−1

j ϑ∗j L̃jj(ϑ
∗
j )

−1Mj : H−t
α (Γj) → H−t

α (Γj)

are compact mappings for 0 < s < 1 and 0 6 t < 1 if Γj has corners, and for all s, t

for smooth Γj (cf. [10]). Hence, we derive from (3.25), (3.26) together with (4.3)

Lemma 4.1. Suppose that Qj : (H
1/2
α (Γj))

2 → (H
1/2
α (Γj+1))

2 exists. The differ-

ences

Aj −
(
ϑ∗j 0

0 ϑ∗j

)(
Ṽjj 0

0 Ṽjj

)(
(ϑ∗j )

−1Mj 0

0 (ϑ∗j )
−1Mj

)

Bj −
(
ϑ∗j 0

0 ϑ∗j

)(
L̃jj − I 0

0 L̃jj − I

)(
(ϑ∗j )

−1Mj 0

0 (ϑ∗j )
−1Mj

)

map (H
−1/2
α (Γj))

2 compactly into (H
1/2
α (Γj))

2 and into (H
−1/2
α (Γj))

2, respectively.

Define the matrix

C̃j =

(
(1 + aj)I + (1 − aj)K̃jj −cjH̃jj

djH̃jj (1 + bj)I + (1 − bj)K̃jj

)(
Ṽjj 0

0 Ṽjj

)
,

and apply once more (4.3):

Lemma 4.2. The difference

Cj −
(
ϑ∗j 0

0 ϑ∗j

)
C̃j

(
(ϑ∗j )

−1Mj 0

0 (ϑ∗j )
−1Mj

)
: (H−1/2

α (Γj))
2 → (H1/2

α (Γj))
2

is compact provided that Qj : (H
1/2
α (Γj))

2 → (H
1/2
α (Γj+1))

2 exists for j < N − 1.

Now the proof of Proposition 4.1 follows from
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Lemma 4.3. Under (4.4) the matrix C̃j belongs to Φ0((H
−1/2(Γ̃j))

2, (H1/2(Γ̃j))
2).

P r o o f. Since Ṽjj ∈ Φ0(H
−1/2(Γ̃j), H

1/2(Γ̃j)) it remains to show that (4.4)

implies

F̃j =

(
(1 + aj)I + (1 − aj)K̃jj −cjH̃jj

djH̃jj (1 + bj)I + (1 − bj)K̃jj

)
∈ Φ0((H

1/2(Γ̃j))
2).

In the case cj = dj = 0 this is obvious for both possibilities ϕ = 0 or κ2
j+1 = κ2

j ,

since aI + bK̃jj ∈ Φ0(H
1/2(Γ̃j)) is equivalent to aI − bK̃jj ∈ Φ0(H

1/2(Γ̃j)).

Otherwise we show that F̃j + T̃ is invertible for some compact operator T̃ iff (4.4)
holds. We perturb the off-diagonal elements with a rank 1 operator e such that

H̃1 = H̃jj + e is invertible and consider the operator matrix

F̃j + T̃ =

(
(1 + aj)I + (1 − aj)K̃jj −cjH̃1

djH̃1 (1 + bj)I + (1 − bj)K̃jj

)
.

Using the abbreviations

A± = (1 + aj)I ± (1 − aj)K̃jj , B± = (1 + bj)I ± (1 − bj)K̃jj ,

and the relation

(−(djH̃1)
−1B+ I

I 0

)
=

(
0 I

I (djH̃1)
−1B+

)−1

we transform

F̃j + T̃ =

(−A+(djH̃1)
−1B+ − cjH̃1 A+

0 djH̃1

)(
0 I

I (djH̃1)
−1B+

)
.

Thus F̃j ∈ Φ0((H
1/2(Γ̃j))

2) iff A+(djH̃1)
−1B+ + cjH̃1 ∈ Φ0(H

1/2(Γ̃j)). Since by

(4.3)

A+(H̃1)
−1 = (H̃1)

−1A− + (1 − aj)(H̃1)
−1(eK̃jj + K̃jje)(H̃1)

−1,

this is true if and only if (djH̃1)
−1(A−B+ + cjdjH̃

2
1 ) ∈ Φ0(H

1/2(Γ̃j)). Using H̃jj =

H̃1 − e and H̃2
jj = K̃2

jj − I we conclude from (4.3) that F̃j ∈ Φ0((H
1/2(Γ̃j))

2) if and

only if

A−B+ + cjdjH̃
2
jj

= ((1 + aj)(1 + bj) − cjdj)I + 2(aj − bj)K̃jj − ((1 − aj)(1 − bj) − cjdj)K̃
2
jj
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is Fredholm with index 0. The definition of the coefficients (3.21) and the relation

κ2
j = εjµj − δ2 with δ2 = ε0µ0 sin2 ϕ give after some algebra

A−B+ + cjdjH̃
2
jj

=
κ2

j

εjµjκ2
j+1

((εj+1 + εj)I + (εj+1 − εj)K̃jj)((µj+1 + µj)I − (µj+1 − µj)K̃jj),

which shows that (4.4) is equivalent to F̃j ∈ Φ0((H
1/2(Γ̃j))

2). �

R em a r k 4 . 2. It is shown in [10] that the 2N × 2N integral equation system,

arising from the ansatz (3.16), has diagonal 2 × 2 blocks of the form

(
I +K

(j)
jj −cjH(j)

jj

djH
(j)
jj I +K

(j)
jj

)(
V

(j+1)
jj 0

0 V
(j+1)
jj

)

−
(
ajV

(j)
jj 0

0 bjV
(j)
jj

)(
L

(j+1)
jj − I 0

0 L
(j+1)
jj − I

)

or its transpose with respect to the duality (4.9). This matrix is by Lemma 4.1

a compact perturbation of Cj, and hence the 2N × 2N integral equation system

generates a Fredholm operator with index 0 iff the conditions (4.4) are satisfied. Then

the integral equation system is solvable even if the nullspace is non-trivial, which can

be proved as in [11] by characterizing the kernel of the transposed operator. Thus

the transmission problem (2.8)–(2.11) is solvable and admits also resonant solutions.

4.2. Range of Cj.

Lemma 4.4. If V
(j)
j−1j−1 is invertible, then R(Vj−1) is dense in (H

1/2
α (Γj))

2.

P r o o f. The bilinear form

(4.9) [ϕ, ψ]Γj
=

∫

Γj

ϕψ dσ

extends to a duality between the spaces Hs
α(Γj) and H

−s
−α(Γj), see (3.6). Because

Ψm,−α(P ) = Ψm,α(−P ) for all P ∈ R
2, we obtain

[V
(j)
jj−1ϕ, ψ]Γj

= 2

∫

Γj−1

ϕ(Q) dσQ

∫

Γj

Ψj,−α(Q− P )ψ(P ) dσP = [ϕ, ŜΓj ,jψ]Γj−1 ,

where ŜΓj ,j denotes the single layer diffraction potential on Γj with the fundamental

solutionΨj,−α. If R(V
(j)
jj−1) is not dense inH

1/2
α (Γj), then there exists ψ ∈ H

−1/2
−α (Γj)

such that

[V
(j)
jj−1ϕ, ψ]Γj

= [ϕ, ŜΓj ,jψ]Γj−1 = 0 for all ϕ ∈ H−1/2
α (Γj−1).
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Hence for all P ∈ Γj−1 the function ŜΓj ,jψ(P ) = 0, i.e., the quasiperiodic Dirichlet

problem

(4.10) ∆u+ ω2κ2
ju = 0, u|Σj−1 = 0, u(x, y) = e−iαdu(x+ d, y)

has a nontrivial solution in G+
j−1. Therefore the single layer potential ŜΓj−1,jψ|Γj−1

with the fundamental solution Ψj,−α on Γj−1, which is the transpose of V
(j)
j−1j−1 with

respect to (4.9), is not invertible. �

Proposition 4.2. Under the assumptions of Theorem 4.1 the equations (3.22)

are solvable iff N(Cj) = {0}, j = N − 1, . . . , 1. In this case (ui, vi)T ∈ R(C0).

P r o o f. The operator equations (3.22) are solvable only if R(Cj) ⊃ R(Vj−1).

Since Cj is Fredholm with index 0, Lemma 4.4 implies R(Cj) = (H
1/2
α (Γj))

2 and

therefore N(Cj) = {0}.
To establish the second assertion we take a solution u, v of the transmission prob-

lem (2.8)–(2.11), which exists due to Remark 4.2. We set uj = u|Gj
, vj = v|Gj

,

j = 1, . . . , N − 1 and define

ϕj−1 =
1

2
((V

(j)
j−1j−1)

−1(I +K
(j)
j−1j−1)uj − ∂nuj|Γj−1 ),

ψj−1 =
1

2
((V

(j)
j−1j−1)

−1(I +K
(j)
j−1j−1)vj − ∂nvj |Γj−1)

for j = 1, . . . , N − 1 and

ϕN−1 = (V
(N)
N−1N−1)

−1uN , ψN−1 = (V
(N)
N−1N−1)

−1vN .

Since the operators Cj are invertible for j > 1, it is easy to see that the densities

ϕj , ψj satisfy all relations obtained in Subsection 3.3. In particular, ϕ0, ψ0 satisfy

the equation (3.27). �

4.3. Uniqueness.

Let us consider the case that N(Ck) 6= {0}. If k > 0, then the algorithm fails by

Theorem 4.1. Otherwise the homogeneous equation (3.27) has a non-zero solution,

giving rise to resonant solutions of conical diffraction. After a more detailed descrip-

tion of this situation, the technique is applied in Proposition 4.3 to find conditions

under which all operator matrices Cj have a trivial nullspace.
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Lemma 4.5. If N(Cj) = {0}, j = N − 1, . . . , k + 1, and N(Ck) 6= {0}, then
there exist nontrivial solutions of the transmission problem in the reduced grating

structure with the profiles Σk, . . . ,ΣN−1 and the upper semi-infinite layer G
+
k , i.e.

quasiperiodic solutions of the corresponding Helmholtz equations (2.8) in G+
k and Gj ,

satisfying the transmission conditions (2.10) for j = k, . . . , N − 1, and the outgoing

wave condition

(4.11) (u, v)(x, y) =

∞∑

n=−∞

(û+
n , v̂

+
n )ei(αnx+β(k)

n y) for y > max
(x,t)∈Σk

t,

(u, v)(x, y) =

∞∑

n=−∞

(û−n , v̂
−
n )ei(αnx−β(N)

n y) for y < min
(x,t)∈ΣN

t.

Moreover, the coefficients û±n , v̂
±
n in (4.11) vanish if β

(k)
n > 0 or β

(N)
n > 0, corre-

spondingly.

P r o o f. Let ϕk, ψk ∈ N(Ck) and set

(
ϕj

ψj

)
= Qj−1

(
ϕj−1

ψj−1

)
, j = k + 1, . . . , N − 1.

We introduce the function pair (u, v) given by (4.1) in Gj , j = k + 1, . . . , N , and in

G+
k by

(
u

v

)
=

1

2

((
akSΓk,k 0

0 bkcSΓk,k

)
Bk −

( DΓk,k −ckTΓk,k

dkTΓk,k DΓk,k

)
Ak

)(
ϕk

ψk

)
.

It is evident that these functions are a non-trivial solution of the homogeneous prob-

lem for the reduced geometry.

To prove that the Rayleigh coefficients û±n , v̂
±
n vanish for arbitrary non-trivial

solutions (u, v) we proceed as in [2, 11]. Choose a periodic cell ΩH , which has in the

x-direction the width d, is bounded by the straight lines {y = ±H} and contains Γj ,

j = k, . . . , N − 1. Multiplying the Helmholtz equations (2.8) by

ε

ε0κ2
ū and

µ

µ0κ2
v

and applying Green’s formula in the subdomains ΩH ∩Gj and ΩH ∩G+
k , the quasi-
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periodicity of u and v and the transmission conditions (2.10) lead to the equations

(4.12)

∫

ΩH

ε

ε0

( 1

κ2
|∇u|2 − ω2|u|2

)
+

N−1∑

j=k

sinϕ

∫

Γj

[ 1

κ2

]
∂tvū

=
εk

ε0κ2
k

∫

Γ(H)

∂nuū+
εN

ε0κ2
N

∫

Γ(−H)

∂nuū,

∫

ΩH

µ

µ0

( 1

κ2
|∇v|2 − ω2|v|2

)
−

N−1∑

j=k

sinϕ

∫

Γj

[ 1

κ2

]
∂tuv

=
µk

µ0κ2
k

∫

Γ(H)

∂nvv +
µN

µ0κ2
N

∫

Γ(−H)

∂nvv,

where [1/κ2] = 1/κ2
j − 1/κ2

j+1 on Γj , and Γ(±H) denotes respectively the upper and

lower straight boundary of ΩH . Using the identity

∫

Ω

∇g∇⊥f = −
∫

∂Ω

∂tgf with ∇⊥ = (∂y,−∂x),

which holds for closed Lipschitz domains Ω and f, g ∈ H1
p (Ω), the integrals over Γj

are transformed to domain integrals such that

∫

ΩH

ε

ε0

( 1

κ2
|∇u|2 − ω2|u|2

)
+

N−1∑

j=k

sinϕ

∫

Γj

[ 1

κ2

]
∂tvū

=

∫

ΩH

( ε

ε0κ2
|∇u|2 − sinϕ

κ2
∇v · ∇⊥ū− ω2ε

ε0
|u|2
)

+
sinϕ

κ2
k

∫

Γ(H)

∂xvū− sinϕ

κ2
N

∫

Γ(−H)

∂xvū,

∫

ΩH

µ

µ0

( 1

κ2
|∇v|2 − ω2|v|2

)
−

N−1∑

j=k

sinϕ

∫

Γj

[ 1

κ2

]
∂tuv

=

∫

ΩH

( µ

µ0κ2
|∇v|2 +

sinϕ

κ2
∇u · ∇⊥v − ω2µ

µ0
|v|2
)
− sinϕ

κ2
k

∫

Γ(H)

∂xuv +
sinϕ

κ2
N

∫

Γ(−H)

∂xuv.

Note that (4.11) leads to

∫

Γ(H)

∂nuū = i
∑

n∈Z

β(k)
n |û+

n |2e−2H Im β(k)
n ,

∫

Γ(H)

∂xvū = i
∑

n∈Z

αnv̂
+
n û

+
n e−2H Im β(k)

n ,

∫

Γ(−H)

∂nuū = i
∑

n∈Z

β(N)
n |û−n |2e−2H Im β(N)

n ,

∫

Γ(−H)

∂xvū = i
∑

n∈Z

αnv̂
−
n û

−
n e−2H Im β(N)

n .
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Hence equations (4.12) take the form

(4.13)

∫

ΩH

( ε

ε0κ2
|∇u|2 − sinϕ

κ2
∇v · ∇⊥ū− ω2ε

ε0
|u|2
)

=
i

κ2
k

∑

n∈Z

(εkβ
(k)
n

ε0
û+

n − αnsinϕv̂+
n

)
û+

n e−2H Im β(k)
n

+
i

κ2
N

∑

n∈Z

(εNβ
(N)
n

ε0
û−n − αnsinϕv̂−n

)
û−n e−2H Im β(N)

n ,

∫

ΩH

( µ

µ0κ2
|∇v|2 +

sinϕ

κ2
∇u · ∇⊥v − ω2µ

µ0
|v|2
)

=
i

κ2
k

∑

n∈Z

(µkβ
(k)
n

µ0
v̂+

n + αnsinϕû+
n

)
v̂+

n e−2H Im β(k)
n

+
i

κ2
N

∑

n∈Z

(µNβ
(N)
n

µ0
v̂−n + αnsinϕû−n

)
v̂−n e−2H Im β(N)

n .

We rewrite the left hand side of the quadratic form (4.13) for the vector (u, v)T as

∫

ΩH

(
BU · U − ω2ε

ε0
|u|2 − ω2µ

µ0
|v|2
)

by using the 4 × 4 matrix B and the vector U :

B =
1

κ2




ε/ε0 0 0 − sinϕ

0 µ/µ0 sinϕ 0

0 sinϕ ε/ε0 0

− sinϕ 0 0 µ/µ0


 , U =




∂xu

∂xv

∂yu

∂yv


 .

Letting H → ∞, we see that

lim
H→∞

∫

ΩH

(
BU · U − ω2ε

ε0
|u|2 − ω2µ

µ0
|v|2
)

=
∑

β
(k)
n >0

M+
n

(
û+

n

v̂+
n

)
·
(
û+

n

v̂+
n

)
+

∑

β
(N)
n >0

M−
n

(
û−n
v̂−n

)
·
(
û−n
v̂−n

)
,

where

M+
n =

i

κ2
k

(
εkβ

(k)
n /ε0 −αnsinϕ

αnsinϕ µkβ
(k)
n /µ0

)
, M−

n =
i

κ2
N

(
εNβ

(N)
n /ε0 αnsinϕ

−αnsinϕ µNβ
(N)
n /µ0

)
,
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and the sums are finite, since Imβ
(k)
n > 0 and Imβ

(N)
n > 0 for almost all n. If β

(k)
n > 0

or β
(N)
n > 0, then the corresponding matrix M±

n satisfies obviously Im(M±
n ) > 0,

and hence we get

lim
H→∞

Im

∫

ΩH

(
BU · U − ω2ε

ε0
|u|2 − ω2µ

µ0
|v|2
)

> 0.

On the other hand, it will be shown in Lemma 4.6 that the assumption Im ε, Imµ >

0 implies

(4.14) Im

∫

ΩH

(
BU · U − ω2ε

ε0
|u|2 − ω2µ

µ0
|v|2
)

6 0,

and therefore

∑

β
(k)
n >0

ImM+
n

(
û+

n

v̂+
n

)
·
(
û+

n

v̂+
n

)
+

∑

β
(N)
n >0

ImM−
n

(
û−n
v̂−n

)
·
(
û−n

v̂−n

)
= 0.

�

Lemma 4.6. If Im ε, Imµ > 0, then (4.14) holds.

P r o o f. To show that

(4.15) Im

∫

ΩH

BU · U = −Re

∫

ΩH

iBU · U 6 0,

we write as in [2, 11]

iU−1BU =

(
N+ 0

0 N−

)

with

N± =
1

κ2

(
iε/ε0 ± sinϕ

∓ sinϕ iµ/µ0

)
, U =

1√
2

(
I iI

iI I

)
,

where I is the 2×2 identity matrix and U is therefore unitary. Introducing differential
operators ∂+ = (∂x − i∂y)/

√
2 and ∂− = (∂y − i∂x)/

√
2, one can transform

∫

ΩH

iBU · U =

∫

ΩH

(
N+∂+

(
u

v

)
·
(
u

v

)
+N−∂−

(
u

v

)
·
(
u

v

))
.

If Im εj = Imµj = 0, then ReN±|Gj
= 0. Hence (4.15) is proved if

ReN±|Gj
=

(
− Im

εj

ε0κ2
j

±i Im sin ϕ
κ2

j

∓i Im sin ϕ
κ2

j

− Im
µj

µ0κ2
j

)
> 0
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for Im εj + Imµj > 0. The last relation is equivalent to the inequalities

(4.16) − Im
εj

κ2
j

> 0 and Im
εj

κ2
j

Im
µj

κ2
j

− ε0µ0 sin2 ϕ
(

Im
1

κ2
j

)2

> 0.

Denoting ϕε = arg εj, ϕµ = argµj , ϕκ = argκ2
j , the assumptions

ϕε, ϕµ ∈ [0, π] and ϕκ ∈ (0, 2π)

together with κ2
j = εjµj −ε0µ0 sin2 ϕ lead to 0 < ϕκ−ϕε, ϕκ−ϕµ 6 π, and therefore

− Im
εj

κ2
j

=
∣∣∣
εj

κ2
j

∣∣∣ sin(ϕκ − ϕε) > 0.

Further, (4.15) follows from the observation that since

Im
ε0µ0 sin2 ϕ

κ2
j

= Im
εjµj

κ2
j

,

the second inequality in (4.16) is equivalent to

sin(ϕε − ϕκ) sin(ϕµ − ϕκ) + sin(ϕε + ϕµ − ϕκ) sinϕκ = sinϕε sinϕµ > 0.

�

Finally, sufficient conditions for the invertibility of all Cj can be deduced from

Proposition 4.3. Assume the conditions of Theorem 4.1 hold and N(CN−1) =

N(CN−2) = . . . = N(Ck+1) = {0}. If for some j = k+ 1, . . . , N the imaginary part of

εj or µj is positive, Im(εj + µj) > 0, then N(Ck) = {0}.

P r o o f. Suppose that N(Ck) 6= {0} and consider as in the proof of Lemma 4.5
the solution (u, v) of the homogeneous transmission problem in the reduced grating

structure with the profiles Σk, . . . ,ΣN−1 and the top layer G
+
k , for which we have

shown

Im

∫

ΩH

(
BU · U − ω2ε

ε0
|u|2 − ω2µ

µ0
|v|2
)

= 0.

Using the notation in the proof of Lemma 4.6 we have therefore

∫

ΩH

( Im ε

ε0
|u|2 +

Imµ

µ0
|v|2
)

= Re

∫

ΩH

(
N+∂+

(
u

v

)
· ∂+

(
u

v

)
+N−∂−

(
u

v

)
· ∂−

(
u

v

))
= 0.
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If Im εj , Imµj > 0, then u = v = 0 in Gj . If otherwise, for example Im εj = 0, then

v = 0 and Imκ2
j 6= 0, implying that

Re

∫

ΩH∩Gj

(
N+∂+

(
u

0

)
· ∂+

(
u

0

)
+N−∂−

(
u

0

)
· ∂−

(
u

0

))

=
2εj sinϕκ

ε0|κ2
j |

∫

ΩH∩Gj

|∇u|2 = 0,

which yields u = 0 in Gj since ∆u+ ω2κ2
ju = 0.

Hence, u, v solve in the neighboring layers Helmholtz equations with vanishing

boundary values and normal derivatives at the common interfaces (due to the trans-

mission condition (2.10)). By Holmgren’s theorem the homogeneous transmission

problem has therefore only the trivial solution u = v = 0, and the invertibility of

V
(k+1)
kk implies that ϕk = ψk = 0. �
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