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SOME NEW MODIFIED COSINE SUMS AND
L1-CONVERGENCE OF COSINE TRIGONOMETRIC SERIES

Xhevat Z. Krasniqi

Abstract. In this paper we introduce some new modified cosine sums and
then using these sums we study L1-convergence of trigonometric cosine series.

1. Introduction and preliminaries

Let

(1.1) a0

2 +
∞∑
k=1

ak cos kx

be cosine trigonometric series and satisfy condition ak → 0, k →∞. The partial
sum of series (1) we denote by Sn(x) = a0

2 +
∑n
k=1 ak cos kx and let be f(x) =

limn→∞ Sn(x).
A sequence (ak) is said to belong to the class S, or briefly ak ∈ S, if ak → 0 as

k →∞, and there exists a sequence of numbers (Ak) such that
Ak ↓ 0 ,

∞∑
k=1

Ak <∞ ,

and

|∆ak| ≤ Ak ,
for all k, where ∆ak = ak − ak+1.

This class of sequences was defined by Sidon in [18] and by Telyakovskĭı in [21],
therefore the class S is sometimes called the Sidon-Telyakovskĭı class. The class S
is generalized later by Tomovski in [22] and by Leindler in [16].

Tomovski defined the class Sr, r = 1, 2, . . . as follows: {ak}∞k=1 ∈ Sr if ak → 0
as k →∞ and there exists a monotonically decreasing sequence {Ak}∞k=1 such that
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k=1 k

rAk < ∞ and |∆ak| ≤ Ak for all k. There was noticed that from Ak ↓ 0
and

∑∞
k=1 k

rAk <∞ it follows kr+1Ak = o(1), k →∞. It is clear that Sr+1 ⊂ Sr
for all r = 1, 2, . . . and for r = 0 we get the class S0 ≡ S.

Garret and Stanojević [3] have introduced modified cosine sums

fn(x) = 1
2

n∑
k=0

∆ak +
n∑
k=1

n∑
j=k

∆aj cos kx .

Garret and Stanojević [4], Ram [17], Singh and Sharma [20], and Kaur and
Bhatia [11], [6], [10] studied the L1-convergence of this cosine sum under different
sets of conditions on the coefficients an.

Kumari and Ram [15] introduced new modified cosine and sine sums as

hn(x) = a0

2 +
n∑
k=1

n∑
j=k

∆
(aj
j

)
k cos kx ,

gn(x) =
n∑
k=1

n∑
j=k

∆
(aj
j

)
k sin kx

and have studied their L1-convergence under the condition that the coefficients
an belong to different classes of sequences. They deduced some results about
L1-convergence of cosine and sine series as corollaries, as well.

N. Hooda, B. Ram and S. S. Bhatia [5] introduced new modified cosine sums as

Rn(x) = 1
2

(
a1 +

n∑
k=0

∆2ak

)
+

n∑
k=1

(
ak+1 +

n∑
j=k

∆2aj

)
cos kx

and studied the L1-convergence of these cosine sums.
K. Kaur [9] introduced new modified sine sums as

Kn(x) = 1
2 sin x

n∑
k=1

n∑
j=k

(
∆aj−1 −∆aj+1

)
sin kx ,

and studied the L1-convergence of this modified sine sum with semi-convex coef-
ficients. Also, Kaur at al. [12] introduced a new class of numerical sequences as
follows:

Definition 1. If ak = o(1) as k →∞, and
∞∑
k=1

k|∆2ak−1 −∆2ak+1| < +∞ (a0 = 0)

then we say that {ak} belongs to the class K.

In their paper they proved the following result regarding to L1-convergence of
the modified sums Kn(x).

Theorem 1. Let the sequence {ak} belong to the class K, then Kn(x) converges
to f(x) in the L1-norm.
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Later on, Singh and Kaur [19] defined new modified generalized sine sums

Knr(x) = 1
2 sin x

n∑
k=1

(∆rak−1 −∆rak+1) S̃r−1
k (x) ,

and a new class of sequences:

Definition 2. Let α be a positive real number. If ak = o(1) as k →∞, and
∞∑
k=1

kα|∆α+1ak−1 −∆α+1ak+1| < +∞ (a0 = 0)

then we say that {ak} belongs to the class Kα.

They proved the following generalization of Theorem 1.

Theorem 2. Let the sequence {ak} belong to the class Kα, then Knr(x) converges
to f(x) in the L1-norm.

Some new modified sums are presented in [13] by present author (see also [14])
as follows

Hn(x) = 1
2 sin x

n∑
k=1

n∑
j=k

∆ [(aj−1 − aj+1) sin jx] ,

and also we have proved a new result as below.

Theorem 3. Let (an) be a semi-convex null sequence, then Hn(x) converges to
f(x) in L1-norm.

The interested reader can find some new results in very recently published papers,
[7] where the complex form of the sums Kn(x) is introduced, and paper [8] in
which it is studied the L1-convergence of sine trigonometric series by using a newly
introduced modified cosine trigonometric sums under a new class of coefficient
sequences (see [8] for details therein).

We recall that with regard to the L1-convergence of Ress-Stanojević cosine sums
fn(x) to a cosine trigonometric series, belonging to the class S, Ram [17] proved
the following theorem:

Theorem 4. If (1.1) belongs to the class S, then ‖f − fn‖L1 = o(1), n→∞.

In order to make an advanced study, on this treating topic, now we shall introduce
new modified cosine sums as

Gn(x) = a0

2 +
n∑

k1=1

n∑
k2=k1

n∑
k3=k2

∆2 (ak3 cos k3x) ,

where ∆2ak = ∆ (∆ak) = ak − 2ak+1 + ak+2.

Remark 1. The advantage of introducing of the above modified cosine sums is
the following: We have verified that the sums Gn(x) converge in L1-norm to f(x),
without a new class of null-sequences being defined, in contrary what the other
authors previously did in their papers (as examples serve classes K, Kα, etc.).
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The purpose of this paper is to prove analogous statement with Theorem 4 using
new modified cosine sums Gn(x) instead of gn(x) and the L1-convergence of the
series (1.1) will be derived as a corollary.

As usual Dn(x) will denote the real Dirichlet kernel, i.e.

Dn(x) = 1
2 +

n∑
k=1

cos kx .

For the proof of main result we need the following lemma.

Lemma 1 ([2]). If |ck| ≤ 1, then∫ π

0

∣∣∣ n∑
k=0

ck
sin (k + 1/2)x

2 sin x
2

∣∣∣dx ≤ C(n+ 1),

where C is a positive absolute constant.

2. Main results

We establish the following result.

Theorem 5. Let (1.1) belong to the class S2, then ‖f −Gn‖L1 = o(1), as n→∞.

Proof. We have

Gn(x) = a0

2 +
n∑

k1=1

n∑
k2=k1

n∑
k3=k2

∆2 (ak3 cos k3x)

= a0

2 +
n∑

k1=1

n∑
k2=k1

[
∆ (ak2 cos k2x)−∆ (ak2+1 cos(k2 + 1)x)

+ · · ·+ ∆ (an cosnx)−∆ (an+1 cos (n+ 1)x)
]

= a0

2 +
n∑

k1=1

n∑
k2=k1

[
∆ (ak2 cos k2x)−∆ (an+1 cos (n+ 1)x)

]
= a0

2 +
n∑

k1=1

[
ak1 cos k1x− ak1+1 cos(k1 + 1)x+ · · ·+ an cosnx

− an+1 cos (n+ 1)x
]
−∆

(
an+1 cos (n+ 1)x

) n∑
k1=1

(n− k1 + 1)

= Sn(x)− nan+1 cos (n+ 1)x− 1
2n(n+ 1)∆

(
an+1 cos (n+ 1)x

)
= Sn(x)− 1

2n(n+ 3)an+1 cos (n+ 1)x

+ 1
2n(n+ 1)an+2 cos (n+ 2)x .(2.1)
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From Ak ↓ 0 and
∑∞
k=1 k

2Ak < ∞ follows k3Ak = o(1), k → ∞, which gives
k2Ak = o(1), k →∞. Therefore from

0 ≤ n2|an| = n2
∣∣∣ ∞∑
k=n

∆ak
∣∣∣ ≤ ∣∣∣ ∞∑

k=n
k2∆ak

∣∣∣ ≤ ∞∑
k=n

k2Ak = o(1) , n→∞

follow

(2.2) n2an = o(1), nan = o(1), n→∞ .

Also, cos(n + 1)x and cos(n + 2)x are finite in [0, π] therefore from (2.1) and
(2.2) we get

lim
n→∞

Gn(x) = lim
n→∞

Sn(x) = f(x).

On the other side, using Abel’s transformation we have

f(x)−Gn(x) = lim
m→∞

( m−1∑
k=n+1

∆akDk(x) + amDm(x)− an+1Dn(x)
)

+ 1
2n(n+ 3)an+1 cos (n+ 1)x− 1

2n(n+ 1)an+2 cos (n+ 2)x

=
∞∑

k=n+1
∆akDk(x)− an+1Dn(x) + 1

2n(n+ 3)an+1 cos (n+ 1)x

− 1
2n(n+ 1)an+2 cos (n+ 2)x .

Therefore

∫ π

0
|f(x)−Gn(x)|dx ≤

∫ π

0

∣∣∣ ∞∑
k=n+1

∆akDk(x)
∣∣∣ dx+ |an+1|

∫ π

0

∣∣Dn(x)
∣∣dx

+ 1
2n(n+ 3)|an+1|

∫ π

0

∣∣ cos (n+ 1)x
∣∣ dx

+ 1
2n(n+ 1)|an+2|

∫ π

0

∣∣ cos (n+ 2)x
∣∣ dx

:=
4∑

ν=1
Bν(n) .(2.3)

Since ak ∈ S2 ⊂ S0 ≡ S then
∑∞
k=n+1(k + 1)∆Ak = o(1) as n→∞, therefore

from this fact, Lemma 1, and using Abel’s transformation we have

B1(n) =
∫ π

0

∣∣∣ ∞∑
k=n+1

Ak
∆ak
Ak

Dk(x)
∣∣∣ dx ≤ ∞∑

k=n+1
∆Ak

∫ π

0

∣∣∣ k∑
i=0

∆ai
Ai

Di(x)
∣∣∣ dx

= O
( ∞∑
k=n+1

(k + 1)∆Ak
)

= o(1) , n→∞ .(2.4)
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By well-known Zygmund’s theorem (see [20, p. 458]), for n sufficiently large, the
following relation holds ∫ π

0

∣∣Dn(x)
∣∣ dx ∼ logn ,

therefore from the last relation and (2.2) we have

(2.5) B2(n) = |an+1| logn ≤ n|an+1| = o(1) , n→∞ .

Moreover, from fact that integrals
∫ π

0
∣∣ cos(n+ 1)x

∣∣dx,
∫ π

0
∣∣ cos(n+ 2)x

∣∣dx are
bounded, and from relation (2.2) we conclude that

B3(n) = O
(
n(n+ 3)|an+1|

)
= o(1), n→∞(2.6)

and similarly

B4(n) = O
(
n(n+ 1)|an+2|

)
= o(1), n→∞ .(2.7)

Finally, from (2.3)–(2.7) it follows that

‖f −Gn‖L1 = o(1) , n→∞ .

The proof of the Theorem 5 is completed. �

Corollary 1. Let (1.1) belong to the class S2, then ‖f − Sn‖L1 = o(1) as n→∞.

Proof. From Theorem 5, and relations (2.6), (2.7), we have

‖f − Sn‖L1 = ‖f −Gn +Gn − Sn‖L1

≤ ‖f −Gn‖L1 + ‖Gn − Sn‖L1

≤ ‖f −Gn‖L1 + 1
2n(n+ 3)|an+1|

∫ π

0

∣∣ cos (n+ 1)x
∣∣ dx

+ 1
2n(n+ 1)|an+2|

∫ π

0

∣∣ cos (n+ 2)x
∣∣ dx = o(1)

as n→∞, which completely proves the corollary. �

Remark 2. A closer examination of the proofs of Theorem 5 and Corollary 1 reveals
that condition ak ∈ S2 can be replaced by conditions ak ∈ S and n2|an| = o(1).
This enables us to formulate Theorem 5 and Corollary 1 in the following form:

Theorem 6. Let (ak) belong to the class S and n2|an| = o(1), then ‖f −Gn‖L1 =
o(1) as n→∞.

Corollary 2. Let (ak) belong to the class S and n2|an| = o(1), then ‖f −Sn‖L1 =
o(1) as n→∞.

We would like to finalize this paper with a comment. We have noticed during
this study that, if someone tries to introduce some modified sums of the form

Tn,m(x) = a0

2 +
n∑

k1=1

n∑
k2=k1

n∑
k3=k2

. . .

n∑
km=km−1

∆m−1 (akm/km) k1 cos k1x ,



SOME NEW MODIFIED COSINE SUMS AND L1-CONVERGENCE 49

where m ∈ N , m > 3, ∆ak = ak−ak+1, ∆m−1ak = ∆
(
∆m−2ak

)
, which is a natural

extension of our results, then several difficulties in the proof of the counterpart of
Theorem 5 will be appeared. This is why we are focused only on the case m = 3.
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[21] Telyakovskĭı, S. A., On a sufficient condition of Sidon for integrability of trigonometric
series, Math. Zametki 14 (1973), 317–328.

[22] Tomovski, Ž., Some results on L1–approximation of the r–th derivative of Fourier series, J.
Inequal. Pure Appl. Math. 1 (2002), 11, electronic only.

University of Prishtina, Faculty of Education,
Department of Mathematics and Informatics,
Agim Ramadani St., n.n., Prishtinë 10000, Republic of Kosova
E-mail: xhevat.krasniqi@uni-pr.edu

mailto:xhevat.krasniqi@uni-pr.edu

		webmaster@dml.cz
	2014-07-30T13:58:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




