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Images of some functions and functional

spaces under the Dunkl-Hermite semigroup

Néjib Ben Salem, Walid Nefzi

Abstract. We propose the study of some questions related to the Dunkl-Hermite
semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev
space, S(R) and L

p
α(R), 1 < p < ∞, under the Dunkl-Hermite semigroup. Also,

we consider the image of the space of tempered distributions and we give Paley-
Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.

Keywords: Dunkl-Hermite functions; Dunkl-Hermite semigroup; Dunkl-Hermite-
Sobolev space

Classification: 42B25, 46E35, 47B38, 47D03

1. Introduction and statement of the results

Let Dα, α ≥ − 1
2 , be the Dunkl operator on the real line defined by

Dαf(x) = f ′(x) +
2α+ 1

x

[f(x)− f(−x)
2

]
, f ∈ C1(R).

To this operator is associated the Dunkl-Hermite operator

Hα = −D2
α + x2.

Its spectral decomposition is given by the Dunkl-Hermite functions hαn defined by

hαn(x) = e−
x2

2 Hα
n (x), n ∈ N,

namely we have (see [11])

Hαh
α
n(x) = (2n+ 2α+ 2)hαn(x).

Here Hα
n is the Dunkl-Hermite polynomial given by

Hα
n (x) = 2−

n
2

√
bn(α)

Γ(α+ 1)

[n2 ]∑

k=0

(−1)k

k!bn−2k(α)
(2x)n−2k,

where bn(α) is the generalized factorial defined by Rosenblum in [10],

bn(α) =
2n([n2 ])!

Γ(α+ 1)
Γ
([n+ 1

2

]
+ α+ 1

)
,
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[n/2] denotes the integral part of n/2. More precisely, these polynomials are
expressed in terms of the Laguerre polynomials,

Hα
n (x) =

(−1)[
n
2 ]

√
Γ(α+ 1)

2
n
2 ([n2 ])!√
bn(α)

xθnLα+θn
[n2 ] (x2),

where θn is defined to be 0 if n is even and 1 if n is odd.
Hereafter, Lp

α(R) = Lp(R, |x|2α+1dx), 1 ≤ p < +∞, denotes the space of
measurable functions on R satisfying

‖f‖α,p :=
(∫

R

|f(x)|p|x|2α+1 dx
) 1

p

< +∞.

It is known that {hαn, n ∈ N} forms an orthonormal basis of L2
α(R). So for

f ∈ L2
α(R)

Hαf =

∞∑

n=0

(2n+ 2α+ 2)aαn(f)h
α
n

with aαn(f) =
∫
R
f(x)hαn(x)|x|2α+1 dx.

Then, for a non-negative integerm, the Dunkl-Hermite-Sobolev spaceWm,2
Hα

(R)

is defined to be the image of L2
α(R) under (Hα)

−m. We remark that Wm,2
Hα

(R) is
a Hilbert space under the inner product

〈f, g〉Wm,2
Hα

=

∞∑

n=0

(2n+ 2α+ 2)2maαn(f)a
α
n(g).

The Dunkl-Hermite semigroup denoted by e−tHα , t > 0, is defined by

e−tHαf =

∞∑

n=0

e−(2n+2α+2)taαn(f)h
α
n

for f ∈ L2
α(R) and f =

∑∞
n=0 a

α
n(f)h

α
n.

Using the Mehler formula for the Dunkl-Hermite polynomials Hα
n (see [10]),

we can write e−tHα , on a dense subspace of L2
α(R), as an integral operator with

kernel Mα
t (x, y)

(1) [e−tHαf ](x) =

∫

R

f(y)Mα
t (x, y)|y|2α+1dy.

The kernel Mα
t (x, y) can be explicitly written as

Mα
t (x, y) =

1

Γ(α+ 1)(2 sinh(2t))α+1
e−

1
2 coth(2t)(x2+y2)Eα

( x

sinh(2t)
, y
)
,
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where Eα(ξ, x) is the Dunkl kernel given by

Eα(ξ, x) = jα(ξx) +
ξx

2(α+ 1)
jα+1(ξx),

jβ being the spherical Bessel function of order β given by

jβ(t) = Γ(β + 1)

∞∑

n=0

1

n!Γ(n+ β + 1)
(
t

2
)2n .

We define the holomorphic Dunkl-Sobolev space Wm,2
t,α (C) as the image of

Wm,2
Hα

(R) under e−tHα . It can be viewed as a Hilbert space simply by transfering

the Hilbert space structure of Wm,2
Hα

(R). In what follows, we give a characteriza-

tion of the space Wm,2
t,α (C).

Using the reproducing kernel property, we show that if F is a holomorphic
function on C, then there exists a function f ∈ S(R) (the Schwartz space) such
that F = e−tHαf if and only if F satisfies

|F (z)|2 ≤ Ct,α,m

e− tanh(2t)x2+coth(2t)y2

(1 + x2 + y2)2m
, z = x+ iy,

for some constant Ct,α,m m = 1, 2, 3, . . .
The formula (1) permits to extend e−tHα on the spaces Lp

α(R). We establish
that if f ∈ Lp

α(R) for 1 < p < ∞ then e−tHα(f) is holomorphic and e−tHα(f) ∈
Ls
α(C, V

s+ǫ
2

t, p2
) for every ǫ > 0 and any 1 ≤ s <∞, where

V r
t,

p

2
(x+ iy) = exp

(
− 2r

( p

(p− 1) sinh 4t
x2 +

coth 2t

2
y2
))
.

Next, we consider the space of tempered distributions. For S ∈ S ′(R), we show
that e−tHα is given by a function defined by

e−tHαS(x) = e−
1
2 (

cosh 2t−1
sinh 2t )x2(

e−
1
2 (

cosh 2t−1
sinh 2t )y2

S ∗α q sinh 2t
2

)
(x),

where qt, t > 0, denotes the heat kernel associated with the Dunkl operator Dα,
given by

qt(x) =
1

Γ(α+ 1)
(4t)−(α+1)e−

x2

4t ,

and ∗α is the generalized convolution product associated with the Dunkl operator
Dα (see [13]). Moreover, e−tHαS is a C∞ function on R.

These results permit us to characterize the image of tempered distributions on
R under the Dunkl-Hermite semigroup. We establish that if F is a holomorphic
function on C, then there exists a distribution f ∈ S ′(R) with F = e−tHαf if and
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only if F satisfies

|F (z)|2 ≤ Ct,α(1 + |z|2)2m exp
(
− tanh(2t)x2 + coth(2t)y2

)
,

for some non-negative integer m.
Next, we define the transform T α

a , for a > 0, by

T α
a (S)(x) = 〈S, e− 1

2a(·)
2

Eα(−ix, ·)〉, S ∈ S ′(R).

We prove that this transform is related to the Dunkl-Hermite semigroup and we
establish a Paley-Wiener theorem for T α

a f . For any a > 0 the transform T α
a of a

tempered distribution f on R extends to C as an entire function which satisfies
the estimate

|T α
a f(z)| ≤ Cα(1 + x2 + y2)me

1
2a

−1y2

for some non-negative integer m. Conversely, if an entire function F satisfies such
an estimate, then F = T α

a f for some tempered distribution f .
Again relating the Dunkl-Hermite semigroup and the Dunkl transform, we

obtain a characterization of the image of compactly supported distributions under
the Dunkl-Hermite semigroup. If f is a distribution supported in a ball of radius R
centered at the origin then for any t > 0 the function e−tHαf extends to C as an
entire function which satisfies

|e−tHαf(z)| ≤ Ce−
1
2 coth 2t(x2−y2)e

R|x|
sinh 2t .

Conversely, any entire function F satisfying the above condition is of the form
e−tHαf , where f is supported inside a ball of radius R centered at the origin.

We point out that the results of this paper extend naturally those established
in [8] by R. Radha and S. Thangavelu.

We conclude this introduction by giving the organization of this paper. In the
next section, we define the Dunkl-Hermite-Sobolev space and we characterize its
images under the Dunkl-Hermite semigroup. The third section deals with a char-
acterization of the image of S(R) and Lp

α(R) under the Dunkl-Hermite semigroup.
In the last section we establish Paley-Wiener type theorems for the tempered dis-
tributions and the compactly supported distributions under the Dunkl-Hermite
semigroup.

2. Holomorphic Dunkl-Sobolev spaces

We have established in [1] that every element in the range of the operator e−tHα

defined on L2
α can be analytically extended to the complex plane C, hence we shall

consider the operator e−tHα as a linear operator from L2
α into an entire function

space and the entire extension will be simply denoted by e−tHαf(z), z = x+ iy.
In this section, we introduce the Dunkl-Hermite-Sobolev space and we give a

characterization of its images under the Dunkl-Hermite semigroup.
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Notation 1. Let Uα
t,e(z)=

2
π sinh(4t)Kα(

|z|2
sinh(4t) ) exp{coth(4t)(x2−y2)}|z|2α+2 and

Uα
t,o(z) =

2
π sinh(4t)Kα+1(

|z|2
sinh(4t) ) exp{coth(4t)(x2 − y2)}|z|2α+2. We have

Uα
t,o(z) =

Uα+1
t,e (z)

|z|2 .

Here Kν is the Macdonald function defined in [4] by:

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)
, ν ∈ C\Z, | arg(z)| < π

where

Iν(z) =
1

Γ(ν + 1)

(z
2

)ν

jν(z)

and for an integer n,

Kn(z) = lim
ν→n

Kν(z).

Let Hα
t,e(C) denote the Hilbert space of all even entire functions on C which

are square integrable with respect to the weight function Uα
t,e, equipped with the

inner product defined by

〈f, g〉α,e =
∫

C

f(z)g(z)Uα
t,e(z) dz.

Let Hα
t,o(C) denote the Hilbert space of all odd entire functions on C which

are square integrable with respect to the weight function Uα
t,o, equipped with the

inner product defined by

〈f, g〉α,o =

∫

C

f(z)g(z)Uα
t,o(z) dz.

Let Hα
t denote the direct sum of Hα

t,e and Hα
t,o admitting the inner product

〈f, g〉α,t = 〈fe, ge〉α,e + 〈fo, go〉α,o ,

where fe(z) =
f(z)+f(−z)

2 and fo(z) =
f(z)−f(−z)

2 .

We recall the following results proved in [1].

Theorem 1. The image of L2
α(R) under the Dunkl-Hermite semigroup is the Fock

type space Hα
t . The Dunkl-Hermite semigroup e−tHα is an isometric isomorphism

from L2
α(R) into Hα

t (C).

Also we have the orthogonality property

(2)
〈hαn, hαm〉α,t =

∫

C

hαn,e(z)h
α
m,e(z)U

α
t,e(z) dz +

∫

C

hαn,o(z)h
α
m,o(z)U

α
t,o(z) dz

= e2(2n+2α+2)tδn,m ,
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where hαn(z) is the extension of the Dunkl-Hermite function hαn(x) to C as an
entire function.

Let h̃αn(z) = e−(2n+2α+2)thαn(z), then {h̃αn, n ∈ N} forms an orthonormal basis
for Hα

t (C). Thus any F ∈ Hα
t (C) can be written as

F =
∞∑

n=0

〈F, h̃αn〉α,th̃αn.

Definition 1. Let m be a non-negative integer. The Dunkl-Hermite-Sobolev
space Wm,2

Hα
(R) is defined to be the image of L2

α(R) under (Hα)
−m.

Remark 1. We remark that f ∈ Wm,2
Hα

(R) if and only if
∑∞

n=0(2n + 2α +

2)2m|aαn(f)|2 < ∞. The Sobolev space Wm,2
Hα

(R) is an Hilbert space under the
inner product

〈f, g〉Wm,2
Hα

=

∞∑

n=0

(2n+ 2α+ 2)2maαn(f)a
α
n(g).

As (Hα)
mf =

∑∞
n=0(2n+ 2α+ 2)maαn(f)h

α
n then

〈f, g〉Wm,2
Hα

= 〈(Hα)
mf, (Hα)

mg〉L2
α
.

Definition 2. We define the holomorphic Dunkl-Sobolev space Wm,2
t,α (C) to be

the image of Wm,2
Hα

(R) under e−tHα .

Remark 2. It is clear that by transferring the Hilbert space structure ofWm,2
Hα

(R)

to Wm,2
t,α (C), the space Wm,2

t,α (C) becomes a Hilbert space. The Dunkl-Hermite

semigroup e−tHα is an isometric isomorphism fromWm,2
Hα

(R) ontoWm,2
t,α (C). Then

we can write

〈F,G〉Wm,2
t,α

=
∞∑

n=0

(2n+ 2α+ 2)2maαn(f)a
α
n(g)

whenever F = e−tHαf and G = e−tHαg.

Notation 2. We denote by O(C) the set of all holomorphic functions on C.
Let Fm,α

t,e (C) be the space of all even functions in O(C) which are square inte-

grable with respect to the measure | d2m

dt2m
Uα
t,e(z)|dz. We equip Fm,α

t,e (C) with the
sesquilinear form

〈F,G〉m,e =

∫

C

F (z)G(z)
d2m

dt2m
Uα
t,e(z) dz.

Let Fm,α
t,o (C) be the space of all odd functions in O(C) which are square inte-

grable with respect to the measure | d2m

dt2m
Uα
t,o(z)|dz. We equip Fm,α

t,o (C) with the
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sesquilinear form

〈F,G〉m,o =

∫

C

F (z)G(z)
d2m

dt2m
Uα
t,o(z) dz.

Let Fm,α
t (C) be the direct sum of Fm,α

t,e (C) and Fm,α
t,o (C) admitting the ses-

quilinear form

〈F,G〉m,α = 〈Fe, Ge〉m,e + 〈Fo, Go〉m,o.

We shall show below that this defines a pre-Hilbert space structure on
Fm,α

t (C) ∩Hα
t (C).

Let Bm,α
t (C) denote the completion of Fm,α

t (C) ∩ Hα
t (C) with respect to the

norm induced by the above inner product. In the following proposition, we also
show that ‖F‖m,α and ‖F‖Wm,2

t,α
coincide up to a constant multiple.

Proposition 1. The sesquilinear form 〈F,G〉m,α, for a non-negative integer m,

is an inner product on Fm,α
t (C) ∩ Hα

t (C) and hence induces a norm ‖F‖2m,α =
〈F, F 〉m,α. We also have

‖F‖2m,α = 22m‖F‖2Wm,2
t,α

for all functions F = e−tHαf with f ∈ S(R).

Proof: Let F be in Fm,α
t (C)∩Hα

t (C). We expand the restriction of F to R into
an orthogonal expansion in terms of hαn (see [1]), and we can write

F (x+ iy) =
∑

n

〈F, hαn〉2,αhαn(x+ iy),

so we have that

Iαt :=

∫

C

|Fe(x + iy)|2Uα
t,e(z) dz +

∫

C

|Fo(x+ iy)|2Uα
t,o(z) dz

=
〈∑

n

〈F, hαn〉2,αhαn,
∑

q

〈F, hαq 〉2,αhαq
〉
α,t
.

Using the orthogonality relation (2), we can show that

Iαt =
∑

n

|〈F, hαn〉2,α|2e2(2n+2α+2)t.
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By definition, for a nonnegative integer m, we have

〈F, F 〉m,α =

∫

C

|Fe(z)|2
d2m

dt2m
Uα
t,e(z) dz +

∫

C

|Fo(z)|2
d2m

dt2m
Uα
t,o(z) dz

=
d2m

dt2m
Iαt

= 22m
∑

n

(2n+ 2α+ 2)2m|〈F, hαn〉2,α|2e2(2n+2α+2)t.

Thus it follows that the sesquilinear form defined above is positive definite and
induces the norm ‖F‖m,α.

On the other hand, we have the expansion

F (z) =

∞∑

m=0

〈F, h̃αm〉α,th̃αm(z)

and

F = e−tHαf with f ∈ L2
α(R).

Thus we have

〈F, hαn〉2,α =

∫

R

∞∑

m=0

〈F, h̃αm〉α,th̃αm(x)hαn(x)|x|2α+1 dx

=

∫

R

∞∑

m=0

〈f, hαm〉2,αe−(2m+2α+2)thαm(x)hαn(x)|x|2α+1 dx

=

∞∑

m=0

〈f, hαm〉2,αe−(2m+2α+2)t

∫

R

hαm(x)hαn(x)|x|2α+1 dx

= 〈f, hαn〉2,αe−(2n+2α+2)t.

Interchanging the order of summation and integration is justified by Lebesgue’s
dominated convergence theorem and limiting behavior of ‖hαn‖α,p given in [2].
Again using the orthogonality relation (2), we get

‖F‖2m,α = 22m
∑

n

(2n+ 2α+ 2)2m|〈F, hαn〉2,α|2e2(2n+2α+2)t

= 22m
∑

n

(2n+ 2α+ 2)2m|〈f, hαn〉2,α|2

= 22m
∑

n

(2n+ 2α+ 2)2m|〈F, h̃αn〉α,t|2

= 22m‖F‖2Wm,2
t,α

. �
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Using this proposition we can easily prove the following result on the range of
the Dunkl-Hermite-Sobolev spaces under the Dunkl-Hermite semigroup.

Theorem 2. For every nonnegative integer m, Wm,2
t,α (C) coincides with Bm,α

t (C)

and the Dunkl-Hermite semigroup e−tHα is an isometric isomorphism from

Wm,2
Hα

(R) onto Bm,α
t (C) up to a constant multiple.

Proof: Let F ∈ Fm,α
t (C) ∩ Hα

t (C), hence F is of the form e−tHαf with f ∈
L2
α(R). Further, it follows from the above proposition, as the norms ‖F‖m,α

and ‖F‖Wm,2
t,α

coincide, that f ∈ Wm,2
Hα

(R). Consequently, Fm,α
t (C) ∩ Hα

t (C) is

contained in Wm,2
t,α (C). We have h̃αn = e−tHαhαn, and

‖h̃αn‖2m,α = 22m‖h̃αn‖Wm,2
t,α

= 22m‖hαn‖Wm,2
Hα

= 22m(2n+ 2α+ 2)2m <∞.

So for all n ∈ N, h̃αn ∈ Bm,α
t (C). We have

〈F, h̃αn〉Wm,2
t,α

=

∞∑

p=0

(2p+ 2α+ 2)2m〈F, h̃αp 〉α,t〈h̃αn, h̃αp 〉α,t

= (2n+ 2α+ 2)2m〈F, h̃αn〉α,t.

Then it can be easily seen that if 〈F, h̃αn〉Wm,2
t,α

= 0 then 〈F, h̃αn〉α,t = 0. This gives

that F = 0 because {h̃αn, n ∈ N} form an orthonormal basis for Hα
t (C), so we

have

{h̃αn, n ∈ N} ⊂ Bm,α
t (C) ⊂ Wm,2

t,α (C)

and

{h̃αn, n ∈ N}
Wm,2

t,α (C)

= Wm,2
t,α (C).

Hence Fm,α
t (C) ∩Hα

t (C) is dense in Wm,2
t,α (C). �

3. The image of S(R) and Lp
α(R) under the Dunkl-Hermite semigroup

3.1 The image of S(R) under the Dunkl-Hermite semigroup. We begin
by establishing that S(R) is stable under the Dunkl-Hermite semigroup.

First we recall that the heat kernel qt, t > 0, associated with the Dunkl opera-
tors, see [12], is given by

qt(x) =
1

Γ(α+ 1)
(4t)−(α+1)e−

x2

4t .
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This function belongs to S(R) and satisfies the following property

τα−yqt(x) =
1

Γ(α+ 1)
(4t)−(α+1)e−

(x2+y2)
4t Eα

( x
2t
, y
)
,

where ταy is the generalized translation associated with the Dunkl operator Dα

(see [13]).
Using the Mehler formula for the Dunkl-Hermite polynomials Hα

n (see [10]),
we can write e−tHα on S(R) as an integral operator with kernel Mα

t (x, y)

[e−tHαf ](x) =

∫

R

f(y)Mα
t (x, y)|y|2α+1 dy.

The kernel Mα
t (x, y) can be explicitly written as

Mα
t (x, y) =

1

Γ(α+ 1)(2 sinh(2t))α+1
e−

1
2 coth(2t)(x2+y2)Eα

( x

sinh(2t)
, y
)
,

where Eα(ξ, x) is the Dunkl kernel. We can see that the kernel Mα
t (x, y) satisfies

the following relation

Mα
t (x, y) = e−

1
2 (

cosh 2t−1
sinh 2t )(x2+y2) τα−yq sinh 2t

2
(x).

So for ϕ ∈ S(R), we have

e−tHαϕ(y) = e−
1
2 (

cosh 2t−1
sinh 2t )y2(

e−
1
2 (

cosh 2t−1
sinh 2t )x2

ϕ ∗α q sinh 2t
2

)
(y),

where ∗α is the generalized convolution product associated with the Dunkl oper-
ator Dα (see [13]).

As a consequence we have the following result.

Proposition 2. The Dunkl-Hermite semigroup e−tHα is a continuous transform

from S(R) into S(R).
In the following, we shall give a characterization of the image of the Schwartz

space under the Dunkl-Hermite semigroup.
Let F ∈ Hα

t (C) and for z ∈ C, F (z) be its entire extension. Since F → F (z)
is a continuous linear functional on Hα

t (C) for each z ∈ C, Riesz representation
theorem ensures that there exists a unique Nα

t (z, ·) ∈ Hα
t (C) such that

F (z) = 〈F,Nα
t (z, ·)〉α,t = 〈Fe,Nα

t,e(z, ·)〉α,e + 〈Fo,Nα
t,o(z, ·)〉α,o.

The function Nα
t (z, w) is called the reproducing kernel for Hα

t (C). By expanding

F in terms of h̃αn, we can write

F (z) =

∞∑

n=0

〈F, h̃αn〉α,th̃αn(z) = 〈F,
∞∑

n=0

h̃αn(·)h̃αn(z)〉α,t .
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So, we deduce that

Nα
t (z, w) =

∑

n

e−(2n+2α+2)2thαn(w)h
α
n(z).

Cauchy-Schwartz inequality gives us

|F (z)|2 = |〈F,Nα
t (z, ·)〉α,t|2 ≤ ‖F‖2α,t‖Nα

t (z, ·)‖2α,t = ‖F‖2α,tNα
t (z, z).

Using Mehler’s formula, we can explicitly calculate Nα
t (z, z), in fact, we get

Nα
t (z, z) =

∑

n

e−(2n+2α+2)2thαn(z)h
α
n(z) = e−(2α+2)2t

∑

n

(e−4t)nhαn(z)h
α
n(z)

=
1

2α+1Γ(α+ 1)
(sinh(4t))−(α+1) exp

(
− 1

2
coth(4t)(z2 + z2)

)
Eα

( 1

sinh(4t)
, zz

)
.

If z = x+ iy we have that

|F (z)|2 ≤ 1

2α+1Γ(α+ 1)
(sinh(4t))−(α+1) exp

(
− coth(4t)(x2 − y2)

)

×Eα

( 1

sinh(4t)
, x2 + y2

)
‖F‖2α,t.

It is known that the kernel Eα satisfies the inequality below for all x, y ∈ R

(see [3])

(3) Eα

( 1

sinh(4t)
, x2 + y2

)
≤ exp

( 1

sinh(4t)
(x2 + y2)

)
.

As

− coth(4t)(x2 − y2) +
1

sinh(4t)
(x2 + y2) = − tanh(2t)x2 + coth(2t)y2,

we deduce

|F (z)|2 ≤ 1

2α+1Γ(α+ 1)
(sinh(4t))−(α+1) exp

(
− tanh(2t)x2 + coth(2t)y2

)
‖F‖2α,t ,

which gives a pointwise estimate for functions F ∈ Hα
t (C).

Notation 3. We denote by Nα,2m
t (z, w) the kernel defined by

Nα,2m
t (z, w) =

∑

n

(2n+ 2α+ 2)−2mh̃αn(z)h̃
α
n(w).

In order to obtain pointwise estimates for F ∈ Wm,2
t,α (C), we have to show the

following result.
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Proposition 3. Nα,2m
t (z, w) is a reproducing kernel for Wm,2

t,α (C).

Proof: For z ∈ C, the function w → Nα,2m
t (z, w) belongs to Wm,2

t,α (C) because

h̃αn(w) ∈ Wm,2
t,α (C) for all w ∈ C. We show now the reproducing property. For

z ∈ C and F ∈ Wm,2
t,α (C), we have

〈F,Nα,2m
t (z, ·)〉Wm,2

t,α
=

∞∑

n=0

(2n+ 2α+ 2)2m〈F, h̃αn〉α,t〈Nα,2m
t (z, ·), h̃αn〉α,t

=

∞∑

n=0

(2n+ 2α+ 2)2m〈F, h̃αn〉α,t(2n+ 2α+ 2)−2mh̃αn(z)

=

∞∑

n=0

〈F, h̃αn〉α,th̃αn(z) = F (z). �

The last kernel can be written as

Nα,2m
t (z, w) =

22m

(2m− 1)!

∫ +∞

0

s2m−1Nα
s+t(z, w) ds.

Using the explicit formula for Nα
s (z, z), we have

Nα,2m
t (z, z) =

22m

(2m− 1)!2α+1Γ(α+ 1)

∫ +∞

0

s2m−1(sinh 4(t+ s))−(α+1)

× exp
(
− coth 4(t+ s)(x2 − y2)

)
× Eα

( 1

sinh 4(t+ s)
, x2 + y2

)
ds.

Theorem 3 (Dunkl-Sobolev-embedding theorem). Let m be a nonnegative inte-

ger. Then every F ∈ Wm,2
t,α (C) satisfies the estimate

|F (z)|2 ≤ Ct,α(1 + x2 + y2)−2m exp
(
− tanh(2t)x2 + coth(2t)y2

)
,

where Ct,α is a constant depending on t and α.

Proof: We begin by estimating the integral appearing in the representation of
the reproducing kernel Nα,2m

t (z, z), using the inequality (3) we obtain

Nα,2m
t (z, z) ≤ 22m

(2m− 1)!2α+1Γ(α+ 1)

∫ +∞

0

s2m−1(sinh 4(t+ s))−(α+1)

× e− tanh 2(t+s)x2+coth 2(t+s)y2

ds.

We rewrite this in the following form

Nα,2m
t (z, z) ≤ 22m

(2m− 1)!2α+1Γ(α+ 1)
e− tanh(2t)x2+coth(2t)y2

Jα
t ,
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where

Jα
t =

∫ +∞

0

s2m−1(sinh 4(t+ s))−(α+1)

× e−x2(tanh 2(t+s)−tanh(2t)) × ey
2(coth 2(t+s)−coth(2t)) ds,

which after some simplification yields

Jα
t =

∫ +∞

0

s2m−1(sinh 4(t+ s))−(α+1)

× exp
(
− x2

( sinh 2s

cosh 2(t+ s) cosh 2t

)
− y2

( sinh 2s

sinh 2(t+ s) sinh 2t

))
ds.

Thus we only need to show that the above integral is bounded by Ct,α(1 + x2 +
y2)−2m.

To prove this estimate we break up the above integral into two parts. Using
the elementary properties of the functions sinh and cosh, we see that

∫ t

0

s2m−1(sinh 4(t+ s))−(α+1)

× exp
(
− x2

( sinh 2s

cosh 2(t+ s) cosh 2t

)
− y2

( sinh 2s

sinh 2(t+ s) sinh 2t

))
ds

is bounded by

∫ +∞

0

s2m−1e−4(α+1)s exp
(
− 2(

x2

cosh2 4t
+

y2

sinh2 4t
)s
)
ds

= (2m− 1)![2(2(α+ 1) +
x2

cosh2 4t
+

y2

sinh2 4t
)]−2m

≤ Ct,α,m(1 + x2 + y2)−2m.

On the other hand the integral
∫ ∞

t

s2m−1(sinh 4(t+ s))−(α+1)

× exp
(
− x2

( sinh 2s

cosh 2(t+ s) cosh 2t

)
− y2

( sinh 2s

sinh 2(t+ s) sinh 2t

))
ds,

is bounded by

(2m− 1)!

(4(α+ 1))2m
exp

(
−(

tanh 2t

cosh 4t
x2 +

1

sinh 4t
y2)

)
.

The above clearly gives the required estimate. �

Now we are in a position to prove the following result which characterizes the
image of S(R) under e−tHα .
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Theorem 4. Let t > 0 be fixed, and F be a holomorphic function on C. Then

there exists a function f ∈ S(R) such that F = e−tHαf if and only if F satisfies

|F (z)|2 ≤ Ct,α,m

e− tanh(2t)x2+coth(2t)y2

(1 + x2 + y2)2m

for some constants Ct,α,m, m = 1, 2, 3, . . .

Proof: If f ∈ S(R), then (Hα)
mf ∈ L2

α(R) for all integer m, so f ∈ Wm,2
Hα

(R)
for all m, which implies that

F = e−tHαf ∈ Wm,2
t,α (C) for all m.

From Theorem 3, we have |F (z)|2 is bounded by Ct,α,m
e− tanh(2t)x2+coth(2t)y2

(1+x2+y2)2m for

all m.
Conversely, suppose F satisfies the necessity condition. Using [6, p. 140],

(4)
Kα(z) =

( π
2z

) 1
2

e−z

Γ(α+ 1
2 )

∫ +∞

0

e−ssα−
1
2

(
1 +

s

2z

)α− 1
2 ds

for | arg z| < π, α > −1

2
,

then by choosing m large enough, we see that

∫

C

|Fe(z)|2Uα
t,e(z) dz +

∫

C

|Fo(z)|2Uα
t,o(z) dz < +∞,

from which it follows that F ∈ Hα
t (C), thus there exists a function f ∈ L2

α(R)
such that F = e−tHαf .

We have

Kα

( |z|2
sinh 4t

)
× |z|2α+2 =

(π sinh 4t
2

) 1
2 |z|2
Γ(α+ 1

2 )

× e−
|z|2

sinh 4t

∫ +∞

0

e−ssα−
1
2

(
|z|2 + s(sinh 4t)

2

)α− 1
2

ds,

so it is an easy matter to see that d2m

dt2m
Uα
t,e(z) and

d2m

dt2m
Uα
t,o(z) are a sum of (2m+1)

terms times etanh(2t)x
2−coth(2t)y2

, where each term is of the form

(
p(t, α)x2 + q(t, α)y2 + c(t, α)

)k ≤ Ct,α

(
1 + x2 + y2)2m with k ≤ 2m,

where p(t, α), q(t, α) and c(t, α) are real constants. In view of Theorem 2, it

follows that F ∈ Bm,α
t (C) = Wm,2

t,α (C). This leads to the fact that F ∈ Wm,2
t,α (C)
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for all m. Consequently f ∈ Wm,2
Hα

(R) for all m. Since

⋂

m

Wm,2
Hα

(R) = S(R),

the result follows. �

3.2 The image of Lp
α(R) under the Dunkl-Hermite semigroup. We begin

this subsection by recalling that in [2] the authors have proved that the Dunkl-
Hermite semigroup initially defined on L2

α ∩ Lp
α(R) extends to the whole of Lp

α

and we have

‖e−tHαf‖α,p ≤ (cosh(2t))−(α+1)‖f‖α,p.
In the following, we give a characterization of the image of Lp

α under the Dunkl-
Hermite semigroup.

Theorem 5. Fix t > 0 and let 1 < p <∞. Then for all f ∈ Lp
α(R), we have

|e−tHαf(x+ iy)| ≤ Ct,p,α‖f‖p,α exp
(( p

(p− 1) sinh 4t
− coth 2t

2

)
x2 +

coth 2t

2
y2
)
.

Proof: As we have shown previously, we have

e−tHαf(z) = e−
1
2 (

cosh 2t−1
sinh 2t )z2(

e−
1
2 (

cosh 2t−1
sinh 2t )x2

f ∗α q sinh 2t
2

)
(z),

so

|e−tHαf(x+ iy)| ≤ 1

Γ(α+ 1)
(2 sinh 2t)−(α+1)e−

coth 2t
2 (x2−y2)It,α,

where

It,α =

∫

R

|f(s)|
∣∣∣e− coth 2t

2 s2Eα

( s

sinh 2t
, z
)∣∣∣|s|2α+1 ds.

So by Hölder’s inequality, we have

It,α ≤ ‖f‖p,α
∥∥∥e− coth 2t

2 s2Eα

( s

sinh 2t
, z
)∥∥∥

p′,α
,

where p′ is such that 1
p
+ 1

p′ = 1.

We know that
∣∣∣Eα

( s

sinh 2t
, z
)∣∣∣

p′

≤ e
p′sx

sinh 2t ,

so
∥∥∥e− coth 2t

2 s2Eα

( s

sinh 2t
, z
)∥∥∥

p′

p′,α
≤

∫

R

e−
coth 2t

2 p′s2e
p′sx

sinh 2t |s|2α+1 ds.

We can easily verify that

e−
coth 2t

2 p′s2 e
p′sx

sinh 2t = e
p′x2

sinh 4t e−
p′

2 (
√
coth 2ts−

√
2

sinh 4tx)
2

which completes the proof. �
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Notation 4. We denote by Vt, p2 (z) the function defined by

Vt, p2 (x+ iy) = exp
(
− 2

( p

(p− 1) sinh 4t
x2 +

coth 2t

2
y2
))

and by V s
t,

p

2
, the s-th power of Vt, p2 .

We write HLp
α(C, Vt, p2 (z)) for the class of holomorphic functions in

Lp
α(C, Vt, p2 (z)).

The next corollary follows from Theorem 5, by a straightforward computation.

Corollary 1. Let f ∈ Lp
α(R), 1 < p <∞ and fix t > 0, then

(i) e−tHα(f) ∈ HLp
α(C, V

p+ǫ
2

t, p2
), for ǫ > 0.

So

e−tHα(f) ∈
⋂

ǫ>0

HLp
α

(
C, V

p+ǫ

2

t,
p

2

)
.

(ii) e−tHα(f) ∈ HLp′

α (C, V
p+ǫ

2

t,
p

2
), for ǫ > 0, where 2 ≤ p <∞ and 1

p
+ 1

p′ = 1.

So

e−tHα(f) ∈
⋂

ǫ>0

HLp′

α (C, V
p+ǫ
2

t, p2
).

(iii) e−tHα(f) ∈ HLs
α(C, V

s+ǫ
2

t,
p

2
), for ǫ > 0, where 1 ≤ s <∞.

4. Paley Wiener type Theorems

In this section we establish Paley-Wiener type theorems for the tempered dis-
tributions and the compactly supported distributions under the Dunkl-Hermite
semigroup.

Theorem 6. Let m be a positive integer. Then every F ∈ W−m,2
t,α (C) satisfies

the estimate

|F (z)|2 ≤ Ct,α(1 + |z|2)2m exp
(
− tanh(2t)x2 + coth(2t)y2

)
.

Conversely, if an entire function F satisfies the above estimate, then F belongs

to W−m−1,2
t,α (C).

Proof: It is easy to see that the reproducing kernel for W−m,2
t,α (C) is given by

Nα,−2m
t (z, w) =

∑

n

(2n+ 2α+ 2)2mh̃αn(z)h̃
α
n(w).

So we only need to estimate the (2m)-th derivate of Nα
t (z, z) with respect to t.

Thanks to inequality (3), we have

d2m

dt2m
Nα

t (z, z) ≤ Ct,α(1 + |z|2)2me− tanh(2t)x2+coth(2t)y2

.
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Then if F ∈ W−m,2
t,α (C)

|F (z)|2 ≤ Ct,α(1 + |z|2)2me− tanh(2t)x2+coth(2t)y2

.

To prove the converse, we need to make use of duality between Wm,2
Hα

(R) and

W−m,2
Hα

(R).
The duality bracket is given by

〈F,G〉 =
∫

C

Fe(z)Ge(z)U
α
t,e(z) dz +

∫

C

Fo(z)Go(z)U
α
t,o(z) dz.

If F satisfies the given estimates then Fe and Fo satisfy them too, and for any
G ∈ Wm+1,2

t,α (C) the integral defining 〈F,G〉 converges and hence F defines a

continuous linear functional on Wm+1,2
t,α (C).

Consequently, F belongs to W−m−1,2
t,α (C) which proves the converse. �

We recall the following definition given in [14].

Definition 3. Let S be in S ′(R) and ϕ in S(R), the Dunkl convolution product
of S and ϕ is the function S ∗α ϕ defined by

∀x ∈ R, S ∗α ϕ(x) = 〈Sy, τ
α
−yϕ(x)〉,

where ταy is the generalized translation associated with the Dunkl operator Dα

(see [13]).

It was shown in [14] that S ∗α ϕ is a C∞ function on R and for all n ∈ N, we
have

Dn
α(S ∗α ϕ) = S ∗α (Dn

αϕ) = (Dn
αS) ∗α ϕ.

It can be obviously seen that for fixed x ∈ R and t > 0, the function

y −→ Mα
t (x, y) ∈ S(R).

Definition 4. The Dunkl-Hermite semigroup of a distribution S in S ′(R) is
defined by

e−tHα(S)(x) = 〈Sy,Mα
t (x, y)〉.

Remark 3. For S ∈ S ′(R), we have

e−tHαS(x) = e−
1
2 (

cosh 2t−1
sinh 2t )x2(

e−
1
2 (

cosh 2t−1
sinh 2t )y2

S ∗α q sinh 2t
2

)
(x),

so e−tHαS is a C∞ function on R.

Theorem 7. Suppose F is a holomorphic function on C. Then there exists a

distribution f ∈ S ′(R) with F = e−tHαf if and only if F satisfies

|F (z)|2 ≤ Ct,α(1 + |z|2)2m exp
(
− tanh(2t)x2 + coth(2t)y2

)
,

for some nonnegative integer m.
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Proof: Let f ∈ S ′(R). Since the union of all W−m,2
Hα

(R) is S ′(R), then there

exists m such that f ∈ W−m,2
Hα

(R). Thus

e−tHαf ∈ W−m,2
t,α (C),

and from Theorem 6 we have the result.
Conversely, suppose that F satisfies the hypothesis, then F belongs to

W−m−1,2
t,α (C) and F = e−tHαf with f ∈ W−m−1,2

Hα
(R). Then f ∈ S ′(R). �

In [7], the authors introduced the generalized windowed transform associated
with Dα as follows. Given a function g in the Schwartz space, the windowed
Dunkl transform of a regular function f , with window g, is defined by

Vα
g (f)(x, y) =

∫

R

f(u)τα−yg(u)Eα(−ix, u)|u|2α+1 du.

Here we extend this definition to the tempered distribution.

Definition 5. The windowed Dunkl transform of a tempered distribution S with
window g ∈ S(R) is defined by

Vα
g (S)(x, y) = 〈S, τα−ygEα(−ix, ·)〉.

When S is given by the function f |u|2α+1, S = Sf |u|2α+1 , then

Vα
g (Sf |u|2α+1)(x, y) =

∫

R

f(u)τα−yg(u)Eα(−ix, u)|u|2α+1 du,

which we write simply Vα
g (f)(x, y).

In the case where g(x) = ϕa(x) = e−
1
2ax

2

, for a > 0, Vα
ϕa
f is called gaussian

Dunkl windowed transform. In our context, we are interested in the case y = 0
and we denote

T α
a f(x) = Vα

ϕa
(f)(x, 0).

Hence, for a > 0, the transform T α
a is defined by

T α
a (S)(x) = 〈S, e− 1

2a(·)
2

Eα(−ix, ·)〉, S ∈ S ′(R).

If f ∈ S(R) we have

T α
a (f)(x) =

∫

R

f(u)e−
1
2au

2

Eα(−ix, u)|u|2α+1 du.

We see that T α
a f extends to C as an entire function even when f is in S ′(R).

This property of T α
a allows us to prove the following analogue of Paley-Wiener

theorem given by Trimèche in [13].
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Theorem 8. For any a > 0 the transform T α
a of a tempered distribution f on R

extends to C as an entire function which satisfies the estimate

|T α
a f(z)| ≤ Cα(1 + x2 + y2)me

1
2a

−1y2

for some non-negative integer m.

Conversely, if an entire function F satisfies such an estimate, then F = T α
a f

for some tempered distribution f .

Proof: We relate the transform T α
a f to e−tHαf . Indeed, considering the case

a > 1 first and writing a = coth 2t for some t > 0, we can easily verify that

e−tHαf(z) =
1

Γ(α+ 1)(2 sinh 2t)α+1
e−

1
2 coth 2tz2T α

a f
( iz

sinh 2t

)
∀z ∈ C.

We obtain the required estimate on T α
a f(z) by applying Theorem 7.

Conversely, if F satisfies the given estimates then again by Theorem 7 the
function

G(z) =
1

Γ(α+ 1)(2 sinh 2t)α+1
e−

1
2 coth 2tz2

F
( iz

sinh 2t

)

should be of the form e−tHαf(z) with a tempered distribution f .
When a < 1 we take t > 0 so that a = tanh 2t and the proof requires an

analogue of Theorem 7 for functions of the form e−(t+iπ
4
)Hαf (see [1]).

The image of tempered distributions under e−(t+iπ4 )Hα can be characterized in
a similar way. The final estimates do not depend on the factor e−iπ4 Hα which is
just the Dunkl transform FD.

Here the Dunkl transform of a distribution f in S ′(R) is defined by

〈FD(f), ψ〉 = 〈f,FD(ψ)〉, ψ ∈ S(R)

and for f ∈ S(R)

FD(f)(x) =

∫

R

f(y)Eα(−ix, y)|y|2α+1 dy.

We have

e−(t+iπ4 )Hαf = e−tHα
(
e−iπ4 Hαf

)

and

e−iπ4 Hαf =
1

2α+1Γ(α+ 1)
e(α+1)i π

2 FDf.

We know that FD is an isomorphism from S ′(R) onto S ′(R) (see [13]), so we have
the analogue of Theorem 7. �

Finally, we remark that we also have the following result which characterizes the
image of compactly supported distributions under the Dunkl-Hermite semigroup.
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Theorem 9. Let f be a distribution supported in a ball of radius R centered at

the origin. Then for any t > 0 the function e−tHαf extends to C as an entire

function which satisfies

|e−tHαf(z)| ≤ Ce−
1
2 coth 2t(x2−y2)e

R|x|
sinh 2t ,

with C being a positive constant.

Conversely, any entire function F satisfying the above estimate is of the form

e−tHαf where f is supported inside a ball of radius R centered at the origin.

Proof: We have to relate the Dunkl-Hermite semigroup and the Dunkl transform
in E ′(R)

e−tHαS(z) =
1

Γ(α+ 1)(2 sinh(2t))α+1
e−

1
2 coth 2tz2FD

[
Sye

− 1
2 coth 2ty2]( iz

sinh 2t

)
.

Here the Dunkl transform of a distribution S in E ′(R) is defined by

∀y ∈ R, FD(S)(y) = 〈Sx, Eα(−iy, x)〉.

We obtain the necessity condition by appealing Theorem 5.3 given in [13], i.e.,
Paley-Wiener theorem for compactly supported distributions and the Dunkl trans-
form.

Conversely, if F satisfies the given estimates then again by the same Theo-
rem 5.3, the function

G(z) = Γ(α+ 1)(2 sinh(2t))α+1e−
1
4 sinh 4tz2

F (−iz sinh 2t)

should be of the form FD(f) for a distribution f supported inside a ball of radius
R centered at the origin and

F (z) = e−tHα
(
f(y)e

1
2
coth 2ty2)

(z),

where f(y)e
1
2 coth 2ty2

is also a distribution supported inside a ball of radius R
centered at the origin. This completes the proof of the theorem. �
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