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ON THE MEAN VALUE OF DEDEKIND SUM WEIGHTED BY THE

QUADRATIC GAUSS SUM

Tingting Wang,Wenpeng Zhang, Xi’an

(Received June 23, 2011)

Abstract. Various properties of classical Dedekind sums S(h, q) have been investigated
by many authors. For example, Wenpeng Zhang, On the mean values of Dedekind sums,
J. Théor. Nombres Bordx, 8 (1996), 429–442, studied the asymptotic behavior of the mean
value of Dedekind sums, and H.Rademacher and E.Grosswald, Dedekind Sums, The Carus
Mathematical Monographs No. 16, The Mathematical Association of America, Washington,
D.C., 1972, studied the related properties. In this paper, we use the algebraic method to
study the computational problem of one kind of mean value involving the classical Dedekind
sum and the quadratic Gauss sum, and give several exact computational formulae for it.
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1. Introduction

Let q be a natural number and h an integer prime to q. The classical Dedekind

sum

S(h, q) =

q
∑

a=1

((a

q

))((ah

q

))

,

where

((x)) =

{

x − [x] − 1
2 , if x is not an integer;

0, if x is an integer,

describes the behaviour of the logarithm of the eta-function (see [6], [7]) under mod-

ular transformations. Several authors have studied the arithmetical properties of

The research has been supported by the N. S. F. (11071194) and G. I. C. F. (YZZ12065)
of NWU.
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S(h, q), and obtained many interesting results, see for example [2], [3], [4], [5], [8],

[9], [10].

In this paper, we consider the computational problem of the mean value

(1.1)

q
∑′

c=1

G(c2 − 1, χ0; q)S(c2, q),

where G(c, χ; q) is the quadratic Gauss sum defined by G(c, χ; q) =
q

∑

a=1
χ(a)e(ca2/q),

e(y) = e2πiy,
∑′

c
denotes the summation over all a such that (a, q) = 1, χ0 denotes

the principal character mod q.

About the mean value (1.1), it seems that none has studied it yet, at least we

have not seen any related results before. This sum is interesting, because it has close

relations with the class number hp of the quadratic field Q(
√−p). In this paper,

we use the algebraic method to study the computational problem of (1.1), and give

several exact identities for it. That is, we shall prove the following three results:

Theorem 1. Let p be an odd prime with p ≡ 3 mod 4, then for q = pα with

integer α > 2, we have the identity

q
∑′

c=1

G(c2 − 1, χ0; q)S(c2, q) =
1

6
ϕ2(q)

(

1 +
1

p

)

.

Theorem 2. For any prime p > 3 with p ≡ 3 mod4, we have the identity

h2
p =

(p − 1)(p − 2)

6
−

p−1
∑

c=1

G(c2 − 1, χ0; p)S(c2, p).

Theorem 3. Let p be an odd prime with p ≡ 3 mod 4, then for q = pα with

integer α > 2 and real number k > 0, we have the identity

∑

χ mod q
χ(−1)=−1

|G(1, χ2; q)|2k · |L(1, χ)|2 =
4k · π

2

24
· ϕ3(q) · qk−2 ·

(

1 +
1

p

)

,

where
∑

χ mod q
χ(−1)=−1

denotes the summation over all odd characters χ mod q.

Some remarks. Theorem 2 is very interesting. In fact it gives a new class number

formula for hp with p ≡ 3 mod4.
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For the general odd square-full number q > 3, whether there exist computational

formulae for
q

∑′

c=1
G(c2−1, χ0; q)S(c2, q) and

∑

χ mod q
χ(−1)=−1

|G(1, χ2; q)|2k · |L(1, χ)|2 are two

open problems.

2. Several lemmas

In this section we give several lemmas which are necessary in the proof of our

theorems.

Lemma 1. Let q > 2 be an integer, then for any integer a with (a, q) = 1 we

have the identity

S(a, q) =
1

π
2q

∑

d|q

d2

ϕ(d)

∑

χ mod d
χ(−1)=−1

χ(a)|L(1, χ)|2.

P r o o f. See Lemma 2 of [10]. �

Lemma 2. Let q > 2 be an odd square-full number, then we have the identity

∑∗

χ mod q
χ(−1)=−1

|L(1, χ)|2 =
π
2

12

ϕ3(q)

q2

∏

p|q

(

1 +
1

p

)

,

where
∑∗

χ mod q
χ(−1)=−1

denotes the summation over all odd primitive characters χ mod q.

P r o o f. From the definition of Dedekind sums, Lemma 1 and the Möbius

inversion formula (see Theorem 2.9 of [1]) we have

(2.1)
∑

χ mod q
χ(−1)=−1

χ(a)|L(1, χ)|2 =
ϕ(q)

q2
π
2
∑

d|q

µ(d)
q

d
S

(

a,
q

d

)

= π
2 ϕ(q)

q

∑

d|q

µ(d)

d
S

(

a,
q

d

)

.

If a = 1, then it is easy to see that

S(1, q) =

q−1
∑

k=1

(k

q
− 1

2

)2

=
1

12

(

q − 3 +
2

q

)

.
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So from this formula and (2.1) we have

(2.2)
∑

χ mod q
χ(−1)=−1

|L(1, χ)|2 =
π
2

12

ϕ(q)

q

∑

d|q

µ(d)

d

( q

d
− 3 +

2d

q

)

=
π
2

12
ϕ(q)

∑

d|q

µ(d)

d2
− π

2

4

ϕ(q)

q

∑

d|q

µ(d)

d
+

π
2

6

ϕ(q)

q2

∑

d|q

µ(d)

=
π
2

12

ϕ2(q)

q

[

∏

p|q

(

1 +
1

p

)

− 3

q

]

.

Note that q is a square-full number, µ(q) and ϕ(q) are two multiplicative functions,

∑

d|q

µ(d)
ϕ2(q/d)

q2/d2
= 0 and

∑

χ mod q
χ(−1)=−1

|L(1, χ)|2 =
∑

d|q

∑∗

χ mod q/d
χ(−1)=−1

|L(1, χχ0)|2.

From the Möbius inversion formula and (2.2) we immediately deduce

∑∗

χ mod q
χ(−1)=−1

|L(1, χ)|2 =
∑

d|q

µ(d)
∑

χ mod q/d
χ(−1)=−1

|L(1, χχ0)|2

=
∑

d|q

µ(d)
∑

χ mod q/d
χ(−1)=−1

|L(1, χ)|2

=
∑

d|q

µ(d)
{

π
2

12

ϕ2(q/d)

q/d

[

∏

p| q
d

(

1 +
1

p

)

− 3

q/d

]}

=
π
2

12

ϕ3(q)

q2

∏

p|q

(

1 +
1

p

)

,

where χ0 denotes the principal character mod q. This proves Lemma 2. �

Lemma 3. Let p be an odd prime, α > 2 an integer. Then for any integer n with

(p, n) = 1, we have the identity

pα

∑′

b=1

e
(nb2

pα

)

= 0.

P r o o f. First, from the properties of the trigonometric sums we know that for

any positive integer h > 2 and integer n with (n, h) = 1, we have the identity

h−1
∑

u=0

e
(un

h

)

= 0.
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Applying this identity and the properties of the reduced residue system mod pα we

have the identity

pα

∑′

b=1

e
(nb2

pα

)

=

p−1
∑

u=0

pα−1

∑′

v=1

e
(n(upα−1 + v)2

pα

)

=

p−1
∑

u=0

pα−1

∑′

v=1

e
(2nuvpα−1 + nv2

pα

)

=

pα−1

∑′

v=1

e
(nv2

pα

)

p−1
∑

u=0

e
(2nuv

p

)

= 0.

This proves Lemma 3. �

Lemma 4. Let p be an odd prime with p ≡ 3 mod4, let α and n be two integers

with (n, p) = 1 and α > 2. Then for any even character χ mod pα, we have

|G(n, χ; pα)|2 = 2ϕ(pα) + 2pα−1

p−1
∑

r=1

χ(rpα−1 + 1)
[(2rn

p

)

C(1, p) − 1
]

,

where C(n, q) =
q
∑

a=1
e(na2/q) is the classical quadratic Gauss sum.

P r o o f. Since χ is an even character mod pα, so χ(−1) = 1. Then from the

definition of G(n, χ; pα) we have

(2.3) |G(n, χ; pα)|2 =

pα

∑′

a=1

pα

∑′

b=1

χ(a)χ(b)e
(n(a2 − b2)

pα

)

=

pα

∑′

a=1

χ(a)

pα

∑′

b=1

e
(nb2(a2 − 1)

pα

)

.

Let (a2 − 1, pα) = pm. If m 6 α − 2, then note that (n(a2 − 1)/pm, p) = 1, and

from Lemma 3 we have

(2.4)

pα

∑′

u=1

e
(nu2(a2 − 1)

pα

)

= pm

pα−m

∑′

u=1

e
(nu2(a2 − 1)/pm

pα−m

)

= 0.

If m = α, then

(2.5)

pα

∑′

u=1

e
(nu2(a2 − 1)

pα

)

= ϕ(pα).
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If m = α − 1, then a = rpα−1 ± 1, 1 6 r 6 p − 1. Note that for any prime p with

p ∤ n, by Theorem 7.5.4 of [10] we have

(2.6) C(n, p) =
(n

p

)

C(1, p),

where (x
p ) is the Legendre symbol.

Then from (2.6) we get

(2.7)

pα

∑′

u=1

e
(nu2(a2 − 1)

pα

)

= pα−1

p
∑′

u=1

e
(nu2(a2 − 1)/pα−1

p

)

= pα−1
[(±2rn

p

)

C(1, p) − 1
]

.

Note that for any even character χ mod pα, we have

p−1
∑

r=1

χ(rpα−1 + 1)
[(2rn

p

)

C(1, p) − 1
]

=

p−1
∑

r=1

χ(rpα−1 − 1)
[(−2rn

p

)

C(1, p) − 1
]

.

So from (2.3)–(2.7) we get

|G(n, χ; pα)|2 = 2ϕ(pα) + 2pα−1

p−1
∑

r=1

χ(rpα−1 + 1)
[(2rn

p

)

C(1, p) − 1
]

.

This proves Lemma 4. �

Lemma 5. Let p be an odd prime, let α and n be two integers with (n, p) = 1

and α > 2. Then for any even primitive character χ mod pα, we have the identity

|G(n, χ; pα)|2 = 2pα + 2pα
(−2n

p

)τ(χχ2)

τ(χ)
,

where χ2(a) = (a
p ) is the Legendre symbol, and τ(χ) =

∑pα

a=1 χ(a)e(a/pα) denotes

the classical Gauss sum.

P r o o f. First, for any primitive character χ mod pα we have

(2.8)

p−1
∑

r=1

χ(rpα−1 + 1) = −1.
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In fact, from the properties of the classical Gauss sum we have

p−1
∑

r=1

χ(rpα−1 + 1) =
1

τ(χ)

p−1
∑

r=1

pα

∑

a=1

χ(a)e
(a(rpα−1 + 1)

pα

)

=
1

τ(χ)

pα

∑

a=1

χ(a)e
( a

pα

)

p−1
∑

r=1

e
(ar

p

)

= −τ(χ)

τ(χ)
= −1.

So formula (2.8) is correct.

On the other hand, from the properties of the classical Gauss sum we also have

(2.9)

p−1
∑

r=1

χ
(

rpα−1 + 1
)(r

p

)

=
1

τ(χ)

p−1
∑

r=1

( r

p

)

pα

∑

a=1

χ(a)e
(a(rpα−1 + 1)

pα

)

=
1

τ(χ)

pα

∑

a=1

χ(a)e
( a

pα

)

p−1
∑

r=1

( r

p

)

e
(ar

p

)

=
C(1, p)

τ(χ)

pα

∑

a=1

χ(a)
(a

p

)

e
( a

pα

)

=
τ(χχ2)

τ(χ)
C(1, p),

where we have used the identity C(1, p) =
∑p−1

a=1(
a
p )e(a

p ).

From the properties of the classical Gauss sum we know that C2(1, p) = (−1
p )p;

applying (2.8), (2.9) and Lemma 4 we immediately deduce that

|G(n, χ; pα)|2 = 2ϕ(pα) + 2pα−1 + 2pα−1

p−1
∑

r=1

χ(rpα−1 + 1)
(2rn

p

)

C(1, p)

= 2pα + 2pα−1
(2n

p

)τ(χχ2)

τ(χ)
C2(1, p)

= 2pα + 2pα
(−2n

p

)τ(χχ2)

τ(χ)
.

This proves Lemma 5. �

3. Proof of the theorems

In this section, we use the lemmas from Section 2 to complete the proof of our

theorems. First we prove Theorem 1. From Lemma 4 we know that for any non-

primitive even character χ mod pα, we have

(3.1) |G(n, χ; pα)|2 = 0.
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In fact, if χ = χ0, the principal character mod pα, then from Lemma 3 we know that

(3.1) is correct. If χ is a non-primitive even character mod pα and χ 6= χ0, then χ

must be an even character mod pα−1. So from Lemma 4 we have

|G(n, χ; pα)|2 = 2ϕ(pα) + 2pα−1

p−1
∑

r=1

χ(rpα−1 + 1)
[(2rn

p

)

G(1; p) − 1
]

= 2ϕ(pα) + 2pα−1

p−1
∑

r=1

[(2rn

p

)

G(1; p) − 1
]

= 2pα−1

p−1
∑

r=1

(2rn

p

)

C(1, p) = 0.

So (3.1) is also correct.

For q = pα with α > 2 and χ mod q, note that the Gauss sum τ(χ) =
q

∑

a=1
χ(a)e(a

q ) = 0, if χ is not a primitive character mod q; if χ is a primitive

character mod q, then we have |τ(χ)|2 = q. So from Lemma 1 we have

(3.2)

q
∑′

c=1

G(c2 − 1, χ0; q)S(c2, q)

=
1

π
2q

∑

d|q d2

ϕ(d)

∑

χ mod d

χ(−1)=−1

q
∑′

c=1

q
∑′

a=1

χ(c2)e
(a2(c2 − 1)

q

)

|L(1, χ)|2

=
1

π
2q

∑

d|q d2

ϕ(d)

∑

χ mod d

χ(−1)=−1

q
∑′

a=1

e
(−a2

q

)

q
∑′

c=1

χ(c2)e
(a2c2

q

)

|L(1, χ)|2

=
1

π
2q

∑

d|q d2

ϕ(d)

∑

χ mod d

χ(−1)=−1

q
∑′

a=1

χ(a2)e
(−a2

q

)

q
∑′

c=1

χ((ac)2) e
((ac)2

q

)

|L(1, χ)|2

=
1

π
2q

∑

d|q

d2

ϕ(d)

∑

χ mod d
χ(−1)=−1

∣

∣

∣

∣

q
∑′

c=1

χ(c2) e
(c2

q

)

∣

∣

∣

∣

2

· |L(1, χ)|2

=
1

π
2q

∑

d|q

d2

ϕ(d)

∑

χ mod d
χ(−1)=−1

|G(1, χ2χ0; q)|2 · |L(1, χ)|2.

It is clear that if χ is an odd primitive character mod pα with α > 2 and p ≡ 3 mod 4,

then χ2 is an even primitive character mod pα. So from (3.1), (3.2) and Lemma 5
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we get

(3.3)

q
∑′

c=1

G(c2 − 1, χ0; q)S(c2, q)

=
1

π
2

q

ϕ(q)

∑∗

χ mod q
χ(−1)=−1

|G(1, χ2; q)|2 · |L(1, χ)|2

=
2

π
2

q2

ϕ(q)

∑∗

χ mod q
χ(−1)=−1

(

1 +
(−2

p

)τ(χ2χ2)

τ(χ2)

)

· |L(1, χ)|2.

From Lemma 5 we also know that (−2
p )τ(χ2χ2)/τ(χ2) is a real number, so noting

that τ(χ) = χ(−1)τ(χ), from (3.3) we have

(3.4)

q
∑′

c=1

G(c2 − 1, χ0; q)S(c2, q)

=
2

π
2

q2

ϕ(q)

∑∗

χ mod q
χ(−1)=−1

(

1 +
(−2

p

)τ(χ2χ2)

τ(χ2)

)

· |L(1, χ)|2

=
2

π
2

q2

ϕ(q)

∑∗

χ mod q
χ(−1)=−1

(

1 +
(2

p

)τ(χ2χ2)

τ(χ2)

)

· |L(1, χ)|2

=
2

π
2

q2

ϕ(q)

∑∗

χ mod q
χ(−1)=−1

(

1 −
(−2

p

)τ(χ2χ2)

τ(χ2)

)

· |L(1, χ)|2,

where we have used the identity (−1
p ) = −1.

Combining (3.3), (3.4) and Lemma 2 we immediately deduce the identity

q
∑′

c=1

G(c2 − 1, χ0; q)S(c2, q) =
2

π
2

q2

ϕ(q)

∑∗

χ mod q
χ(−1)=−1

|L(1, χ)|2 =
1

6
ϕ2(q)

(

1 +
1

p

)

.

This proves Theorem 1. �

Now we prove Theorem 2. For any prime p ≡ 3 mod4, let χ2 denote the Legendre

symbol, then χ2(−1) = −1, so from Theorem 9.17 of [1] and Lemma 1 we have

∣

∣

∣

∣

p−1
∑

c=1

χ2(c
2)e

(c2

p

)

∣

∣

∣

∣

2

= |i√p − 1|2 = p + 1,(3.5)

∑

χ mod p
χ(−1)=−1

|L(1, χ)|2 =
π
2

12

(p − 1)2(p − 2)

p2
.(3.6)
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If χ(−1) = −1 and χ 6= χ2, noting that χ2(−1) = −1, we also have

(3.7)

∣

∣

∣

∣

p−1
∑

c=1

χ(c2)e
(c2

p

)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

p−1
∑

c=1

χ(c)
(

1 + χ2(c)
)

e
( c

p

)

∣

∣

∣

∣

2

= |τ(χ) + τ(χχ2)|2 = p ·
∣

∣

∣
1 +

τ(χχ2)

τ(χ)

∣

∣

∣

2

= p ·
(

2 +
τ(χχ2)

τ(χ)
+

τ(χχ2)

τ(χ)

)

= p ·
(

2 +
τ(χχ2)

τ(χ)
− τ(χχ2)

τ(χ)

)

.

Combining (3.2), (3.5), (3.6), (3.7) and noting that L(1, χ2) = πhp/
√

p , we have

p−1
∑

c=1

G(c2 − 1, χ0; p)S(c2, p)

=
1

π
2

p2

p − 1

∑

χ6=χ2

χ(−1)=−1

(

2 +
τ(χχ2)

τ(χ)
− τ(χχ2)

τ(χ)

)

· |L(1, χ)|2 +
1

π
2

p(p + 1)

p − 1
· |L(1, χ2)|2

=
1

π
2

2p2

p − 1

∑

χ mod p
χ(−1)=−1

|L(1, χ)|2 − 1

π
2

p2 − p

p − 1
· |L(1, χ2)|2

=
(p − 1)(p − 2)

6
− p

π
2
· |L(1, χ2)|2 =

(p − 1)(p − 2)

6
− h2

p.

This proves Theorem 2. �

Finally, we prove Theorem 3. In fact, from the method of proof of Theorem 2 (see

formulae (3.3) and (3.4)) we have
∑

χ mod q
χ(−1)=−1

|G(1, χ2; q)|2k · |L(1, χ)|2 =
∑∗

χ mod q
χ(−1)=−1

|G(1, χ2; q)|2k · |L(1, χ)|2

=
∑∗

χ mod q
χ(−1)=−1

(2q)k
(

1 +
(−2

p

)τ(χ2χ2)

τ(χ2)

)k

· |L(1, χ)|2

=
(2q)k

2

∑∗

χ mod q
χ(−1)=−1

[(

1 −
(2

p

)τ(χ2χ2)

τ(χ2)

)k

+
(

1 +
(2

p

)τ(χ2χ2)

τ(χ2)

)k]

· |L(1, χ)|2

= 22k−1 · qk ·
∑∗

χ mod q
χ(−1)=−1

|L(1, χ)|2 =
4k · π

2

24
· ϕ3(q) · qk−2 ·

∏

p|q

(

1 +
1

p

)

.

This completes the proof of Theorem 3. �
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