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Cocalibrated G2-manifolds with Ricci flat
characteristic connection

Thomas Friedrich

Abstract. Any 7-dimensional cocalibrated G2-manifold admits a unique
connection ∇ with skew symmetric torsion (see [8]). We study these mani-
folds under the additional condition that the ∇-Ricci tensor vanish. In par-
ticular we describe their geometry in case of a maximal number of ∇-parallel
vector fields.

1 Introduction
Consider a triple (Mn, g,T) consisting of a Riemannian manifold (Mn, g) equipped
with a 3-form T. We denote by ∇g, Ricg and Scalg the Levi-Civita connection, the
Riemannian Ricci tensor and the scalar curvature. The formula

∇XY := ∇gXY +
1

2
T(X,Y,−)

defines a metric connection with torsion T. We will denote by Ric∇ and Scal∇

its Ricci tensor and scalar curvature respectively. If the Ricci tensor Ric∇ = 0
vanishes, then T is a coclosed form, δT = 0, and the Riemannian Ricci tensor is
completely given by the 3-form T (see [8]),

Ricg(X,Y ) =
1

4

n∑
i,j=1

T(X, ei, ej) · T(Y, ei, ej) , Scalg =
3

2
‖T‖2 .

In particular, the Ricci tensor Ricg is non-negative, Ricg(X,X) ≥ 0.

Let us introduce the 4-form σT depending on T,

σT =
1

2

n∑
i=1

(ei T) ∧ (ei T) .
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If moreover there exists a ∇-parallel spinor field Ψ, then there is an algebraic link
between dT, ∇T and σT (see [8]),(

X dT + 2∇XT
)
·Ψ = 0 ,

(
3 dT− 2σT

)
·Ψ = 0 .

The classification of flat metric connections with skew symmetric torsion has been
investigated by Cartan and Schouten in 1926. Complete proofs are known since the
beginning of the 70-ties. In [4] one finds a simple proof of this result. Therefore, we
are interested in non-flat (R∇ 6≡ 0) and ∇-Ricci flat (Ric∇ ≡ 0) metric connections
with skew symmetric torsion T 6≡ 0.

In this paper we study the 7-dimensional case. Any cocalibrated G2-manifold
admits a unique connection ∇ with skew symmetric torsion and ∇-parallel spinor
field Ψ. If this characteristic connection is Ricci flat, then we obtain a solution of
the Strominger equations (see [8]),

∇Ψ = 0 , Ric∇ = 0 , d ∗ T = 0 .

If T = 0, M7 is a Riemannian manifold with holonomy G2 and Ricg = 0 follows
automatically. The case of T 6≡ 0 is different. The condition Ric∇ ≡ 0 is not a
consequence of the fact that the holonomy of ∇ is contained in G2, it is a new con-
dition for the cocalibrated G2-structure. In this paper we investigate the geometry
of the 7-manifolds under consideration. Moreover, we describe all these manifolds
with a large number of ∇-parallel vector fields.

2 Examples of Ricci flat connections with skew
symmetric torsion

Let us discuss some examples.

Example 1. Any Hermitian manifold admits a unique metric connection ∇ pre-
serving the complex structure and with skew symmetric torsion (see [8]). In [10]
the authors constructed on (k − 1) (S2 × S4) # k (S3 × S3) a Hermitian structure
with vanishing ∇-Ricci tensor, Ric∇ = 0, for any k ≥ 1. These examples are toric
bundles over special Kähler 4-manifolds.

Example 2. There are 7-dimensional cocalibrated G2-manifolds (M7, g, ω3) with
characteristic torsion T such that

∇T = 0 , dT = 0 , δT = 0 , Ric∇ = 0 , hol(∇) ⊂ u(2) ⊂ g2 .

The regular G2-manifolds of this type have been described in [7], Theorem 5.2 (the
degenerate case 2a+ c = 0). M7 is the product X4 × S3, where X4 is a Ricci-flat
Kähler manifold and S3 the round sphere.

Example 3. A suitable deformation of any Sasaki-Einstein manifold yields a metric
connection with skew symmetric torsion and vanishing Ricci tensor, see [1].

Next we describe a similar method in order to construct 5-dimensional connections
with skew symmetric torsion and vanishing Ricci tensor.
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Theorem 1. Let (Z4, g,Ω2) be a 4-dimensional Riemannian manifold equipped
with a 2-form Ω2 such that

1. dΩ2 = 0 , d ∗ Ω2 = 0 and Ω2 ∧ Ω2 = 0.

2. The 2-dimensional distributions

E2 =
{
X ∈ TZ4 : X Ω2 = 0

}
, F 2 =

{
X ∈ TZ4 : X ⊥ E2

}
are integrable.

3. The 2-form is of the form Ω2 = 2a f1 ∧ f2, where a is constant and f1, f2 is
an oriented orthonormal frame in F 2.

4. The Riemannian Ricci tensor of Z4 has two non-negative eigenvalues of mul-
tiplicity two,

Ricg = 4a2 Id on F 2, Ricg = 0 on E2.

5. Ω2 is the curvature form of some R1- or S1-connection η.

Then the principal fibre bundle π : N5 → Z4 defined by Ω2 admits a Riemannian
metric and the torsion form

T = π∗(Ω2) ∧ η

yields a metric connection ∇ with the following properties:

||T||2 = 4a2, dT = 0 , d ∗ T = 0 , Ric∇ = 0 , ∇η = 0 .

Proof. Apply O’Neill’s formulas and compute

Ricg(X,Y )− 1

4

5∑
i,j=1

T(X, ei, ej) · T(Y, ei, ej) = 0 . �

Example 4. Let u = u(x, y) be a smooth function of two variables and consider
the metric

g = eu x
(
dx2 + dy2

)
+ x dz2 +

1

x

(
dt+ y dz

)2
defined on the set Z4 = {(x, y, t, z) ∈ R4 : x > 0}. (Z4, g) is a Kähler manifold and
the Riemannian Ricci tensor has two eigenvalues, namely zero and

− uxx + uyy
2xeu

,

both with multiplicity two (see [5], [11]). If the function u is a solution of the
equation

− uxx + uyy
2xeu

= 4a2,

Theorem 1 is applicable and we obtain a family of non-flat 5-dimensional examples.
Remark that a compact Kähler manifold Z4 of that type splits into S2×T 2, see [6].
The corresponding connection ∇ on the Lie group N5 = S3 × T 2 is flat, see [4].
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3 Cocalibrated G2-manifolds with vanishing
characteristic Ricci tensor

Consider a cocalibrated G2-manifold (M7, g, ω3),

d ∗ ω3 = 0 , ‖ω3‖2 = 7 ,

and suppose that the G2-structure ω3 is not ∇g-parallel (i.e. dω3 6≡ 0). There
exists a unique metric connection ∇ with skew symmetric torsion and preserving
the G2-structure ω3. Its torsion form is given by the formula (see [8]),

T = − ∗ dω3 + µω3 , µ =
1

6

(
dω3 , ∗ω3

)
.

The condition Ric∇ = 0 becomes equivalent to dT = 0 and d ∗ T = 0. Indeed, we
have:
Theorem 2 ([8, Thm 5.4]). The following conditions are equivalent:

1. Ric∇ = 0 .

2. dT = 0 and d ∗ T = 0 .

3. dµ = 0 and d ∗ dω3 − µdω3 = 0 .

Using the G2-splitting of 3-forms, Λ3 = Λ3
1⊕Λ3

7⊕Λ3
27, we know that the character-

istic torsion of a cocalibrated G2-manifold belongs to T ∈ Λ3
1 ⊕Λ3

27. In particular,
we obtain

T ∧ ω3 = 0 .

Differentiating the latter equation and using dT = 0 one gets(
∗ dω3 − µω3) ∧ ω3 = 0 , ‖ dω3‖2 = 6µ2.

We compute the length of T,

‖T‖2 = ‖dω3‖2 − 2µ
(
∗ dω3, ω3

)
+ 7 ‖ω3‖2 = 6µ2 − 12µ2 + 7µ2 = µ2.

Consequently, ‖T‖2 is constant. Moreover, the Riemannian scalar curvature is
constant, too,

Scalg =
3

2
‖T‖2 =

3

2
µ2.

Since (T, ω3) = µ, we decompose the torsion form into two parts according to the
splitting of 3-forms,

T = T1 + T27 , T1 =
1

7
µω3, T27 = − ∗ dω3 +

6

7
µω3.

Corollary 1 ([8, Remark 5.5]). Let (M7, g, ω3) be a compact, cocalibrated G2-
manifold with Ric∇ = 0 and T 6= 0. Then the third cohomology group is non-trivial,

H3(M7;R) 6= 0 .
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Example 5. On the round sphere S7 there exists a G2-structure (not cocalibrated)
such that R∇ = 0 (see [4]). In particular, the Ricci tensor vanishes, Ric∇ = 0. The
characteristic torsion is coclosed, δT = 0, but not closed, dT 6= 0.

Remark 1. A cocalibrated G2-manifold with Ric∇ = 0 and T 6≡ 0 cannot be of
pure type Λ3

1 or Λ3
27. Indeed, if

0 = T27 = − ∗ dω3 +
6

7
µω3

we differentiate,

0 = −d ∗ dω3 +
6

7
µdω3

and combine the latter formula with equation (3) of Theorem 2. We conclude
that µ = 0, dω3 = 0 and, finally, T = 0. The second case, i. e. T1 = 0, implies
immediately µ = 0 and T = 0.

There exists a canonical ∇-parallel spinor field Ψ0 such that

∇Ψ0 = 0 , ω3 ·Ψ0 = − 7 Ψ0 .

Since Λ3
27 ·Ψ0 = 0 we obtain

T ·Ψ0 = T1 ·Ψ0 = −µΨ0 .

The integrability condition for a parallel spinor (see [8]) yields an algebraic restric-
tion for the derivative ∇T, namely

∇X
(
T ·Ψ

)
=
(
∇XT

)
·Ψ = 0 , σT ·Ψ = 0 , T2 ·Ψ = ‖T ‖2 Ψ

for any vector X ∈ TM7 and any ∇-parallel spinor field Ψ. In particular, the
characteristic torsion T acts on the space of all ∇-parallel spinors. This condition
is not so restrictive. For example, the space of 3-forms Σ3 ∈ Λ3

27 killing three
spinors has dimension 14, the space killing four spinors has still dimension 9.

4 ∇-parallel vector fields
Via the Riemannian metric we identify vectors with 1-forms. Denote by P∇ the
space of all ∇-parallel vector field (1-forms). Any ∇-parallel vector field θ is a
Killing field and

2∇gθ = d θ = θ T , ∇gθθ = 0 .

holds. This formula together with dT = 0 implies that T is preserved by the flow
of θ,

LθT = 0 .

The Riemannian Ricci tensor on θ becomes

Ricg(θ, θ) =
1

2
‖ d θ ‖2 .

The subgroup of G2 preserving four vectors in R7 is trivial. The isotropy subgroups
of two or three vectors in R7 coincide and this group is isomorphic to SU(2) ⊂ G2.
Finally, the isotropy subgroup of one vector is isomorphic to SU(3) ⊂ G2 (see for
example [7]). This algebraic observation proves immediately the following
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Proposition 1. If (M7, g, ω3) is not ∇-flat, then the possible dimensions of the
space P∇ are 0, 1, or 3.

4.1 The case of three ∇-parallel vector fields

We discuss the case that there are three orthonormal and ∇-parallel 1-forms θ1,
θ2, θ3. Then ω3(θ1, θ2,−) is ∇-parallel, too. If it does not coincide with θ3, then
we have at least four ∇-parallel 1-forms, i.e. the G2-connection ∇ is flat. Under
our assumption R∇ 6≡ 0 we conclude that

ω3(θ1, θ2,−) = θ3 , ω3(θ1, θ2, θ3) = 1 .

The holonomy of the connection ∇ is contained in su(2) ⊂ g2. Moreover, the
spinors

Ψ0 , Ψ1 := θ1 ·Ψ0 , Ψ2 := θ2 ·Ψ0 , Ψ3 := θ3 ·Ψ0

are all ∇-parallel spinors. The torsion form T acts as a symmetric endomorphism
on the space Lin(Ψ0,Ψ1,Ψ2,Ψ3) and T ·Ψ0 = −µΨ0. Consequently, T acts on the
3-dimensional space Lin(Ψ1,Ψ2,Ψ3) and T2 = ‖T‖2 · Id = µ2 · Id. We decompose
the torsion form into

T = T1 + T27 =
1

7
µω3 + T27

and we use the known action of ω3 on spinors:

ω3 ·Ψ0 = −7Ψ0 , ω3 ·Ψi = Ψi , i = 1, 2, 3 , T27 ·Ψ0 = 0 .

Finally, T27 ∈ Λ3
27 preserves the space Lin(Ψ1,Ψ2,Ψ3) and

T2
27 +

2

7
µT27 =

48

49
µ2.

Without loss of generality we may assume that Ψ1, Ψ2, Ψ3 are eigenspinors of T27,

T27 ·Ψi = mi Ψi , m2
i +

2

7
mi µ =

48

49
µ2, i = 1, 2, 3 .

We fix an orthonormal basis e1, . . . , e7 such that

ω3 = e127 + e135 − e146 − e236 − e245 + e347 + e567

and θ1 = e1, θ2 = e2, θ3 = e7. This is possible, since we already have ω3(θ1, θ2, θ3) = 1.
Let

T27 =
∑
i<j<k

tijk eijk

be the 3-form T27 and introduce the following numbers:

a := t236 + t245 , b := t347 + t567 , c := t235 − t246 .

A purely algebraic computation yields the following
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Lemma 1. The space of all 3-forms T27 ∈ Λ3
27 such that T27 ·Ψi = mi Ψi, i = 1, 2, 3

is an affine space of dimension 9. A parameterization is given by

T27 =
(
−m1

2
− b
)
e127 − t156 e134 +

(m1

2
+ t146 + a

)
e135

− t145 e136 + t145 e145 + t146 e146 + t156 e156 − t256 e234
+ t235 e235 + t236 e236 + t245 e245 + t246 e246 + t256 e256 + t347 e347

+ t467 e357 − t457 e367 + t457 e457 + t467 e467 + t567 e567 .

and

m1 + 2a+ 2b = m2 , −2a+ 2b = m3 , c = 0 .

Corollary 2. For X ⊥ Lin(θ1, θ2, θ3) we have

T(θi, θj , X) = 0 , T = (θ1 T) ∧ θ1 + (θ2 T) ∧ θ2 + (θ3 T) ∧ θ3 .

We solve the linear system with respect to a and b:

a = −1

4

(
m1 −m2 +m3

)
, b =

1

4

(
− m1 +m2 +m3

)
.

In particular,

m1 + 2b =
1

2

(
m1 +m2 +m3

)
.

We are interested in the value

T(θ1, θ2, θ3) =
1

7
µ− m1

2
− b =

1

7
µ− 1

4

(
m1 +m2 +m3

)
.

We have 8 possibilities, namely

mi =
6

7
µ or mi = −8

7
µ .

Therefore

T(θ1, θ2, θ3) = 0 , ±1

2
µ or µ .

We summarize the result.

Theorem 3. Let (M7, g, ω3) be a cocalibrated G2-manifold and∇ its characteristic
connection. Suppose that Ric∇ = 0, ‖T‖2 = µ2 > 0 and R∇ 6≡ 0. If θ1, θ2, θ3 are
three orthonormal and ∇-parallel vector fields, then

1. ω3(θ1, θ2, θ3) = 1.

2. T(θ1, θ2, θ3) is constant and has only four possible values: 0,±µ/2, µ.

3. T(θi, θj , X) = 0 for X ⊥ Lin(θ1, θ2, θ3).
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In particular

T = (θ1 T) ∧ θ1 + (θ2 T) ∧ θ2 + (θ3 T) ∧ θ3
= dθ1 ∧ θ1 + dθ2 ∧ θ2 + dθ3 ∧ θ3 .

and
[θ1, θ2] = −T(θ1, θ2, θ3) θ3

is proportional to θ3. The 3-dimensional space Lin(θ1, θ2, θ3) is closed with respect
to the Lie bracket and is a Lie subalgebra of the Killing vector fields. This algebra
is either commutative or isomorphic to so(3).

Remark 2. Since we do not assume that the torsion form T is ∇-parallel, it is not
obvious by general arguments that [θ1, θ2] = −T(θ1, θ2) is again ∇-parallel.

We can classify the case of T(θ1, θ2, θ3) = µ immediately. Indeed, we have then
‖T‖2 ≥ µ2. On the other hand, we know that ‖T‖2 = µ2 holds. It follows that

T = µ θ1 ∧ θ2 ∧ θ3 and ∇T = 0 .

Cocalibrated G2-structures with characteristic holonomy su(2) and a characteristic
torsion of the given type have been classified at the end of our paper [7]. We apply
this result and obtain

Theorem 4. Let (M7, g, ω3) be a complete, cocalibrated G2-manifold and ∇ its
characteristic connection. Suppose that Ric∇ = 0. If θ1, θ2, θ3 are three orthonor-
mal and ∇-parallel vector fields and T(θ1, θ2, θ3) = µ, then the universal covering
of M7 is isometric to the product X4 × S3, where X4 is a complete anti-self dual
and Ricci flat Riemannian manifold.

If T(θ1, θ2, θ3) = 0 the 3-dimensional abelian Lie group acts on M7 locally free as
a group of isometries and preserves the torsion form T. Moreover, we obtain the
2-forms dθi = θi T and

Lθi(θj T) = 0 , θi θj T = 0 .

We will investigate the special case, where two of these 2-forms vanish, later.

Remark 3. We do not have any results in case of |T(θ1, θ2, θ3)| = µ/2.

4.2 Special ∇-parallel vector fields

There are special ∇-parallel vector fields (1-forms), namely

SP∇ :=
{
θ : ∇gθ = 0 and θ T = 0

}
⊂ P∇.

A consequence of the formula in Theorem 3 is the following

Corollary 3. If T 6≡ 0 and R∇ 6≡ 0, then dim(SP∇) ≤ 2.

Proposition 2. If θ ∈ SP∇ is special ∇-parallel, then

∇gθ ω
3 = 0 , d(θ ω3) = θ dω3, Lθ(θ ω3) = 0 .
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Proof. Since θ T = 0 we get

∇θS = ∇gθS +
1

2
ρ∗(θ T)(S) = ∇gθS

for any tensor S. Here ρ∗ denotes action of so(7) in the corresponding tensor
representation. In particular,

∇gθ ω
3 = 0 .

Since θ is ∇g-parallel, we have ∇g(θ ω3) = θ ∇gω3. Using an orthonormal frame
with θ = e7 we compute the differential

d (θ ω3) =

7∑
i=1

∇gei(θ ω3) ∧ ei =

6∑
i=1

(θ ∇geiω
3) ∧ ei + 0 =

6∑
i=1

θ (∇geiω
3 ∧ ei)

=

6∑
i=1

θ (∇geiω
3 ∧ ei) + θ (∇gθω

3 ∧ θ) = θ dω3.

Finally, Lθ(θ ω3) = θ d(θ ω3) = θ θ dω3 = 0. �

Theorem 5. Let (M7, g, ω3) be a compact, cocalibrated G2-manifold and ∇ its
characteristic connection. Suppose that Ric∇ = 0, ‖T||2 = µ2 > 0 and R∇ 6≡ 0.
Then the space of harmonic 1- forms coincides with SP∇,

H1(M7;R) =
{
θ : ∆gθ = 0

}
= SP∇.

In particular, the second Betti number is bounded, b2(M7) ≤ 2.

Proof. The result follows directly from the Weitzenboeck formula for 1-forms and
the link between Ricg and the torsion form T,

0 =

∫
M7

g(∆gθ, θ) =

∫
M7

‖∇gθ‖2 +

∫
M7

Ricg(θ, θ)

=

∫
M7

‖∇gθ‖2 +
1

2

∫
M7

‖θ T‖2. �

4.3 The case of two special ∇-parallel vector fields

Suppose that there exist two special ∇-parallel vector fields θ1, θ2,

∇g θ1 = ∇gθ2 = 0 , θ1 T = θ2 T = 0 .

Then ω3(θ1, θ2, −) = θ3 is the third ∇-parallel (non-special) vector field and we
have

T(θ1, θ2, θ3) = 0 , [θ1, θ2] = [θ1, θ3] = [θ2, θ3] = 0 .

The conditions θ1 T = θ2 T = 0 restrict the algebraic type of the torsion form.
In fact, Theorem 3 yields that the possible torsion forms depend on two parameters
only. Indeed, there are two possibilities. The first case:

a =
2

7
µ , b =

5

7
µ , m1 = −8

7
µ , m2 = m3 =

6

7
µ .
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The second case:

a =
2

7
µ , b = − 2

7
µ , m1 =

6

7
µ , m2 =

6

7
µ , m3 = −8

7
µ .

Introducing a new notation for the frame

f1 := e3 , f2 := e4 , f3 := e5 , f4 := e6 , f5 := e7

we obtain the following formula for the torsion form:

T = (t125 + µ/7)f125 + t245(f135 + f245)

+ t235(−f145 + f235) + (t345 + µ/7)f345 ,

b = t125 + t345 =
5

7
µ or − 2

7
µ ,

µ2 = ‖T‖2 =
(
t125 +

µ

7

)2
+
(
t345 +

µ

7

)2
+ 2 t2245 + 2 t2235 .

If M7 is complete, its universal covering splits into N5×R2 and the torsion T as well
as the form θ3 = e7 = f5 are forms on N5. This follows form LθiT = 0, Lθiθ3 = 0
for i = 1, 2. We reduced the dimension. (N5, g,∇,T, θ3) is a 5-dimensional Rie-
mannian manifold equipped with a torsion form T as well as a metric connection ∇
such that

d ∗ T = 0 , dT = 0 , ||T||2 = 0 , Ric∇ = 0 ,

R∇ 6≡ 0 , hol(∇) ⊂ su(2) ⊂ g2

hold. θ3 is ∇-parallel on N5,

∇θ3 = 0 , d θ3 = θ3 T , T = θ3 ∧ d θ3 , 0 = dT = d θ3 ∧ d θ3 .

Consider the case of b = −2µ/7. Then

t125 +
µ

7
= −t345 −

µ

7

and we obtain

∗T = −θ3 T = −dθ3 , ∗dθ3 = −T = −dθ3 ∧ θ3 .

We multiply the latter equation by dθ3:

‖dθ3‖2 = dθ3 ∧ ∗dθ3 = −θ3 ∧ dθ3 ∧ dθ3 = 0 .

Consequently, b = −2µ/7 implies that the torsion form vanishes, T = 0, i.e. the
second case is impossible.

We observe that there are three ∇-parallel 2-forms on N5, namely,

Ω2
i := θi

(
ω3 − θ1 ∧ θ2 ∧ θ3) .



Cocalibrated G2-manifolds with Ricci flat characteristic connection 11

Consequently, hol(∇) ⊂ su(2). We can express these forms in our local frame,

Ω2
1 = f13 − f24 ,

Ω2
2 = − f14 − f23 ,

Ω2
3 = f12 + f34 .

Remark that(
θ3 T , Ω2

1

)
=
(
θ3 T , Ω2

2

)
= 0 ,

(
θ3 T , Ω2

3

)
= b+

2

7
µ = µ

holds.

Theorem 6. The kernel of T

E2 :=
{
X ∈ TN5 : X T = 0

}
is a 2-dimensional subbundle of TN5. The tangent bundle splits into two subbun-
dles of dimension 2 and 3, respectively,

TN5 = E2 ⊕ (E2)⊥.

θ3 belongs to (E2)⊥ and the torsion form is given by

T = µ f∗1 ∧ f∗2 ∧ θ3 ,

where f∗1 , f
∗
2 , θ3 is an orthonormal basis in (E2)⊥. Both subbundles are involutive

and N5 splits locally (but the 2- und 3-dimensional leaves are not totally geodesic).

Proof. We compute the determinant of the skew symmetric endomorphism θ3 T
on the space of all vectors being orthogonal to θ3,

Det(θ3 T) =
1

4

(
− b2 − 4

7
b µ+

45

49
µ2
)2

= 0 .

This proves that the dimension of E2 equals two. Let f∗1 , f
∗
2 , f

∗
3 , f

∗
4 , f

∗
5 = θ3 be an

orthonormal frame such that

Lin(f∗1 , f
∗
2 , f

∗
5 ) =

(
E2
)⊥
, Lin(f∗3 , f

∗
4 ) = E2.

Since µ is constant and dT = d ∗ T = 0 we have

d
(
f∗1 ∧ f∗2 ∧ f∗5

)
= 0 , d

(
f∗3 ∧ f∗4

)
= 0 .

We differentiate the equations f∗3 ∧ f∗3 ∧ f∗4 = 0 , f∗4 ∧ f∗3 ∧ f∗4 = 0 ,

0 = df∗3 ∧ (f∗3 ∧ f∗4 )− f∗3 ∧ d(f∗3 ∧ f∗4 ) = df∗3 ∧ (f∗3 ∧ f∗4 )

0 = df∗4 ∧ (f∗3 ∧ f∗4 )− f∗4 ∧ d(f∗3 ∧ f∗4 ) = df∗4 ∧ (f∗3 ∧ f∗4 ) .

By the Frobenius Theorem, the bundle (E2)⊥ is involutive. Similarly we have

df∗1 ∧ (f∗1 ∧ f∗2 ∧ f∗5 ) = df∗2 ∧ (f∗1 ∧ f∗2 ∧ f∗5 ) = df∗5 ∧ (f∗1 ∧ f∗2 ∧ f∗5 ) = 0

and the bundle E2 is involutive. �
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This splitting is not ∇-parallel (∇T 6= 0), but the flow of θ3 preserves the splitting
(Lθ3T = 0). The Ricci tensor preserves the splitting, too. Indeed, it depends only
on T and we compute easily:

Theorem 7. The Ricci tensor Ricg preserves the splitting of the tangent bundle
and

Ricg|E2 = 0 , Ricg|(E2)⊥
=

1

2
µ2 Id .

In particular, the Ricci tensor of (N5, g) has constant eigenvalues, and these are 0
and µ2/2 > 0.

The 2-form dθ3 is invariant under the flow of θ3,

Lθ3
(
dθ3
)

= 0 and dθ3 ∧ dθ3 = 0 .

If the orbit space Z4 := N5/θ3 is smooth, its tangent bundle splits into two involu-
tive 2-dimensional subbundles. dθ3 defines a 2-form on Z4 satisfying all the condi-
tions of Theorem 1. However, we have an additional condition for (N5, g,∇,T, θ3),
namely the holonomy of ∇ should be contained in su(2) ⊂ g2 and the holonomy
representation is in C2 ⊂ R5. This is equivalent to the condition that there are
three ∇-parallel 2-forms Ω2

1,Ω
2
2,Ω

2
3. The 2-form Ω2

3 plays a special role on N5.
Indeed, it projects down to a Kähler form on Z4.

Proposition 3.
∇Ω2

3 = 0 , dΩ2
3 = 0 , Lθ3Ω2

3 = 0 .

In particular, if Z4 is smooth, then Ω2
3 ∈ Λ2

+(Z4) defines a ∇g-parallel, self-dual
2-form on Z4.

Proof. Using the frame f1, . . . , f5 one easily computes the formula

Ω2
3 =

1

µ

(
∗ T + d θ3

)
=

1

µ

(
∗ T + θ3 T

)
.

Since d ∗ T = 0 we obtain dΩ2
3 = 0. Moreover, Lθ3T = 0, and

Lθ3Ω2
3 =

1

µ
Lθ3(dθ3) =

1

µ

(
θ3 (θ3 T)

)
= 0 . �

A similar algebraic computation yields the following formulas.

Proposition 4.

dΩ2
1 = µΩ2

2 ∧ θ3 , dΩ2
2 = −µΩ2

1 ∧ θ3 ,
Lθ3Ω2

1 = µΩ2
2 , Lθ3Ω2

2 = −µΩ2
1 .

Proof. Since the 2-forms are ∇-parallel, we can compute the derivatives using the
formula (see [2])

dΩ2 =

5∑
j=1

(fj Ω2) ∧ (fj T) . �

Remark 4. In the frame f∗1 , . . . , f
∗
5 we have Ω2

3 = f∗1 ∧ f∗2 + f∗3 ∧ f∗4 , too. In
particular, Ω2

3 is completely defined by T and θ3. If Z4 is smooth and compact,
then Z4 = S2×T 2, see [6], and the connection ∇ on M7 = N5×R2 = S3×T 2×R2

becomes flat.
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