Communications in Mathematics

Bingqing Ma; Guangyue Huang

Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in \mathbb{S}^{n+1}

Communications in Mathematics, Vol. 21 (2013), No. 1, 31--38

Persistent URL: http://dml.cz/dmlcz/143347

Terms of use:

© University of Ostrava, 2013

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in \mathbb{S}^{n+1}

Bingqing Ma, Guangyue Huang

Abstract

For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.

1 Introduction

Let M be an n-dimensional compact hypersurface with constant mean curvature in the unit sphere $\mathbb{S}^{n+1}(1)$. We let $h_{i j}$ denote the components of the second fundamental form, S stand for the norm square of the second fundamental form, H be the mean curvature of M, respectively. A Schrödinger operator

$$
J=-\Delta-(S+n)
$$

where Δ denotes the Laplace-Beltrami operator, is called a Jacobi operator. Since the spectral behavior is directly related to the instability of both minimal hypersurfaces and hypersurfaces with constant mean curvature in $\mathbb{S}^{n+1}(1)$ (for example, see [2, 10]), many mathematicians studied the first and the second eigenvalues of such Jacobi operator. The first eigenvalue of J on hypersurfaces in $\mathbb{S}^{n+1}(1)$ was studied by Simons 10 and Wu 11. Ei Soufi and Ilias 6 studied the second eigenvalue of the Jacobi operator above. In 1993, Alencar, do Carmo and Colares [1] studied the stability of hypersurfaces with constant scalar curvature in $\mathbb{S}^{n+1}(1)$. Similarly to the case of both minimal hypersurfaces and hypersurfaces with constant mean curvature in $\mathbb{S}^{n+1}(1)$, we have a notion of Jacobi operator corresponding to compact hypersurfaces with constant scalar curvsture. For the first eigenvalue and the second eigenvalue of such Jacobi operator, the readers who are interested in it see 4], 8.

Key words: hypersurface with constant mean curvature, the stability operator, Hodge Laplacian, rough Laplacian

Recently, Savo 9 considered compact minimal hypersurfaces of the unit sphere and proved a comparison theorem between the spectrum of the stability operator J and that of the Hodge Laplacian on 1-forms. In this paper, we consider hypersurfaces of the unit sphere with constant mean curvature. Now we state our result as follows:

Theorem 1. Let $x: M^{n} \rightarrow \mathbb{S}^{n+1}(1)$ be an n-dimensional compact hypersurface with constant mean curvature H. We denote the norm square of the second fundamental form by S. Then

$$
\begin{equation*}
\lambda_{\alpha}^{J} \leq-2(n-1)+\lambda_{m(\alpha)}^{\Delta_{1}}+n|H| \max _{M} \sqrt{S} \tag{1}
\end{equation*}
$$

where λ_{α}^{J} is the α-th eigenvalue of $J, \lambda_{m(\alpha)}^{\Delta_{1}}$ is the $m(\alpha)$-th eigenvalue of the Hodge Laplacian Δ_{1} with respect to 1-form. Here $m(\alpha)=\binom{n+2}{2}(\alpha-1)+1$.

In particular, Savo 9 has proved that for compact minimal hypersurfaces of the unit sphere, it holds that

$$
\begin{equation*}
\lambda_{\alpha}^{J} \leq-2(n-1)+\lambda_{m(\alpha)}^{\Delta_{1}} . \tag{2}
\end{equation*}
$$

Hence, the Theorem 1 above extends Theorem 1 in 9. On the other hand, for eigenvalues of the stability operator J and the rough Laplacian, we have the following result:

Theorem 2. Let $x: M^{n} \rightarrow \mathbb{S}^{n+1}(1)$ be an n-dimensional compact hypersurface with constant mean curvature. We have

$$
\begin{equation*}
\lambda_{\alpha}^{J} \leq-(n-1)+\lambda_{m(\alpha)}^{D^{*} D} \tag{3}
\end{equation*}
$$

where λ_{α}^{J} is the α-th eigenvalue of $J, \lambda_{m(\alpha)}^{D^{*} D}$ is the $m(\alpha)$-th eigenvalue of the rough Laplacian $D^{*} D$ with respect to 1-form. Here $m(\alpha)=\binom{n+2}{2}(\alpha-1)+1$.

2 Proof of Theorems

Let $x: M^{n} \rightarrow \mathbb{S}^{n+1}(1)$ be an n-dimensional compact hypersurface with constant mean curvature. We adopt the following index convention:

$$
1 \leq i, j, k, l \leq n, \quad 1 \leq A, B \leq n+2 .
$$

Choosing a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}\right\}$ and the dual coframe $\left\{\omega_{1}, \ldots, \omega_{n}, \omega_{n+1}\right\}$ such that when restricted on $M,\left\{e_{1}, \ldots, e_{n}\right\}$ forms a local orthonormal frame on M. Hence, $\omega_{n+1}=0$ on M and the following structure equations (see 5):

$$
\begin{aligned}
d x & =\omega_{i} e_{i} \\
d e_{i} & =\omega_{i j} e_{j}+h_{i j} \omega_{j} e_{n+1}-\omega_{i} x \\
d e_{n+1} & =-h_{i j} \omega_{j} e_{i}
\end{aligned}
$$

where $h_{i j}$ denote the components of the second fundamental form of x, in which we used the summation convention on repeated indices. We will take this convention in the later part without any confusion. The Gauss equations (see [5, 7) are

$$
\begin{align*}
R_{i j k l} & =\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right), \\
R_{i j} & =R_{i k j k}=(n-1) \delta_{i j}+n H h_{i j}-h_{i k} h_{j k}, \tag{4}\\
R & =n(n-1)+n^{2} H^{2}-S,
\end{align*}
$$

where R stands for the scalar curvature and $S=\sum_{i j} h_{i j}^{2}$ is the norm square of the second fundamental form, $H=\frac{1}{n} h_{i i}$ is the mean curvature of x. The Codazzi equations are given by

$$
h_{i j k}=h_{i k j}, \quad \text { for } i, j, k=1, \ldots, n \text {. }
$$

Let f be a smooth function on M. The first and the second covariant derivatives of f are defined by

$$
\begin{gathered}
d f=f_{i} \omega_{i} \\
f_{i j} \omega_{j}=d f_{i}+f_{j} \omega_{j i}
\end{gathered}
$$

Let a be a fixed vector in \mathbb{R}^{n+2}. Define

$$
f^{a}=\langle a, x\rangle, \quad g^{a}=\left\langle a, e_{n+1}\right\rangle
$$

Then we have the following lemma:
Lemma 1. (see [3]) Under the conceptions above, we have

$$
\begin{aligned}
f_{i}^{a} & =\left\langle a, e_{i}\right\rangle, \quad g_{i}^{a}=-h_{i j} f_{j}^{a} \\
f_{i j}^{a} & =h_{i j} g^{a}-f^{a} \delta_{i j} \\
g_{i j}^{a} & =h_{i j} f^{a}-h_{i k} h_{j k} g^{a}-h_{i j k} f_{k}^{a} .
\end{aligned}
$$

Define the Hodge Laplacian Δ_{p} by

$$
\Delta_{p}=d \delta+\delta d: A^{p}(M) \rightarrow A^{p}(M)
$$

where $\delta=(-1)^{n(p+1)} * d *: A^{p}(M) \rightarrow A^{p-1}(M)$. For any $\psi \in A^{p}(M)$, one has

$$
\Delta_{p} \psi=D^{*} D(\psi)-\operatorname{Ric}(\psi)
$$

where $D^{*} D$ denotes the rough Laplacian which is given by

$$
D^{*} D(\psi)=\sum_{i}\left(D_{e_{i}} D_{e_{i}}-D_{D_{e_{i} e_{i}}}\right) \psi .
$$

In particular, when $\xi=\xi_{i} \omega_{i} \in A^{1}(M), D^{*} D(\xi)=\xi_{j, i i} \omega_{j}$, where the second covariant derivatives of ξ is defined by

$$
\xi_{i, j k} \omega_{k}=d \xi_{i, j}+\xi_{k, j} \omega_{k i}+\xi_{i, k} \omega_{k j}
$$

In particular, for $f \in C^{\infty}(M)$, we have $\Delta_{0} f=f_{i i}=\Delta f$. By (4), one gets

$$
\operatorname{Ric}(\xi)=\xi_{i} R_{i j} e_{j}=(n-1) \xi+n H h_{i j} \xi_{i} e_{j}-h_{i k} h_{j k} \xi_{i} e_{j}
$$

and hence,

$$
\begin{equation*}
D^{*} D(\xi)=\Delta_{1} \xi+(n-1) \xi+n H h_{i j} \xi_{i} e_{j}-h_{i k} h_{j k} \xi_{i} e_{j} \tag{5}
\end{equation*}
$$

Lemma 2. Let a be a fixed vector in \mathbb{R}^{n+2} and a^{\top} denote the orthogonal projection onto M. Then

$$
\begin{align*}
\Delta_{1} a^{\top} & =-n H h_{i j} f_{j}^{a} e_{i}-n f_{i}^{a} e_{i}, \tag{6}\\
D^{*} D\left(a^{\top}\right) & =-f_{i}^{a} e_{i}-h_{i k} h_{j k} f_{i}^{a} e_{j} . \tag{7}
\end{align*}
$$

Proof. By a direct calculation, one has from Lemma 1

$$
\begin{aligned}
\Delta_{1} a^{\top} & =\Delta_{1}\left(\left\langle a^{\top}, e_{i}\right\rangle \omega_{i}\right)=\Delta_{1}\left(d f^{a}\right)=d\left(\Delta f^{a}\right) \\
& =n H d g^{a}-n d f^{a}=-n H h_{i j} f_{j}^{a} e_{i}-n f_{i}^{a} e_{i} .
\end{aligned}
$$

Hence (6) is proved. Substituting ξ in (5) by a^{\top} and using (6), we obtain (7).

Lemma 3. Let ξ be a vector field on M and a, b be two independent fixed vectors in \mathbb{R}^{n+2}. Then we have

$$
\begin{aligned}
\Delta\left(\left\langle a, e_{n+1}\right\rangle\left\langle b^{\top}, \xi\right\rangle\right)= & \left((n-2) \xi_{j}+\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}-S \xi_{j}\right) f_{j}^{b} g^{a} \\
& -2 h_{i j} h_{i k} \xi_{k} f_{j}^{a} g^{b}-2 h_{i j} \xi_{k, i} f_{j}^{a} f_{k}^{b}-2 \xi_{i i} f^{b} g^{a}+2 h_{i j} \xi_{i} f_{j}^{a} f^{b} \\
& +n H \xi_{j} f^{a} f_{j}^{b}+2 h_{i j} \xi_{i, j} g^{b} g^{a} .
\end{aligned}
$$

Proof. Given a point $p \in M$, let $\left\{e_{i}\right\}_{i=1}^{n}$ be an orthonormal frame which is geodesic at p. Then $\Delta f=e_{i} e_{i}(f)$ and we have from (5), Lemma 1 and Lemma 2 ,

$$
\begin{aligned}
& \Delta\left\langle b^{\top}, \xi\right\rangle=\left\langle D^{*} D\left(b^{\top}\right), \xi\right\rangle+2 f_{i j}^{b} \xi_{i, j}+\left\langle b^{\top}, D^{*} D(\xi)\right\rangle \\
&=-\xi_{j} f_{j}^{b}-h_{i k} h_{j k} \xi_{i} f_{j}^{b}+2\left(h_{i j} g^{b}-f^{b} \delta_{i j}\right) \xi_{i, j} \\
&+\left\langle e_{j}, \Delta_{1} \xi\right\rangle f_{j}^{b}+(n-1) \xi_{j} f_{j}^{b}+n H h_{i j} \xi_{i} f_{j}^{b}-h_{i k} h_{j k} \xi_{i} f_{j}^{b} \\
&=\left((n-2) \xi_{j}+\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}\right) f_{j}^{b} \\
&+2 h_{i j} \xi_{i, j} g^{b}-2 \xi_{i, i} f^{b}, \\
& \begin{aligned}
\left\langle\nabla\left\langle a, e_{n+1}\right\rangle, \nabla\left\langle b^{\top}, \xi\right\rangle\right\rangle & =g_{i}^{a}\left(\left\langle D_{e_{i}} b^{\top}, \xi\right\rangle+\left\langle b^{\top}, D_{e_{i}} \xi\right\rangle\right) \\
& =g_{i}^{a}\left(f_{i j}^{b} \xi_{j}+f_{j}^{b} \xi_{j, i}\right) \\
& =-h_{i j} h_{i k} \xi_{k} f_{j}^{a} g^{b}+h_{i j} \xi_{i} f_{j}^{a} f^{b}-h_{i j} \xi_{k, i} f_{j}^{a} f_{k}^{b}
\end{aligned}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Delta\left(\left\langle a, e_{n+1}\right\rangle\left\langle b^{\top}, \xi\right\rangle\right)= & \left\langle a, e_{n+1}\right\rangle \Delta\left\langle b^{\top}, \xi\right\rangle+\left\langle b^{\top}, \xi\right\rangle \Delta\left\langle a, e_{n+1}\right\rangle \\
& +2\left\langle\nabla\left\langle a, e_{n+1}\right\rangle, \nabla\left\langle b^{\top}, \xi\right\rangle\right\rangle \\
= & g^{a}\left(\left((n-2) \xi_{j}+\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}\right) f_{j}^{b}\right. \\
& \left.+2 h_{i j} \xi_{i, j} g^{b}-2 \xi_{i, i} f^{b}\right)+\left(n H f^{a}-S g^{a}\right) \xi_{j} f_{j}^{b} \\
& +2\left(-h_{i j} h_{i k} \xi_{k} f_{j}^{a} g^{b}+h_{i j} \xi_{i} f_{j}^{a} f^{b}-h_{i j} \xi_{k, i} f_{j}^{a} f_{k}^{b}\right) \\
= & \left((n-2) \xi_{j}+\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}-S \xi_{j}\right) f_{j}^{b} g^{a} \\
& -2 h_{i j} h_{i k} \xi_{k} f_{j}^{a} g^{b}-2 h_{i j} \xi_{k, i} f_{j}^{a} f_{k}^{b}-2 \xi_{i, i} f^{b} g^{a}+2 h_{i j} \xi_{i} f_{j}^{a} f^{b} \\
& +n H \xi_{j} f^{a} f_{j}^{b}+2 h_{i j} \xi_{i, j} g^{b} g^{a} .
\end{aligned}
$$

We conclude the proof of Lemma 3 .
Now we are in a position to prove Theorem 1
Proof. (of Theorem 1 Let $\left\{E_{A}\right\}_{A=1}^{n+2}$ be a fixed orthonormal basis of \mathbb{R}^{n+2}. Define

$$
X_{A B}^{\top}=\left\langle E_{A}, e_{n+1}\right\rangle E_{B}^{\top}-\left\langle E_{B}, e_{n+1}\right\rangle E_{A}^{\top}
$$

and

$$
u_{A B}=\left\langle X_{A B}^{\top}, \xi\right\rangle=-u_{B A}
$$

Let

$$
f^{A}=\left\langle E_{A}, x\right\rangle, \quad g^{A}=\left\langle E_{A}, e_{n+1}\right\rangle .
$$

Then from Lemma 3, we have

$$
\begin{aligned}
\Delta u_{A B}= & \Delta\left(\left\langle E_{A}, e_{n+1}\right\rangle\left\langle E_{B}^{\top}, \xi\right\rangle\right)-\Delta\left(\left\langle E_{B}, e_{n+1}\right\rangle\left\langle E_{A}^{\top}, \xi\right\rangle\right) \\
= & \left((n-2) \xi_{j}+\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}-S \xi_{j}\right)\left(f_{j}^{B} g^{A}-f_{j}^{A} g^{B}\right) \\
& -2 h_{i j} h_{i k} \xi_{k}\left(f_{j}^{A} g^{B}-f_{j}^{B} g^{A}\right)-2 h_{i j} \xi_{k, i}\left(f_{j}^{A} f_{k}^{B}-f_{j}^{B} f_{k}^{A}\right) \\
& -2 \xi_{i i}\left(f^{B} g^{A}-f^{A} g^{B}\right)+2 h_{i j} \xi_{i}\left(f_{j}^{A} f^{B}-f_{j}^{B} f^{A}\right) \\
& +n H \xi_{j}\left(f^{A} f_{j}^{B}-f^{B} f_{j}^{A}\right) \\
= & (n-2-S) u_{A B}+v_{A B},
\end{aligned}
$$

where

$$
\begin{aligned}
v_{A B}= & \left(\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}\right)\left(f_{j}^{B} g^{A}-f_{j}^{A} g^{B}\right) \\
& -2 h_{i j} h_{i k} \xi_{k}\left(f_{j}^{A} g^{B}-f_{j}^{B} g^{A}\right)-2 h_{i j} \xi_{k, i}\left(f_{j}^{A} f_{k}^{B}-f_{j}^{B} f_{k}^{A}\right) \\
& -2 \xi_{i, i}\left(f^{B} g^{A}-f^{A} g^{B}\right)+2 h_{i j} \xi_{i}\left(f_{j}^{A} f^{B}-f_{j}^{B} f^{A}\right) \\
& +n H \xi_{j}\left(f^{A} f_{j}^{B}-f^{B} f_{j}^{A}\right) .
\end{aligned}
$$

Let λ_{α}^{J} be the α-th eigenvalue of J and φ_{α} be the orthonormal eigenfunction corresponding to λ_{α}^{J}, that is,

$$
\begin{equation*}
J \varphi_{\alpha}=\lambda_{\alpha}^{J} \varphi_{\alpha}, \quad \int_{M} \varphi_{\alpha} \varphi_{\beta}=\delta_{\alpha \beta} \tag{8}
\end{equation*}
$$

Denote by $V_{m}^{\Delta_{1}}$ the direct sum of the first m eigenspaces of Δ_{1} such that the following orthogonality relations

$$
\begin{equation*}
\int_{M}\left\langle X_{A B}^{\top}, \xi\right\rangle \varphi_{1}=\cdots=\int_{M}\left\langle X_{A B}^{\top}, \xi\right\rangle \varphi_{\alpha-1}=0 \tag{9}
\end{equation*}
$$

hold for all A, B. Note that $X_{A B}^{\top}$ is skew symmetric. Hence, we know that (9) has $\binom{n+2}{2}(\alpha-1)$ homogenous linear equations in $\xi \in V_{m}^{\Delta_{1}}$. If we let

$$
m(\alpha):=\binom{n+2}{2}(\alpha-1)+1
$$

then we can find a non-zero vector field $\xi \in V_{m(\alpha)}^{\Delta_{1}}$ such that the function $u_{A B}$ is orthogonal to the first $\alpha-1$ eigenfunctions of J for all A, B. By the Rayleigh-Ritz principle, we have

$$
\begin{align*}
\lambda_{\alpha}^{J} \int_{M} u_{A B}^{2} & \leq \int_{M} u_{A B} J u_{A B} \\
& =-\int_{M} u_{A B} \Delta u_{A B}-\int_{M}(S+n) u_{A B}^{2} \tag{10}\\
& =-\int_{M}\left(2(n-1) u_{A B}^{2}+u_{A B} v_{A B}\right) .
\end{align*}
$$

It follows from $u_{A B}=\xi_{l}\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right)$ that

$$
\begin{align*}
& \sum_{A, B} u_{A B}^{2}=\xi_{l} \xi_{k} \sum_{A, B}\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right)\left(f_{k}^{B} g^{A}-f_{k}^{A} g^{B}\right)=2|\xi|^{2}, \tag{11}\\
& \sum_{A, B} u_{A B} v_{A B}= \xi_{l}\left\{\left(\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}\right)\right. \\
& \times \sum_{A, B}\left(f_{j}^{B} g^{A}-f_{j}^{A} g^{B}\right)\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right) \\
&-2 h_{i j} h_{i k} \xi_{k} \sum_{A, B}\left(f_{j}^{A} g^{B}-f_{j}^{B} g^{A}\right)\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right) \tag{12}\\
&-2 h_{i j} \xi_{k, i} \sum_{A, B}\left(f_{j}^{A} f_{k}^{B}-f_{j}^{B} f_{k}^{A}\right)\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right) \\
&-2 \xi_{i, i} \sum_{A, B}\left(f^{B} g^{A}-f^{A} g^{B}\right)\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right)
\end{align*}
$$

$$
\begin{aligned}
& +2 h_{i j} \xi_{i} \sum_{A, B}\left(f_{j}^{A} f^{B}-f_{j}^{B} f^{A}\right)\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right) \\
& \left.+n H \xi_{j} \sum_{A, B}\left(f^{A} f_{j}^{B}-f^{B} f_{j}^{A}\right)\left(f_{l}^{B} g^{A}-f_{l}^{A} g^{B}\right)\right\} \\
= & \xi_{l}\left\{2\left(\left\langle e_{j}, \Delta_{1} \xi\right\rangle-2 h_{i k} h_{j k} \xi_{i}+n H h_{i j} \xi_{i}\right) \delta_{j l}+4 h_{i j} h_{i k} \xi_{k} \delta_{j l}\right\} \\
= & 2\left\langle\xi, \Delta_{1} \xi\right\rangle+2 n H h_{i j} \xi_{i} \xi_{j},
\end{aligned}
$$

where we used

$$
\sum_{A, B}\left\langle E_{A}, X\right\rangle\left\langle Y, E_{B}\right\rangle=\langle X, Y\rangle
$$

for any X, Y. Applying (11) and 12 to yields

$$
\begin{align*}
\lambda_{\alpha}^{J} \int_{M}|\xi|^{2} & \leq-\int_{M}\left(2(n-1)|\xi|^{2}+\left\langle\xi, \Delta_{1} \xi\right\rangle+n H h_{i j} \xi_{i} \xi_{j}\right) \\
& \leq-2(n-1) \int_{M}|\xi|^{2}+\lambda_{m(\alpha)}^{\Delta_{1}} \int_{M}|\xi|^{2}+n|H| \max _{M} \sqrt{S} \int_{M}|\xi|^{2} \tag{13}
\end{align*}
$$

which shows that

$$
\lambda_{\alpha}^{J} \leq-2(n-1)+\lambda_{m(\alpha)}^{\Delta_{1}}+n|H| \max _{M} \sqrt{S}
$$

We complete the proof of Theorem 1.
Proof. (of Theorem 2) From (5), we have

$$
\begin{equation*}
\left\langle\xi, D^{*} D(\xi)\right\rangle=\left\langle\xi, \Delta_{1} \xi\right\rangle+(n-1)|\xi|^{2}+n H h_{i j} \xi_{i} \xi_{j}-h_{i k} h_{j k} \xi_{i} \xi_{j} . \tag{14}
\end{equation*}
$$

Putting (14) into (13), one gets

$$
\begin{aligned}
\lambda_{\alpha}^{J} \int_{M}|\xi|^{2} & \leq-\int_{M}\left(2(n-1)|\xi|^{2}+\left\langle\xi, \Delta_{1} \xi\right\rangle+n H h_{i j} \xi_{i} \xi_{j}\right) \\
& =-\int_{M}\left((n-1)|\xi|^{2}+\left\langle\xi, D^{*} D(\xi)\right\rangle+h_{i k} h_{j k} \xi_{i} \xi_{j}\right) \\
& \leq-\int_{M}\left((n-1)|\xi|^{2}+\left\langle\xi, D^{*} D(\xi)\right\rangle\right) \\
& \leq-(n-1) \int_{M}|\xi|^{2}+\lambda_{m(\alpha)}^{D^{*} D} \int_{M}|\xi|^{2},
\end{aligned}
$$

which gives

$$
\lambda_{\alpha}^{J} \leq-(n-1)+\lambda_{m(\alpha)}^{D^{*} D} .
$$

Thus, the proof of Theorem 2 is completed.

Acknowledgements

The first named author's research is supported by NSFC No. 11171368. The second named author's research is supported by NSFC No. 11001076, 11171091. The second author would like to thank Professor Haizhong Li for helpful suggestions and continuous support.

References

[1] H. Alencar, M. do Carmo, A. G. Colares: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993) 117-131.
[2] J. L. Barbosa, M. do Carmo, M. Eschenburg: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988) 123-138.
[3] L. Cao, H. Li: r-Minimal submanifolds in space forms.. Ann. Global Anal. Geom. 32 (2007) 311-341.
[4] Q.-M. Cheng: First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc. 136 (2008) 3309-3318.
[5] S. S. Chern: Minimal Submanifolds in a Riemannian Manifold (mimeographed). University of Kansas, Lawrence (1968).
[6] A. El Soufi, S. Ilias: Second eigenvalue of Schrödinger operators, mean curvature. Commun. Math. Phys. 208 (2000) 761-770.
[7] H. Li: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996) 665-672.
[8] H. Li, X. Wang: Second eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc. 140 (2012) 291-307.
[9] A. Savo: Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J. 59 (2010) 823-837.
[10] J. Simons: Minimal varieties in Riemannian manifolds. Ann. of Math. 88 (1968) 62-105.
[11] C. Wu: New characterization of the Clifford tori, the Veronese surface. Arch. Math. (Basel) 61 (1993) 277-284.

Authors' address:
Bingqing Ma, Guangyue Huang: Department of Mathematics, Henan Normal University, Xinxiang 453007, P.R. China.
E-mail: bqma@henannu.edu.cn, hgy@henannu.edu.cn

Received: 1 November, 2012
Accepted for publication: 12 April, 2013
Communicated by: Haizhong Li

