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KYBERNETIKA — VOLUME 49 (2013), NUMBER 2, PAGES 258-279

GREEDY AND LAZY REPRESENTATIONS
IN NEGATIVE BASE SYSTEMS

ToMmAS HEJDA, ZUZANA MASAKOVA AND EDITA PELANTOVA

We consider positional numeration systems with negative real base —(3, where 8 > 1, and
study the extremal representations in these systems, called here the greedy and lazy represen-
tations. We give algorithms for determination of minimal and maximal (—/3)-representation
with respect to the alternate order. We also show that both extremal representations can be
obtained as representations in the positive base 32 with a non-integer alphabet. This enables
us to characterize digit sequences admissible as greedy and lazy (—()-representation. Such a
characterization allows us to study the set of uniquely representable numbers. In the case that 8
is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences
admissible as greedy and lazy (—()-representation using a set of forbidden strings.

Keywords: numeration systems, lazy representation, greedy representation, negative base,
unique representation

Classification: 11A63, 37B10

1. INTRODUCTION

A positional number system is given by a real base a with || > 1 and by a finite set of
digits A C R, usually called alphabet. If £ € R can be expressed in the form Zigk z;0
with coefficients x; € A, we say that x has an a-representation in .A. The most important
assumption on the choice of the alphabet A is that any positive real number x has at
least one a-representation. This assumption implies that the cardinality of the alphabet
#A is at least |«

It is well known that if the base « is a positive integer and the alphabet is A =
{0,1,2,...,a—1} then any positive real 2 has an a-representation and almost all positive
reals (up to a countable number of exceptions) have unique representation. For example,
in the decimal numeration system

1 =0.5000000... = 0.4999999...,  whereas 1 =0.333333....

If the base « is not an integer and the alphabet A is rich enough to represent all positive
reals, then almost all > 0 have infinitely many representations and one can choose
among them “the nicest” one from some point of view]l]

INote that although most people prefer writing % = 0.5, the shopkeepers consider the representation
0.4999... . nicer than 0.5000... for z = 1.
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The most studied numeration system with a positive base o ¢ Z uses the alphabet
A = {0, 1,2,..., LaJ}. The set of all a-representations of x understood as infinite
words in the alphabet A is lexicographically ordered. The lexicographically greatest
a-representation is considered to be the “nicest”. Since this a-representation is computed
by the so called greedy algorithm, it is referred to as the greedy representation. On the
other hand, the lexicographically smallest S-representation is called lazy. One might also
be interested in other representations in positive base systems, for an extensive overview
we refer to [6].

The study of greedy representations for non-integer bases a > 1 was initiated by Rényi
in 1957 [9]. An interest in lazy representations for bases « € (1,2) with alphabet {0,1}
was started in 1990 by works of Erdds, Jo6 and Komornik [4]. A systematic study of lazy
representations for all bases « > 1 can be found in the work of Dajani and Kraaikamp
[2] from 2002.

Recently, Ito and Sadahiro [5] introduced a numeration system with a negative base
a = —f < —1 and with the alphabet A4 = {O, 1,2,...,|6] } They gave an algorithm

for computing a (—/3)-representation of z € [%7 ﬁ) and showed that the natural
order on R corresponds to the alternate order on such (—f)-representations. Using a
negative base, we can represent positive and negative numbers without an additional bit
for the signum +. A family of transformations producing negative base representations
of numbers for 1 < 8 < 2 is studied in [I]. Among others, it is shown that although
none of them gives the maximal representation in the alternate order, it is produced by a
random algorithm, see Theorem 4.2. in [I]. In its proof, one can find out that the greedy
representation is obtained by periodic application of two transformations.

In this article, we focus on negative bases —f3, # > 1 in general, and deduce analogous
result without introducing random (—/)-expansions. Our main result states that both
extremal representations can be obtained using the positive base 32 and a non-integer
alphabet B by application of a transformation of the form T'(z) = 3%z — D(z), where
D(z) € B (Theorems and . Note that representations using a non-integer alphabet
were considered by Pedicini [8]. This enables us to exploit results of [6] for giving necessary
and sufficient conditions for identifying sequences admissible as greedy and lazy (—0)-
expansions (Theorem [5.3). For 8 = ¢, the golden ratio, and 8 = u, the Tribonacci
constant, we describe such sequences in terms of forbidden strings. Finally, we illustrate
how the characterization of admissible greedy and lazy representations can be applied
for the study of uniquely representable numbers (Section E[)

2. HOW TO OBTAIN a-REPRESENTATIONS OF REAL NUMBERS

In this chapter we recall a method for finding an a-representation of a given number with
general real base a, |a| > 1. Tt is clear that if we are able to find a representation for all
numbers x from some bounded interval J C R containing 0, then we are also able to find
an a-representation for any x € (J,cy, akJ, i.e., for any real number (if 0 is an interior
point of J or the base « is negative) or for all positive reals or all negative reals (if 0 is a
boundary point of J and the base « is positive). Our definition below is a restriction of
the very general numeration system considered by Thurston [IT].
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Definition 2.1. Given a base « € R, || > 1, a finite alphabet A C R and a bounded
interval J 2 0. Let D : J — A be a mapping such that the transformation defined by
T(z) = ax — D(x) maps J to J. The corresponding a-representation of = is a mapping
d=dgp:J— A,

do,s,0(T) = T1222324 ..., Where x) = D(Tkil(x)).

Let us comment the previous definition. By the definition of T', for any x € J we have
T = % + @ As the value T'(z) is required to belong to J as well, we may use this

formula recursively and obtain the mentioned a-representation of x in the alphabet A:

D(z) , D(T(x)) D(T*(z)) A D(T°(x))

- 1
v o + o? + o3 + ot + (1)

Clearly, at any step of this recursion we have

no, I"

p= T T2y o TE) 2)
a o« a a

Example 2.2. In [9], Rényi defined for o = 8 > 1 the mappings T : [0,1) — [0,1) and

D:[0,1)—{0,1,...,[8] — 1} by

D(z) =|pz] and T(x)= Pz — D(x).

The (-representation of z € [0,1) corresponding to this choice of D and T is usually
called the greedy (-expansion of x.

More general case of number systems with positive base is studied in [6], where the
authors admit non-integer digits and, among other, give condition for a digit string to be
admissible as a number expansion. We refer to [6] for an extensive list of useful literature.

Example 2.3. In [5], Ito and Sadahiro considered negative bases « = — (3, for any 5 > 1.
On the interval J = [ﬁ;fw ﬁ) the mappings T and D are defined as follows:
D(z) = |—fz + %J and T(z)=—pz— D(x).

The corresponding alphabet, i.e., the range of D, is A = {0, 1,..., 8] } Let us mention
that for 5 ¢ N the Ito-Sadahiro alphabet and the Rényi alphabet coincide. If that 5 € N,
the digit | 3] occurs only in the infinite suffix (Lﬁj)w and every number in J can also be
represented in base —3 with the smaller alphabet A\{|3]}={0,1,...,3—1}. However,
such a representation cannot be obtained simply using the floor or the ceil function.

The Rényi [-expansion and the Ito—Sadahiro (—()-expansion are “order-preserving”,
provided that we choose a suitable order on the set of representations which they produce.

Definition 2.4. Let A C R be a finite alphabet ordered by the natural order “<” in R.
Let z12923 ... and y142ys . .. be two different strings from AN or A" for n € N, n > 1.
Denote k = min{i | x; # y; }. We write
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® T1Tox3... <lex Y1Y2Vs... if xx < yi and say that xjxoxs... is smaller than
Y1Y2ys3 . .. in the lexicographical order;

® T1ToT3 ... <alt Y1Y2V3 - .- if (—1)Fx, < (=1)Fy, and say that zj2ox3 ... is smaller
than y192ys ... in the alternate order.

Let us stress that we always compare only strings of the same length, finite or infinite.

Proposition 2.5. Let «, A, J and D be as in Definition Let numbers z,y € J and
let do,yp(x) = 12923 ... and do, 7,0 (Y) = Y1Y2Ys - - - be their a-representations.

e If @ > 1 and D(z) is non-decreasing then

<y < T1T273 ... <lex Y1Y2Y3 .- ..

o If a < —1 and D(x) is non-increasing then
<y <~ T1X2X3 ... <alt Y1Y2Y3 - - - -
Proof. We prove the statement for a negative base & < —1. Let us denote k = min{3 |
x; £yt Aszp =y, forall £ =1,2,...,k — 1 we have according to that

TFa) T '(y)
<y < = < e (3)

Since D is non-increasing and zj, = D(T* ! (z)) # yr = D(T*(y)), we have

T (z) T (y)

T > Yy = = < s (4)

First we discuss the case when k is even. Since o < 0, combining and , we obtain
<y <<= <Yy <  T1T2T3...<alt Y1Y2Y3. ...

If £ is odd, then we obtain
<y <= Tp>Yy <  T1T2T3... <alt Y1Y2Y3 .- ..

The proof of the statement for a positive base is analogous. a

The above proposition allows one to give a condition of admissibility for a digit string
to be a representation of a number according to the algorithm presented in Definition [2.1
Such an admissibility condition was given in [7] for the Rényi number system from
Example in [6] for more general positive base systems and in [5] for the number
system from Example Let us stress that the representations and consequently
admissibility conditions depend on the given transformation 7" in the scheme J, D, T.

From now on, we focus on a different question. We do not fix any transformation,
but among all representations of a number = with a given alphabet, we search for an
extremal one.



262 T. HEJDA, Z. MASAKOVA AND E. PELANTOVA

Given a base a and an alphabet A C R we put

o0 .
Jo A = {Z a;a " |a; € A},

i=1
the set of numbers representable with negative powers of o and the alphabet A, and for
any = € Jo 4, we denote the set of its a-representations in A by

Ry a(x) = {xlxgxg . ‘x =Y z;a "t and z; € A}.
=1

Proposition suggests how to choose a suitable ordering on the set R, 4(x).

Definition 2.6. Let a be a real base with |a| > 1 and let A C R be a finite alphabet.

e Let @« < —1 and x € J, 4. Then the maximal and minimal elements of R, 4(x)
with respect to the alternate order are called the greedy and lazy a-representations
of z in the alphabet A, respectively.

e Let @ > 1and x € J, 4. Then the maximal and minimal elements of R, 4(z) with
respect to the lexicographical order are called the greedy and lazy a-representations
of z in the alphabet A, respectively.

In order to justify that the maximal and minimal elements in R, 4(z) exist, realize
that R, a(z) is a compact subspace of AYN. For, it is a pre-image of a closed set {r} C R
under the map z1w223... — o+ + 23 + 2% + -+ which is continuous with respect to the
Cantor metric on AY.

For positive bases a = [ > 1, the greedy [-representation in the alphabet A =
{O, 1,...,[8] - 1} corresponds to the S-representation produced by the Rényi greedy
algorithm described in Example The method for obtaining the lazy representation
in the same alphabet was described in [2].

Let us demonstrate how to obtain these extremal representations for the case of
the golden mean ¢ = 1+T\/g Since [¢] = 2, we consider the alphabet A = {0,1}. As

2=¢+1, we have Y ;= ¢~' = ¢ and so clearly,

Jpa4 = {Z ¢~
i=1

If the first digit in a ¢-representation of an z € Jy 4 is 1 = 0 then necessarily x €
%JQA = [0,1]. If the first digit in a ¢-representation of x is x; = 1 then necessarily

@€ L+ 354 = [} 0] It means that

a; € {0,1}} = [0, ¢].

e for z € [0, %), all representations in Ry 4(z) have the first digit 1 = 0;
e for z € (1, ¢], all representations in Ry _4(x) have the first digit z; = 1;

e forz € [é, 1], both 0 and 1 appear as z.
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1o |

Fig. 1. The greedy and lazy transformations T¢ and Ty, for 8 = +¢
with pre-images of 0 and 1 under D¢ and Dy, respectively.

As we now consider the lexicographical order, the greedy representation of an x € [17 1}
has the first digit 1 = 1 and the lazy representation must have 1 = 0. Thus the
corresponding digit assigning mappings are

0 forze[0,1],
1 for z € (1, 9],

0 forzxe [O,é),

1 forxG[%,fﬁ]» and DL(x):{

Dg(I) = {

or equivalently
D¢g(z) = Lx + #L Dp(z)=1Tz] -1 for any x € (0, ¢)

and
Dg(0) =Dr(0)=0,  Dg(¢) = Dr(¢) =1.

The graphs of the corresponding transformations T and T, are depicted in Figure

The transformations T and T, map [0, ¢] — [0, ¢]. The points 0 and ¢ are fixed
points of both transformations. However, we see that

o for any = € [0, ¢) there exists n > 1 such that TZ(x) € Jg = [0,1) and T (Ja) = Ja;

o for any = € (0, ¢] there exists n > 1 such that T} (z) € Jp, = (%,qﬁ] and T, (JL) = JL.
Moreover the intervals [0, 1) and (é, ¢] are the smallest intervals with the above described
property. Such interval is called the attractor of a mapping in [2]. Let us point out that
in both cases there exists an isolated fixed point ¢ = T (¢) and 0 = T (0) outside the
attractors. In fact, to find the greedy S-representation, Rényi used Jg = [0,1) as the
domain of D and T in the scheme J, D,T. Even when the scheme J, D, T for finding
the lazy representation is described, the restriction of the mappings D and T to the
‘attractor’ interval of T is preferred.
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3. EXTREMAL REPRESENTATIONS IN NEGATIVE BASE SYSTEMS

Let us now fix a base « = —( for some 5 > 1, 8 ¢ N, and an alphabet A = {07 1,...,15] }
(We exclude integer bases because of the phenomena explained in Example ) Using
the same arguments as in [8] it can be shown that the set I of numbers representable in
this system is an interval, namely

I [—mm 18]
ﬂQ -1’ ﬂQ -1
Though the interval I (i.e., its boundary points) depends on the base 3, we omit the

symbol (it in the notation for simplicity. We denote by I, the set of numbers which
have a (—f)-representation starting with the digit a € A. Then

=:[I,7]. (5)

I +—I=[i+ + Ly
a— — , -4 = , T -5 T 5 Y

-8 =B B B -8 =B -8 -B
and I can be written as a (not necessarily disjoint) union of intervals I = (U,c 4 la-
Obviously, we have —(z — a € [ for every = € I,.

Note that intervals I, overlap, but only two at a time. If |3] =1, then it is clear, as
they are only two. If |8 > 2, then the right endpoint of I,1; is smaller than the left
endpoint of 1,1, namely

a+1 l a+1 a—1 1 a—1 r
ST S TIPS TN Y
-5 -8 -5 pF-1 - -pF-1 - P
which is equivalent to 26 — |3] — 2 > 0.

Our aim is to provide an algorithm for finding extremal digit strings (with respect
to the alternate order) representing a given z in the base (—3). Assigning of the first
digit of such an extremal representation must prefer — among all possible digits — the
minimal or the maximal one in the alternate order.

We define
Dm(l‘):{\‘ﬂJ fOI“:EEI\ﬁJ,

a 1 |B] —a a}:[a r l

a forz e I,\ 1,41, a € A, a# 5],

and 0 for x € Iy,
a forxel,\I,—1, a€ A a#0,

and the corresponding transformations
Tm(z) = —fx — D (2) and Ty(z) = =2 — Dy(x).

Tt is readily seen that D,,(z) prefers small digits (in the alternate order) and D, (z)
prefers great digits, i.e.,
Dp(z)=a = —pr—>b¢I foranyb—<ua, be A, (6)

and Dy(z)=a => —PBo—b¢l foranybu a, be A (7)

Let us stress that in accordance with Definition alternate order on single digits is
inverse to the usual one.
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1
!

L\  ©Ii\Io Io Iz I\Io  Io\Iy

Fig. 2. Transformations 7T, and T}, which prefer small and large digits
in the alternate order, respectively (for a base — € (—3,—2)). The
fractions % and % in the upper part of the figure represent two
different lengths of intervals indicated in the lower part of the figure.

Proposition 3.1. Let z € I.
e Denote ¢g = x and for all 7 > 0 put
22i41 = Dy(€2:), €201 = To(e2:) and 22542 = Dpn(e2i41), €2i42 = Tin(e2i41)-
Then 212923 ... is the greedy (—/f)-representation of x.
e Denote 79 = « and for all ¢ > 0 put
Y2ir1 = Dm(n2i), n2it1 = Tm(n2i) and  yoive = Dy(N2ig1), M2ive = Tu(n2i41)-

Then y1y2ys . . . is the lazy (—3)-representation of x.

Proof. Suppose for contradiction that there exists a representation zizoxs... €
R_p a(x) such that z12225 ... <aiy T172%3 . ... Let us denote k = min{i | z; # z;}.

If k£ = 2¢ is even, then the inequality z12923... <aix T1T2T3 ... implies zop < xop and
thus z9p = a and z9y = b for some a,b € A, a < b. Since

carms = (-8 (- _ () ) = (0P o - ; s(-o)
= (=p)*! (9624(—5)_2[ + i_g;i-l xi(_ﬁ)_i) = —% <b + i_g;rlmi(—ﬁ)%_i>,

we have —fe9p_1—beI=[l,r]. On the other hand, according to @, 200=Dp(e20-1)=a
implies that —Beqp_1 — b ¢ I, which is a contradiction. The case k odd is analogous.
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Very similarly one proves the statement for the lazy representation. O

Note that for 8 € (1,2), the description of greedy (—/)-representations of Proposi-
tion can be deduced from the proof of Theorem 4.2 in [I].

4. REPRESENTATIONS IN BASE 32 WITH NON-INTEGER ALPHABETS

The algorithm for obtaining extremal (—g)-representations of a number z, described in
Proposition does not fit in the scheme of the Definition for negative base a = —(.
In particular, there is no transformation 7'(z) = —fBx — D(x) which generates for every
x the greedy (or lazy) (—(3)-representation. This fact complicates the description of digit
strings occurring as greedy or lazy representations. Nevertheless, we manage to overcome
this handicap.

Defining T :== T,,,T,, and T}, := T, T, we obtain transformations I — I which produce
the greedy and lazy (—f)-representations. The price to be paid is that the digit assigning
functions D¢ and Dy, are not integer-valued. For, we have

Tc(z) = T (To(2)) = %z + BDy(2) — D (—Bz — Dy(z)),

Te(x) = f%x — Dg(x), (8)
where
D¢ (z) = =BDy(2) + D (—Bz — Dy(x)) € B,

with the alphabet B = {—b3 +a | a,b € A}, which has (#.A4)? distinct elements, as

B¢N.

Let us describe the mappings Ti; and D¢ (resp. Ty, and Dp) explicitly. As T is
a composition of two piecewise linear functions, T is also of this kind. Its points of
discontinuity are described as follows,

Dis¢ = Dis, UT, " (Disy,), (9)

where Dis, and Dis,, are points of discontinuity of T, and T,, respectively. Clearly,
#Dis, = #Dis,, = #A — 1. We can easily see that

Dz‘s,nz{_iﬁJr_Lﬂ‘aeA,a#o} (10)

and
a

— +
-8

As every discontinuity point —Lﬁ + _iﬂ of Dis,, lies in (r — 1, r] and for every letter a € A
one has (r—1,7] C T,(1,), the set T, ! (Dis,,) has #.A x (#A—1) points. Thus the union

in ([9) has (#.A4)? — 1 elements. The interval I therefore splits into (#.4)? subintervals on
which the transformation T is continuous. Explicitly, for every a € A, a # 0, we have

Dis, = { _iﬁ‘aeA, at 151}, (11)

(5 55) = 5 e e o)
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As —fr = [, every discontinuity point —Lﬁ + _Lﬁ of Dis, can be written in the form
%ﬁ + ﬁ, and thus
Dis {b+ ¢ 4t abe A, (ba) £ (151,0)}
G—= Y 4 ) T o ) ) ) ’ .
-8 (=8 (=B)?
In order to obtain an explicit description of the mapping T, let us define
B8] —b b a . l
B =B (=82 (=B)*

Note that if (b,a) = (|/3],0), then 5, = I. The set of words of length two over the
alphabet A can be ordered by the alternate order, namely

Voa =1+ for any a,b € A. (12)

LﬂJO <alt LﬁJl <alt *** <alt |_/8J LﬁJ <alt (LﬁJ - 1)0 <alt *°
s <alt 1|J8J <alt 00 <alt *** <alt OLﬁJ

Taking into account that § ¢ N, one can easily see that

a b+1 c d+1
ab <ap cd = Y= —+ —= < — + ——— = Yeq.
' —B (=B T B (=P
In particular, this means that the assignment ab < —af + b, for a,b € A, is a bijection.
On the set A2 we can define the predecessor and successor functions by

P(ab) :== max{cd | cd € A?, cd <1 ab},
S(ab) == min{cd | cd € A2, cd =, ab},

where maximum and minimum is taken again with respect to the alternate order. Of
course, the predecessor is not defined for the minimal element minA? = |30 and the
successor is not defined for the maximal element max.A% = 0[3].

Now we are ready to provide an explicit description of the digit assigning map

Dg:I—B={-bB+a|abec A}, namely

De() = {—bb’ +a, if x € [Yoa,Vs(ba)) for some ba # 0[], (13)

131, ifxe ['yba,r] for ba = 0[3].
Define a morphism ) : B* — A* by

(—=bB + a) = ba.

Note that ¢ is well defined as 3 ¢ N. The action of the morphism ¢ can be naturally
extended to infinite words by setting ¢ (x1 2225 . ..) = ¥(x1)(z2)Y(23) . ... All the above
considerations can be summarized in the following theorem.

Theorem 4.1. Let 8 > 1, 3 ¢ N, A = {0,1,...,|3]}. For an = € I, denote by
de(x) = dg2 1 p, () the F2-representation of x obtained in accordance with Deﬁnition
by the transformation T : I — I, defined by . Then
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e dg(z) is the greedy 3%-representation of z in the alphabet B;
. w(dc (x)) is the greedy (—()-representation of x in the alphabet A.

For the sake of completeness, let us provide an explicit description of the lazy trans-
formation Ty, = T, T,, : I — I and the corresponding digit assigning map Dy, : I — B,
such that

Tp(x) = f°x — Dy (x), (14)
for z € I. Defining
L
ba = o T T g T T g
C =B (=B (-B)?
we can write the set of discontinuity points of T, as

Disy, = {5ba |a,b €A, ba+# OLBJ}.
Note that for ba = 0| 3] one has dp, = r. Again,

for any a,b € A.

ab <.t cd < Oab < Ocq.

We now have the digit assigning function Dy, : I — B={-b8+a | a,b € A}, given by

—|8]8, ifzxe [Z, 5ba] for ba = | 8]0,
Dp(x) = .
—bf+a, ifxce (6p(ba), (5ba] for ba # | 3]0.
Theorem 4.2. Let 8 > 1, 3 ¢ N, A = {0,1,...,|3]}. For an = € I, denote by

dr(z) = dg2 1 p, (z) the 3*-representation of = obtained in accordance with Deﬁnition
by the transformation 77, : I — I, defined by . Then

(15)

e d;(x) is the lazy 3?-representation of x in the alphabet B;
. w(dL (:c)) is the lazy (—f)-representation of = in the alphabet A.

In [4], the relation between the lazy and the greedy representations of numbers in a
numeration system with a positive base 8 € (1,2) and the alphabet {0, 1} was established.
Namely, if x = z129x3 ... is the greedy (B-representation of x € Jg 4 = [0, ﬁh then
(1—z1)(1—z2)(1—x3) ... is the lazy G-representation of y = ﬁ—x. Generalization of this
relation for numeration systems with a base 8 > 1 and the alphabet A = {0, 1,..., Lﬁj}
was presented in [2]. Comparing the formulas for D¢ and Dy, one can deduce a similar

symmetry between greedy and lazy (—[()-representations.

Proposition 4.3. Let z1202324 ... be the greedy (—/)-representation of a number z € T
and let y1y2ysys - . . be the lazy (—f3)-representation of a number y € I. Then

18]

i+ 2 = for every i > 1 — Ly =— )
Y 15 y Y 311

From now on, we shall concentrate on the properties of the greedy transformation T
only.
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1 B—18] r—1 L8] 1
ﬁQ 2 /@2 2 132

Y10 @mczz----oF
Y00 @usc--——s

®
8 8 g = = O =)
. & &

o

Fig. 3. The greedy and lazy transformations T and Tp,. This figure

~

corresponds to a base —(3 € (=3, —2

5. ADMISSIBILITY
The transformation T has the following property:

For every x € [I,1+ 1) one has Tg(x) € [I,1 4+ 1). Moreover, for every x € I'\ [I,1 + 1),
T # r, there exists an exponent k € N such that T (z) € [I,1 + 1).

The above fact implies that, in general, some digits from the alphabet B do not appear
infinitely many times in the greedy (32-representation of any number x € I.

Lemma 5.1. Let dg be as in Theorem Denote by Ag the minimal alphabet, such
that the 3?-representation dg(x) of every = € [I,1 + 1) has digits in Ag. Then

Ag ={-bB+alabe A b>1}U{alac A a<B{s}},

where {8} = 8 — | 3] is the fractional part of 3. Moreover, for every x € I\ {r}, the
32-representation dg(z) has a suffix over Ag.

Proof. The fact that a given z € I satisfies TS (x) € [I,] + 1) for sufficiently large k
means that the greedy representation of x eventually uses only such digits —b3 + a that
the corresponding interval [pa,Vs(ba)) has a non-empty intersection with [l,1 4 1). Such
digits satisfy

I L B
-8 (=82  (=8)?
This is equivalent to
B(B—18]) > —bB +a. (16)

The left-hand side of the above inequality is positive. The right-hand side is negative
whenever b > 1. If b = 0 then the condition for a is written as a < 5{5}. O
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Remark 5.2. From the above lemma it follows that the maximal digit max.As satisfies
0 < maxAg =—0-8+ [{8}3] — L.

The condition Ag = B is equivalent to the fact that the maximal digit maxB = —0-5+ 3]
of the alphabet B also satisfies ((16)). This gives the condition

52— 18]~ 18] >0,

which happens if and only if 3 is strictly greater than the larger root of 2% — |3z — | 3].
Therefore the condition Ag = B is satisfied precisely by the numbers
244
pe | (mYmEdm L,
meN 2

As a consequence of Lemma for the description of admissible digit strings in the
greedy representations, it is reasonable to consider the transformation T restricted to
the interval [I,] 4+ 1). Denote for any X = b5+ a € Ag

7S(ba) if X 75 maXAc;,

17
I+1 if X = maxAg, (7

Ix =7%q and rx = {

where vy, = —00 + a, see (12). Then we have a disjoint union

Li+1)= | lx.rx)

XeAa

and the digit function D¢ restricted to [I,] 4+ 1) can be written as
Dg(x) =X ifzxe [lx,rx).

The mapping D¢ : [I,l + 1) — Ag, and the corresponding T : [I,1+1) — [I,1 + 1),
dg : [l,1+ 1) — A} are right continuous.

In order to formulate the result about admissible greedy representations which is
derived using a result of [6], let us define the left continuous mapping D¢, : (I,1+1] — Ag
by

Di(z)=X ifze (Ix,rx]
The left continuous mappings T : (I,1 + 1] — (1,1 + 1], d§ : (1,1 + 1] — A} are defined
accordingly. The mappings T and T™* are illustrated in Figure 4l Note that for every
x € (I,1 + 1], one has

D¢ (z) = slir(r)h_ Dg(xz—¢), Ti(x)= ELH&. To(x —¢), di(x)= sl—l>%l+ dg(z —e).

Theorem 5.3. Let X;X2X5... € A%, Then there exists an « € [, + 1) such that
de(z) = X1 X9 X5 ... if and only if for every k > 1

4 (Ta(l+1)) if X = maxAg,

di,(1+{p})  if X = —b8+ 8], Xk # maxAg. (18)

X1 Xpp2Xpyg ... < {
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[+1

I+{B}
T* (14 1) i ]

O O
o — [N e] — (o I} — o) — [N} — —
N N N~ — —A O (=) N N N H — (=)

Fig. 4. Right and left continuous mappings 7" and 7™ defined on
[[,1+1) and (I,1 + 1], respectively. This figure corresponds to a base
_ﬂ € (_33 _2)

Proof. Applying Theorem 2.5 from [6] to the greedy transformation T, we obtain a
necessary and sufficient condition for a string X; X5 X3 ... over the alphabet Ag to be
admissible, namely

d(le) j Xka+1Xk+2 e d*(rxk) for all k£ 2 1. (19)

Here and in what follows, for simplicity of notation we omit in the proof the subscripts
indeg=d,Te=T,d5 =d", T =T".

Since d(lx) = Xd(T(Ix)) and d*(rx) = Xd*(T*(rx)), we can rewrite conditions (19)

as
d(T(lx,)) = Xpy1Xpy2 ... < d*(T*(rx,)) for all k > 1. (20)

Let us study the left-hand side inequality. From the description of T' = T¢, it is clear
that for every letter X € Ag, we have T'(Ix) = (see also Figure |4) and thus, the string
on the left-hand side of reads

d(T(le)) =d(l) = (minAdg)“.
Consequently, the left-hand side condition is not limiting.

In order to study the right-hand side condition from , realize that if X # maxAg,
we have

T*(ry) = [+1 for X # —b6 + |8/,
TV {8 for X = —bB + |8,

see Figure[] Asrx =1+1 for X = maxAc, the right-hand side condition can be written

as
d* (T*(l + 1)) for X} = maxAg,

Xp1 Xppo- .. < d (1+1) for Xj, # —bB + | 8], Xy # maxAqg,  (21)
d*(l+{B})  for X = b8+ 8], Xi # maxAg.
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We have d*(I + 1) = maxAg d*(T*(I +1)). Therefore if Xj11 < maxAg, then the
condition
X1 Xkq2... <d* (1 +1) = maxAg d” (T*(l + 1))

is satisfied. If X;; = maxAg, then the condition is equivalent to
Xppo... = d"(T*(1+ 1)),

which is ensured by verifying the first of for the shifted index k + 1. This completes
the proof. 0

Remark 5.4. Using Proposition one can derive an analogous necessary and sufficient
condition for admissible lazy 3%-representations X; X5 X3 ... of numbers in x € (r — 1,7]
over the alphabet Ap, = [5] — Ag.

6. NEGATIVE GOLDEN RATIO

Let us illustrate the previous results and their implications on the example of the negative
base —( where § = ¢ = HT\/E; ~ 1.618 is the golden ratio. Real numbers representable
in base —¢ over the alphabet A = {0,1} form the interval J_y 4 =1 = [—1, é] =[l,r].

The greedy and lazy (—¢)-representation can be obtained from the greedy and lazy
¢?-representation over the alphabet B = {—¢, —¢ + 1,0,1}, applying the morphism
Y B* — A* given by

V(—¢) =10, W(—p+1) =11, $(0) =00, (1)=01.

The greedy and lazy ¢?-representations are generated by the transformation
To(x) = ¢°x — D (), Tr(x) = ¢ — Dir(x), =€ [-1,7],

where the digit assigning maps Dg and Dy, are

—¢ for z € [~1,-%), —¢ for x € [-1,— 2],
De(x) = —¢+1 forxe[ # ¢) Dyi(z) = —p+1 forxe(—¢—12,0,

0 for 2 € [~5,0), 0 for - € (0, 5],

1 for z € [0, %] 1 for z € (#,%]

The graph of the transformations T, T, together with their restriction to the intervals
[,l+1)=[-1,0), (r—1,r] = (—#, é] are drawn in Figure

Remark 6.1. From the graphs of T and T, we see that

e the greedy ¢?-representation of an x € (—1, é) eventually uses only digits from the
alphabet Ag = {—¢, —¢ + 1,0}, while its lazy ¢?-representation eventually uses
only digits A, = {—¢ + 1,0,1}; in particular,

—ifze [O, %), i.e., outside [I,] + 1), then its greedy (—¢)-representation has
the form (01)M 212925 ..., where M is the minimal positive integer such that
T =x— 224:1 ﬁ < 0 and 2129223 ... is the greedy (—¢)-representation for
the number x’;
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1/¢ B

A BT C D A B C D

Fig. 5. Greedy (left) and lazy (right) transformations T¢ and T for
the base —¢.

—ifx e (—1, —ﬁ], i.e., outside (r — 1,r], then its lazy (—¢)-representation has

the form (10)My,yoys ..., where M is the minimal positive integer such that
2 =x+ ¢2£§1 ﬁ > —# and y1y2ys - . . is the lazy (—¢)-representation of
LE” .

)

e the greedy and lazy (—¢)-representations of é are both equal to (01)%;
e the greedy and lazy (—¢)-representations of —1 are both equal to (10)%;

e the greedy (—¢)-representation of 0 is 01(10)¢, while its lazy (—¢)-representation
is 11(01) = 1(10).

Let us now apply Theorem to the case 0 = ¢. Denote for simplicity the digits of
the alphabet B = {—¢, —¢ + 1,0,1} by

A=—-¢p < B=—-9+1 < C=0 < D=1
With this notation, we have Ag = {4, B,C} and A, = {B,C, D}.

Proposition 6.2. A string X;X,X3. .. over the alphabet Ag = {A, B, C} is the greedy
¢?-representation of a number z € [—1,0) if and only if it does not contain a factor from
the set {BC, B¥,C*}.

A string X;XX3... over the alphabet A, = {B,C, D} is the lazy ¢*-representa-
tion of a number z € (ﬁ, é] if and only if it does not contain a factor from the set
{CB,B*,C*}.

Proof. Since bothl+1=0and !+ {¢} = 7# are fixed points of the transformation
T¢, we obtain

Ao (Tl +1)) =09 = ¢, ds(l+{¢}) = (¢ +1)* = B,



274 T. HEJDA, Z. MASAKOVA AND E. PELANTOVA

and from Theorem a string X1 XX3... over the alphabet Ag is the greedy ¢?-
representation of a number x € [—1,0) if and only if for all k£ > 1,

cv ifXy=0C
Xpr1Xx42... < '
E+1XX 42 {B“ it X, = B,
It is not difficult to see that such condition is satisfied exactly by the strings in {A, B, C}*
which do not contain a factor from the set {BC, B¥,C¥}.
The statement about lazy ¢?-representations is derived by symmetry A < D, B « C,

(cf. Proposition [4.3)). O

It follows from the facts above that only digits B = —¢ + 1 and C = 0 are common
to both greedy and lazy ¢2-representation restricted to the intervals [I,] + 1), (r — 1,7],
respectively. However, due to the forbidden strings BC' in greedy and OB in lazy ¢?-
representation, no string over the alphabet { B, C'} is admissible in both cases. Combining
with Remark we have the following result.

Corollary 6.3. The points z = —1 and z = i are the only points in [—1, %} which have
a unique (—¢)-representation over the alphabet {0,1}.

Proposition [6.2] provides a combinatorial criterion for admissibility of representations
in base ¢? in the non-integer alphabet Ag. One can also rewrite the admissibility of a
digit string in base —¢ using forbidden strings in the original alphabet {0, 1}.

Proposition 6.4. A digit string z1z2x3 ... over the alphabet {0,1} is a greedy (—¢)-
representation of some z €[—1,0) if and only if

(i) it does not start with the prefix 120, nor 02*=11, k > 1;
(ii) it does not end with the suffix 0 nor 1¢;

(iii) it does not contain the factor 10%%1, nor 012%0, k > 1.

Proof. (=): Realize that grouping the digits in the greedy (—¢)-representation of x
to pairs, we obtain a string over the alphabet {(10), (11), (00), (01)}. This is justified by
the fact that the greedy (—¢)-representation of = over {0, 1} is obtained from the greedy
¢*-representation of x over {A, B,C, D} applying (A) = 10, ¥(B) = 11, (C) = 00,
(D) =01.

From Proposition [6.2] one can derive that the forbidden strings over the alphabet
{(10), (11), (00), (01)} are (01), (11)(00), (11)~, (00)«. It is thus obvious that the greedy
representation over the alphabet {0,1} cannot have a suffix 04, 1, i.e. (ii) holds. In
order to prove (i), realize that 02*=11 = (00)*~1(01) contains the forbidden digit (01).
Similarly, 120 = (11)*0 is a prefix of either (11)¥(01) or (11)*(00), where the former
contains the forbidden digit (01) and the latter the forbidden string (11)(00). As for
(iii), note that the factor 10%*1 is read in the alphabet {(10), (11), (00), (01)} either as
(10)(00)k=1(01) or as a part of (x1)(00)¥(1%). In both cases it necessarily contains either
(01) or (11)(00). The string 012*0 is excluded in a similar way.
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1/ 7 e
0 /
gt Vst Vet etp

Fig. 6. Transformations T (left), Tr (middle) and T (right) in the
base ¢? that correspond to the greedy, lazy and Ito-Sadahiro
representations in the base —¢.

(«=): We must show that a string over {0, 1} satisfying conditions (i) - (iii) does not
contain forbidden strings of pairs (01), (11)(00), (11)¥, (00)*. Note that the brackets
are always around pairs xg;41%2i+2. Conditions (i) — (iil) are equivalent to the fact that
the string x1xox3 ... is of the form

02k112katlg2hatly2hatd with k; > 0. (22)

Thus the blocks of 1’s always start at odd-indexed positions and blocks of 0’s (except
the prefix) start at even-indexed positions. This implies the impossibility of occurrence
of (01), (11)(00). The impossibility of (11)¥, (00)“ is obvious. O

Let us now compare the greedy and lazy (—¢)-representations with those obtained by
the Ito—Sadahiro algorithm, presented in Example We denote by D;s and Tjg the
corresponding transformations which now read Djg,Tys : [—%, #) — [—é, #) defined

DIS(«T) = L_QZ)x + %J and T[S(x) = —¢x — |__¢z + éJ

As follows from the admissibility condition in [5], a digit sequence xj2225 ... over the
alphabet {0, 1} is the Ito—Sadahiro (—¢)-representation of some z € [— d%) if and only
if

1
¢7
10“ <aie TiTi41T542 -+ - <alt 010“ for all ¢ > 1. (23)

One can easily derive that xj2o23. .. is an Ito-Sadahiro (—¢)-representation if and only
if it does not contain any string 102**11 for k£ > 0 as a substring, and it does not end
with 010%.

The example x = —% shows that, in general, the Ito—Sadahiro algorithm does not assign
toz € [—é, #) any extremal representation. We have the following (—¢)-representations
of —%:

Ito-Sadahiro  zyxex3...= (100)* =100100100 ...,
lazy Y1Y2ys3 ... = 1(001110)“ = 100111000 .. .,
greedy z129%23 ... = (111000)¥ = 111000111 ....
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Clearly, y1y2ys ... <alt T1T2T3... <ait 212223 .... In fact, one can show that for no
element of the interval z € [f%, #) the Ito—Sadahiro (—¢)-representation is extremal
with respect to the alternate order.

Proposition 6.5. The Ito-Sadahiro (—¢)-representation is not extremal for any = €
11
[=5:%)-

Proof. Let us consider an z € [ L

—é, ¢—) with the Ito—Sadahiro (—¢)-representation

Y1Y2Ys - . .. Suppose that y1y2ys ... is also a greedy (—¢)-representation of z. Then by
Remark it is of the form

Y1yY2ys ... = (OI)MZIJl.’L‘Ql‘g ceey for some M = 0,

where the string xj2023... is the greedy representation of some z € [—1,0). The
string zizoxs ... thus satisfies conditions of Proposition and, consequently, is of
the form . However, this is not compatible with the admissibility condition for
Tto-Sadahiro (—¢)-representations.

Suppose now that the Ito—Sadahiro (—¢)-representation y1y2ys . .. is also lazy. The
argumentation is similar, noting that the forbidden strings for the lazy (—¢)-representation
can be derived from Proposition by replacing 0 < 1. ]

7. UNIQUE (—3)-REPRESENTATIONS

In [IJ, it is shown that for 1 < § < 2, the set of numbers with a unique (—3)-representation
is of Lebesgue measure zero. The authors also show that for 8 < ¢, such numbers are
only two. Let us show that although the measure is always zero, the set of numbers with
unique (—f)-representation can be uncountable.

Example 7.1. Let 8 = p be the Tribonacci constant, i.e., the real root u ~ 1.83 of

23 — 2% —x — 1. Since |p] =1 and p > ¢, the greedy u>-representation of numbers in

the interval (1,1 +1) = [~ /4, M) may use all possible digits —p, —p + 1, 0, 1, see
Lemma We shall again use the notation

A=—-u, B=-pu+1, C=0, D=1

Our aim is to derive the admissibility condition for digit strings X; X2 X3 ... over the
alphabet Ag = {4, B, C, D} using Theorem
With the notation , omitting subscripts of T = T, dg = d, one can verify that
I+ {u} =rc,
T*(l =+ {,LL}) = T*(Tc) =[+1= D,
(T*)*(L+{n}) =T*(rp) =B,
(T (L +{p}) =T (rp) = L+ {u},
see also Figure [7l The strings used in the admissibility condition from Theorem are

thus purely periodic and very strongly related, namely

d* (1 +{u}) = Cd*(1+1) = CDd*(T*(I + 1)) = CDBd* (1 + {u}) = (CDB)*.
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Fig. 7. The graph of the transformation T¢ for the Tribonacci

constant.

Therefore, a digit string X; X2X3... over the alphabet Ag is an admissible greedy
p2-representation if and only if for all k£ > 1,

(CDB)* if X; = B,
Xi+1 XpyoXpqs ... <
k+1Ak+2Ak+3 {(BCD)UJ if X, = D,

which is equivalent to the requirement that the string X; X5 X3 ... does not contain a
factor from {BD, DC,DD,(BCD)“}.

By symmetry A < D, B < C, we obtain that a digit string X; XoX5... over the
alphabet A7, = Ag is an admissible lazy p2-representation if and only if it does not
contain a factor from the set {C’A7 AB, AA, (C’BA)‘”}.

From this, we can see that any digit string over the alphabet {B,C} is admissible
both as the greedy and lazy p2-representation, thus numbers represented by such a string
have only one representation in base —u. There are uncountably many such numbers.

Theorem 7.2. Let 3> 1+ /3, 3 ¢ N. Then there exist uncountably many numbers in
J_p,4 having a unique (—03)-representation over the alphabet A = {0, 1,..., 0] }

Proof. We will show that there are uncountably many numbers in the interval J_g 4 =
[I,r) for which the lazy and the greedy (—f)-representations coincide. Necessarily,
such a number z (with the exception of © = and x = r) must lie in the intersection
[l,l+1)N(r—1,7] = (r — 1,1 +1). The alphabet for the 3*-representation of such an
ze(r—1,1+1)is AgNApL.

Recall that the requirement from Theorem for the admissible greedy (32-
representations controls the string only after digits X of the form X, = —b8 + | 3]
and X, = maxAg. By symmetry (Proposition , the requirement on lazy (2-
representations controls the string only after digits X of the form X; = —b8 + 0
and X; = minA;,. Realize that

maxAg =0-8+a and mindA;, = |3] -8+ (8] —a
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for some a € {O, 1,...,15] }, see Remark Therefore any digit string over the original
alphabet A = {0, 1,..., Lﬂj} avoiding 0 and | 3] is allowed both as a greedy and lazy
(—0)-representation. If > 3, then A\ {0, Lﬂj} has at least two elements and thus we
have uncountably many numbers with unique (—/3)-representation.

Let now f satisfy 1 +v3 < 3 < 3. The above argument is not sufficient, since
AN\ {0, [ 8]} = {1}, so we need to refine our study of admissible greedy and lazy strings.
As 1+ /3 is a root of 22 — 2 — 2, by Remark the alphabets Aq, Ap of greedy and
lazy [3%-representations are equal to the full alphabet B = {—bB3+a |0 < a,b < 2}.

Let us show that the string df, (l + {ﬁ}) starts with a digit X € B, X > 0. For that,

we have to verify that
l

(=B)*
where we use notation . This is equivalent to 3% — 23 — 2 > 0, which is true precisely
when 8 > 1+ /3.

From the condition we derive that any string over the alphabet {X € B | X < 0}
is admissible as a greedy 3?-representation. By symmetry, any string over the alphabet

{X € B| X > —28+2} is admissible as a lazy 3?-representation. Altogether, every
string over the alphabet

L+ {8} >l =

(XeB|-28+2<X<0}={-B,-B+1,-B+2}

is admissible both as the greedy and as the lazy (32-representation of some number
z € (r—1,l+1), and therefore z has a unique (—f)-representation. Obviously, there
are uncountably many such numbers. O

Remark 7.3. In fact, as pointed out by one of the referees, for 3 > 3 the proof tells
more than stated in the theorem. The set U of all numbers with (—f)-representations
over the alphabet A\ {0, 3]} forms a self-similar set containing |3] — 1 copies of itself,
each time [ times smaller than the original set. It implies that the Hausdorff dimension of
the set U equals to logs(|3] —1). The set of numbers with a unique (—(3)-representation
contains U and therefore is of Hausdorff dimension at least logs ([ 8] — 1).

8. CONCLUSIONS

Our main tool in this paper was to view the (—g)-representations in the alphabet
A= {07 1,...,|08] } as strings of pairs of digits in A, which amounts, in fact, to considering
the alphabet B = —3 - A + A and the base 32. Such an approach puts forward the
utility of studying number systems with positive base and a non-integer alphabet, as was
already started by Pedicini [8] or Kalle and Steiner [6]. Obtaining new results for such
systems — for example analogous to those of de Vries and Komornik [3] or Schmidt [10]
would probably contribute also to the knowledge about negative base systems.
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