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KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 2 , PAGES 3 1 9 – 3 4 0

GLOBAL FINITE-TIME OBSERVERS
FOR A CLASS OF NONLINEAR SYSTEMS

Yunyan Li, Yanjun Shen and Xiaohua Xia

Global finite-time observers are designed for a class of nonlinear systems with bounded
varying rational powers imposed on the increments of the nonlinearities whose solutions exist
and are unique for all positive time. The global finite-time observers designed in this paper
are with two homogeneous terms. The global finite-time convergence of the observation error
system is achieved by combining global asymptotic stability and local finite-time stability.

Keywords: global finite-time observer, nonlinear system, homogeneity

Classification: 93C10

1. INTRODUCTION

Nonlinear observers have received a great deal of attraction since the formal introduc-
tion of the concept and the Lyapunov based approach of design as proposed in [27].
Quite a number of early works have been devoted to establishing link between nonlin-
ear observability and linear observers [10, 12] by linearizing nonlinear systems through
making change of coordinates [9, 10, 12]. In the past decades, a series of nonlinear
observer design methods for various nonlinear systems are developed, for example, the
extended Luenberger observer for nonlinear systems [30], the nonlinear observer pro-
posed by observer error linearization [29], the observer design based on the Lyapunov
based approach [20, 27], the observer canonical form approach [1, 10] and the high-
gain approach [6, 7] and so on. For nonlinear systems with nonlinear terms satisfying
Lipschitz conditions, over the years, a lot of works have investigated observer design
for this kind of nonlinear systems. For example, necessary and sufficient conditions
on the stability matrix that ensure asymptotic stability of the observer are presented
in [21]. The observer synthesis for Lipschitz nonlinear systems is carried out using H∞
optimization [18]. And [4] designs a robust nonlinear observer for Lipschitz nonlinear
systems subject to disturbances and so on. Then, in [19], a globally asymptotically
stable observer is designed for nonlinear systems with output dependent incremental
rate while [11] develops a global high-gain-based observer for nonlinear systems with
generalized output-feedback canonical form including output dependent diagonal terms.

Recently, since systems with finite-settling-time dynamics possess better disturbance
rejection and robustness properties [28], finite-time convergent observers of nonlinear
systems have become an active subject with the advance in finite-time stability and
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stabilization [2, 15, 16]. Based on finite-time stability, a lot of finite-time observers [5,
14, 17, 23, 24] are proposed. In particular, [17] introduces a finite-time observer relying
on the homogeneity properties of nonlinear systems [3]. Then, [14, 24] and [23] make
considerable progress in finite-time high-gain observer design. [24] proposes a semi-global
finite-time observer for single output nonlinear systems that are uniformly observable
and globally Lipschitz. Then for the same class of nonlinear systems, two different kinds
of global finite-time observers are proposed by [14] and [23], respectively. Later, semi-
global finite-time observers are studied in [25] for the following nonlinear systems whose
solutions exist for all positive time

ẋ1 = x2 + f1(y, u),
ẋ2 = x3 + f2(y, x2, u),

...
ẋn = fn(y, x2, . . . , xn, u),
y = x1,

(1)

where x ∈ Rn, u ∈ Rm, y ∈ R, with fi(·) (i = 2, . . . , n) satisfying

|fi(y, x2, . . . , xi, u)− fi(y, x̂2, . . . , x̂i, u)| (2)

≤ Γ(u, y)
(
1 +

n∑
j=2

|x̂j |υj

) i∑
j=2

|xj − x̂j |+ l

i∑
j=2

|xj − x̂j |βij ,

where Γ(·) is a continuous function, l ≥ 0, υj ∈ [0, 1
j−1 ) (j = 2, . . . , n). There exist

semi-global finite-time observers for nonlinear systems (1) when q−i
q−j+1 < βij < i

j−1 (2 ≤
j ≤ i ≤ n) [25] (where q > n is a positive number satisfying some conditions related
to the homogeneity degree, refer to [25] for details). In [25], semi-global finite-time
observers are also designed for systems (1) where the nonlinear terms have mixed and
varying incremental rational powers

|fi(y, x2, . . . , xi, u)− fi(y, x̂2, . . . , x̂i, u)| (3)

≤ Γ(u, y)
(
1 +

n∑
j=2

|x̂j |υj

) i∑
j=2

|xj − x̂j |+ l1

i∑
j=2

|xj − x̂j |β1,ij + l2

i∑
j=2

|xj − x̂j |β2,ij ,

where l1, l2 > 0 are two positive real numbers (where l1 = l2 in [25]), q−i
q−j+1 < β1,ij < 1,

1<β2,ij < i
j−1 (2 ≤ j ≤ i ≤ n).

Then in [26], global asymptotic and finite-time stability are studied for a class of
homogeneous nonlinear systems and the best possible lower bound − 1

n of the degree of
the homogeneity is obtained. Motivated by the result in [26], for the rational and mixed
rational powers with smaller lower bound satisfying n−i

n−j+1 < βij < i
j−1 and n−i

n−j+1 <

β1,ij < 1, 1 < β2,ij < i
j−1 (2 ≤ j ≤ i ≤ n) in conditions (2) and (3) of nonlinear

systems (1) for n ≥ 3, there are still no related results on asymptotic and finite-time
observer design till now. In this paper, we aim to solve the problem of designing global
finite-time observers. And we restrict our attention to estimating the states only for
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those nonlinear systems (1) whose solutions globally exist and are unique for all positive
time.

In order to solve the problem of designing global finite-time observer, we will employ
homogeneity properties [3] and the argument method of [14] together. Under exactly the
same gain update law as that in semi-global finite-time results [25], the global finite-time
observers we will design are with two homogeneous terms, one of degree smaller than
1, the other of degree greater than 1. Moreover, the global finite-time convergence of
the observation error system is derived based on two different homogeneous Lyapunov
functions. The derivatives of the Lyapunov functions are calculated by splitting the
whole space into three different sets to obtain global asymptotic stability and local
finite-time stability.

The paper is organized as follows. The main results are presented in Section 2: the
global finite-time observers for nonlinear systems (1) for n ≥ 3 with conditions (2) and (3)
where the rational and mixed rational powers satisfy n−i

n−j+1 < βij < i
j−1 and n−i

n−j+1 <

β1,ij < 1, 1 < β2,ij < i
j−1 (2 ≤ j ≤ i ≤ n), respectively. In Section 3, two examples

are given to illustrate the validity of the proposed design method. Finally, the paper is
concluded in Section 4. Then, in the Appendix, an explicit proof of a useful lemma is
included for the completeness of the paper.

2. GLOBAL FINITE-TIME OBSERVERS FOR A CLASS OF NONLINEAR
SYSTEMS

In this section, we will design global finite-time converging observers for nonlinear system
(1) for n ≥ 3 with the conditions (2) and (3) where the rational and mixed rational
powers satisfy n−i

n−j+1 < βij < i
j−1 and n−i

n−j+1 < β1,ij < 1, 1 < β2,ij < i
j−1 (2 ≤ j ≤ i ≤

n), respectively.
Before we give the explicit form of the global finite-time observers we will propose in

the paper, let us review a semi-global finite-time observer designed in [25] for nonlinear
system (1) with conditions (2) and (3) where the rational and mixed rational powers
in the nonlinearities satisfy q−i

q−j+1 < βij < i
j−1 and q−i

q−j+1 < β1,ij < 1, 1 < β2,ij < i
j−1

(2 ≤ j ≤ i ≤ n) (where q > n is a positive real number), respectively. The semi-global
finite-time observer is shown in the following:

˙̂x1 = x̂2 + La1de1cα1 + f1(y, u),
˙̂x2 = x̂3 + L2a2de1cα2 + f2(y, x̂2, u),

...
˙̂xn = Lnande1cαn + fn(y, x̂2, . . . , x̂n, u),

with the observer gain L being dynamically updated by

L̇ = −L[ϕ1(L1−σ − ϕ2)− ϕ3Ψ(u, y, x̂)], L(0) > ϕ2, (4)

where ϕ1, ϕ2 > 1, ϕ3 are three positive real numbers, 0 < σ < 1 is chosen such
that βij < i−σ

j−1+σ , vj < 1−2σ
j−1+σ holds, Ψ(u, y, x̂) = Γ(u, y)(1 +

∑n
j=2 |x̂j |vj ), αi =

iα− (i−1), (i = 0, 1, . . . , n), α ∈ (1− 1
n , 1) and ai > 0 (i = 1, . . . , n) are the coefficients
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of Hurwitz polynomial

sn + a1s
n−1 + . . . + an−1s + an. (5)

The observer gain L(t) in (4) satisfies the following properties.

Lemma 2.1. (Shen and Xia [25]) For the observer gain L(t) defined in (4), there exists
an M > 0 such that L(t) < M, t ∈ [0, T ], ∀T ∈ (0,∞).

In this paper, we are interested in designing global finite-time observers for system (1)
for n ≥ 3 with the rational power satisfying n−i

n−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤ n) in

condition (2) and with the mixed rational powers satisfying n−i
n−j+1 < β1,ij < 1, 1 <

β2,ij < i
j−1 (2 ≤ j ≤ i ≤ n) in condition (3). Under the same gain update law (4), the

global finite-time observers can be constructed as:
˙̂x1 = x̂2 + La1de1cα1 + L1−(β1−1)(1−η)σa1de1cβ1 + f1(y, u),
˙̂x2 = x̂3 + L2a2de1cα2 + L2−(β2−1)(1−η)σa2de1cβ2 + f2(y, x̂2, u),

...
˙̂xn = Lnande1cαn + Ln−(βn−1)(1−η)σande1cβn + fn(y, x̂2, . . . , x̂n, u),

(6)

where βi = iβ − (i− 1) (i = 0, 1, . . . , n), β > 1+σ
σ , 0 < σ < 1, 0 < η < 1− α < 1.

Definition 2.2. Denote the solutions of systems (1), (6) with respect to the correspond-
ing input functions and passing through x0 and x̂0 as x(t) and x̂(t), respectively. If there
exists an open neighborhood U ⊂ Rn of the origin such that e0 = x0 − x̂0 ∈ U implies
x(t)− x̂(t) ∈ U and a function T : U \ {0} → (0,∞), such that

‖x(t)− x̂(t)‖ → 0, as t → T (e0), (7)

then, the system (6) with dynamic high gain (4) is called a finite-time observer of the
system (1). In this case, all points e0 = x0− x̂0 such that (7) holds constitute a domain
of observer attraction. If the open set U can be chosen as the whole space Rn, then
system (6) with dynamic high gain (4) is called a global finite-time observer.

In paper [13], two homogeneous observers with different degrees are constructed for
global output feedback stabilization problem of a class of nonlinear systems. The fol-
lowing remark summarizes the differences between the homogeneous observer (6) we
designed and the homogeneous observers proposed in [13].

Remark 2.3. Note that in [13], a dual observer is employed to solve the problem of
global output feedback stabilization for a class of nonlinear systems whose nonlinearities
are bounded by both low-order and high-order terms. Compared the results in [13]
with the global finite-time observer (6) we proposed in this paper, we have the following
statements.

• The dual observer [13] is comprised of two seperate homogeneous observers, one
estimating the low-order part of unmeasurable states and the other estimating the
high-order components. However, here, two homogeneous terms one of degree less
than 1 and the other greater than 1 are introduced in the design of the global
finite-time observer simultaneously.
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• In [13], either the low-order or the high-order observer, can only estimate those
states in a limited region either close to or far away from the origin, but not all
the states in the space. However, the observer we designed can estimate the states
in the whole space.

• Both the low-order observer and high-order observer as well as the coefficients in
the observers are derived by a recursive method in [13]. In this paper, we will see
that the global finite-time stability of the proposed observer will be proved based
on Lyapunov theory and all the coefficients in the observer are given explicitly.

For αi (1 ≤ i ≤ n) and βij (2 ≤ j ≤ i ≤ n) in (2), they satisfy the following properties.

Lemma 2.4. For βij (2 ≤ j ≤ i ≤ n) being given by (2), if i
j−1 > βij > n−i

n−j+1 , we
have −αi−1 + βijαj−1 − α + 1 > 0 (2 ≤ j ≤ i ≤ n). Moreover, select 0 < σ < 1 such
that β > 1+σ

σ , then we have βijβj−1 − βi−1 < β − 1 (2 ≤ j ≤ i ≤ n).

P r o o f . The proof of this lemma is simple, and thus it is omitted here. �

In what follows, for n ≥ 3, we will prove that system (6) is a global finite-time
observer for nonlinear system (1) with conditions (2) and (3) where the rational and
mixed rational powers satisfy n−i

n−j+1 < βij < i
j−1 and n−i

n−j+1 < β1,ij < 1, 1 < β2,ij <
i

j−1 (2 ≤ j ≤ i ≤ n). It is in three parts. First we will make change of coordinates of
the error system and introduce a useful lemma. Then we will show that the observer (6)
we proposed can render the error system globally finite-time stable for system (1) with
condition (2) where the rational powers satisfy n−i

n−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤

n). Finally, it will be verified that system (1) is also a global finite-time observer for
nonlinear system with condition (3) where the mixed rational powers in its nonlinearities
satisfy n−i

n−j+1 < β1,ij < 1, 1 < β2,ij < i
j−1 (2 ≤ j ≤ i ≤ n).

2.1. Pre-treatment of the system

The dynamics of the observation error e = x− x̂ is given by
ė1 = e2 − La1de1cα1 − L1−(β1−1)(1−η)σa1de1cβ1 ,

ė2 = e3 − L2a2de1cα2 − L2−(β2−1)(1−η)σa2de1cβ2 + f̃2,
...

ėn = −Lnande1cαn − Ln−(βn−1)(1−η)σande1cβn + f̃n,

(8)

where f̃i = fi(y, x2, . . . , xi, u) − fi(y, x̂2, . . . , x̂i, u) (2 ≤ i ≤ n). Consider the change of
coordinates

εi =
ei

Li−1+σ
.
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Then, (8) can be expressed as

ε̇1 = Lε2 − L(α1−1)σ+1a1dε1cα1 − L̇
Lσε1 − L(β1−1)ησ+1a1dε1cβ1 ,

ε̇2 = Lε3 − L(α2−1)σ+1a2dε1cα2 − L̇
L (σ + 1)ε2 − L(β2−1)ησ+1a2dε1cβ2

+ f̃2
L1+σ ,

...
ε̇n = −L(αn−1)σ+1andε1cαn − L̇

L (n− 1 + σ)εn − L(βn−1)ησ+1andε1cβn

+ f̃n

Ln−1+σ .

(9)

Before we investigate the global finite-time convergence of the observation error sys-
tem (9), first let us consider the following homogeneous nonlinear system

ε̇1 = ρε2 − ρ(λ1−1)σ+1a1dε1cλ1 ,
ε̇2 = ρε3 − ρ(λ2−1)σ+1a2dε1cλ2 ,

...
ε̇n = −ρ(λn−1)σ+1andε1cλn ,

(10)

where ρ > 0, dε1cλi = |ε1|λisign(ε1), λi = iλ − (i − 1) (i = 0, 1, . . . , n), λ > 1 − 1
n ,

0 < σ < 1, ai > 0 (1 ≤ i ≤ n) are given in (5).
In the following, we will see that under a new homogeneous Lyapunov function,

nonlinear system (10) is finite-time stable for λ ∈ (1 − 1
n , 1) and asymptotically stable

for λ ≥ 1. Before we give this result for system (10), let us first list some conditions
under which the result holds.

We suitably choose ai (1 ≤ i ≤ n) in (10) such that there exists a matrix P ∈
Rn×n, PT = P > 0 satisfying

AT P + PA ≤ −I, h1I ≤ D1P + PD1 ≤ h2I, (11)

where A =


−a1 1 . . . 0

...
...

. . .
...

−an−1 0 . . . 1
−an 0 . . . 0

 , D1 = diag{σ, 1 + σ, . . . , n− 1 + σ}, h1, h2 > 0 are

two real constants.

The following lemma summarizes some results for nonlinear system (10) where a new
homogeneous Lyapunov function is proposed and some inequalities for system (10) are
obtained based on this new Lyapunov function.

Lemma 2.5. Construct the following function as in [22]

V (ε) =
{ ∫∞

0
1

vq+1 (χ ◦ V̄ )(vε1, v
λ1ε2, . . . , v

λn−1εn) dv, ε ∈ Rn \ {0},
0, ε = 0,

where

χ(s) =


0, s ∈ (−∞, 1]
2(x− 1)2, s ∈ (1, 3

2 )
1− 2(x− 2)2, s ∈ [ 32 , 2)
1, s ∈ [2,∞)

, χ(s) ∈ C ′(R,R),
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V̄ (ε) = εT Pε, P satisfies condition (11), q > 0 is a positive integer. Then

(i) V (ε) is a positive definite function homogeneous of degree q with respect to the
weights {λi−1}1≤i≤n. V (ε) is called a q h-Lyapunov function of V̄ (ε) w.r.t. χ, ρ, (λ0, λ1,
. . . , λn−1).

(ii) If ai(1 ≤ i ≤ n) are chosen to satisfy condition (11), then there exist w1, w2 > 0
such that

w1V (ε) ≤ ∂V (ε)
∂ε

T

D1ε ≤ w2V (ε). (12)

(iii) For 1 − 1
n < λ < 1, if q > 1 + max{λi}0≤i≤n, ai(1 ≤ i ≤ n) and P satisfy

condition (11), dV (ε)
dt

∣∣∣
(10)

is C1 on Rn, then there exists a w3 > 0 such that

dV (ε)
dt

∣∣∣∣
(10)

≤ −w3ρ
1−σV (ε)γ , (13)

where γ = q+λ−1
q .

(iv) For λ ≥ 1, n ≥ 3, if q > 1 + max{λi}0≤i≤n, ai(1 ≤ i ≤ n) and P satisfy
condition (11), anP1n > 0 (where P1n is the element of P at the first line and nth
column), then dV (ε)

dt

∣∣∣
(10)

is C1 on Rn, and there exists a w4 > 0 such that

dV (ε)
dt

∣∣∣∣
(10)

≤ −w4ρ
1−σV (ε)γ . (14)

The p r o o f s of (i) and (ii) are quite easy. And the proofs of (iii) and (iv) are
very similar. The main ideas of proofs (iii) and (iv) are to construct a compact set
containing the origin on which the derivative of the constructed homogeneous Lyapunov
function satisfies some key inequalities. Then inequality (13) and (14) are derived by
use of the homogeneity properties of both the Lyapunov function and the system (10).
The detailed proof is given in the Appendix.

Then, for the following two systems with n ≥ 3
ε̇1 = Lε2 − L(β1−1)ησ+1a1dε1cβ1 ,
ε̇2 = Lε3 − L(β2−1)ησ+1a2dε1cβ2 ,

...
ε̇n = −L(βn−1)ησ+1andε1cβn ,

(15)

and 
ε̇1 = Lε2 − L(α1−1)σ+1a1dε1cα1 ,
ε̇2 = Lε3 − L(α2−1)σ+1a2dε1cα2 ,

...
ε̇1 = −L(αn−1)σ+1andε1cαn ,

(16)
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by Lemma 2.5, there exist c1, c̄1, c1 > 0 and c2, c̄2, c2 > 0 such that

c1Vβ(ε) ≤ ∂Vβ(ε)
∂ε

D1ε ≤ c̄1Vβ(ε),
dVβ(ε)

dt

∣∣∣∣
(15)

< −c1L
1−ησVβ(ε)γ1 , (17)

and

c2Vα(ε) ≤ ∂Vα(ε)
∂ε

D1ε ≤ c̄2Vα(ε),
dVα(ε)

dt

∣∣∣∣
(16)

≤ −c2L
1−σVα(ε)γ2 , (18)

hold, where Vβ(ε) is an q1 h-Lyapunov function of V̄β(ε) w.r.t. χ,L, (β0, β1, . . . , βn−1),
Vα(ε) is an q2 h-Lyapunov function of V̄α(ε) w.r.t. χ,L, (α0, α1, . . . , αn−1), q1, q2 > 0
are two positive real numbers, V̄β(ε) = V̄α(ε) = εT Pε, P satisfies condition (11), γ1 =
q1+β−1

q1
, γ2 = q2+α−1

q2
.

2.2. Global finite-time observers for nonlinear system (1) for n ≥ 3 with
condition (2) where the rational powers in the nonlinearities satisfy

n−i
n−j+1 < βij < i

j−1 (2 ≤ j ≤ i ≤ n)

In this subsection, the global finite-time convergence of the error system (8) between
the observer (6) we designed and the nonlinear system (1) for n ≥ 3 with condition (2)
(where the rational powers satisfy n−i

n−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤ n)) is proved.

Theorem 2.6. If n−i
n−j+1 < βij < i

j−1 (2 ≤ j ≤ i ≤ n), then for n ≥ 3, any α ∈ (1− 1
n , 1),

there exist ϕi > 0 (i = 1, 2, 3), 0 < σ < 1, β > 1+σ
σ and 0 < η < 1 − α such that the

system (6) with the observer gain (4) is a global finite-time observer for the nonlinear
system (1) under the condition (2).

P r o o f . From [8] and [14], we know that global asymptotic stability and local finite-
time stability mean global finite-time stability. Here, in this paper, we will employ this
principle and divide the proof of the global finite-time convergence of the observation
error system into global asymptotic stability and local finite-time stability.

First of all, for n ≥ 3, by suitably choosing ai (1 ≤ i ≤ n) such that there ex-
ists PT = P > 0 satisfying condition (11) and anP1n > 0, which is always possible.
For δ > 0, define BVα,δ

∆= {ε : Vα(ε) < δ}, BVβ ,δ
∆= {ε : Vβ(ε) < δ}. As shown in

the following figure, we have BVβ ,δ3 ⊂ BVβ ,δ1 ⊂ BVβ ,1 by choosing 1 > δ1 > δ3 > 0
(where δ1, δ3 will be given in the proof). The proof is in three parts. First, we
use Vβ(ε) to derive dVβ(ε)

dt < 0 for ε ∈ Rn \ BVβ ,1 and ε ∈ BVβ ,1 \ BVβ ,δ1 , respec-
tively. When ε ∈ BVβ ,δ3 , Vα(ε) is employed to prove the finite-time stability of the
system (9). Finally, when ε ∈ BVβ ,δ1 \ BVβ ,δ3 , for ∀ ε > 0, there exist ϕi > 0 (i =
1, 2, 3) such that δ1 − δ3 < ε, then by continuity of dVα(ε)

dt , we obtain dVα(ε)
dt < 0.

&%
'$
��
��mBVβ,δ1 -

� BVβ,δ3

� BVβ,1
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Part I: When ε ∈ P = Rn \ BVβ ,1, let us consider the q1 h-Lyapunov function Vβ(ε).
Based on (17), calculating the derivative of Vβ(ε) along the solution of the system (9),
we have

dVβ(ε)
dt

∣∣∣∣
(9)

=
dVβ(ε)

dt

∣∣∣∣
(15)

+ ϕ1(L1−σ − ϕ2)
∂Vβ(ε)

∂ε

T

D1ε− ϕ3Ψ(u, y, x̂)
∂Vβ(ε)

∂ε

T

×D1ε +
∂Vβ(ε)

∂ε

T

G̃1 +
∂Vβ(ε)

∂ε

T

F̃ ≤ −c1L
1−ησVβ(ε)γ1 + c̄1ϕ1(L1−σ − ϕ2)Vβ(ε)

−c1ϕ3Ψ(u, y, x̂)Vβ(ε) +
∂Vβ(ε)

∂ε

T

G̃1 +
∂Vβ(ε)

∂ε

T

F̃ , (19)

where G̃1 = (−L(α1−1)σ+1a1dε1cα1 , . . . , −L(αn−1)σ+1andε1cαn)T , F̃ = (0, f̃2
L1+σ , . . . ,

f̃n

Ln−1+σ )T .

For ∂Vβ(ε)
∂ε

T
G̃1, by Lemma 4.2 in [3], we have

∂Vβ(ε)
∂ε

T

G̃1 ≤ L1−(1−α)σa∗
n∑

i=1

∣∣∣∣∂Vβ(ε)
∂εi

∣∣∣∣ |ε1|αi ≤ L1−(1−α)σa∗k1

×
n∑

i=1

Vβ(ε)
q1−βi−1+αi

q1 ≤ L1−(1−α)σa∗k1nVβ(ε), (20)

where k1 = max{z:Vβ(z)=1}

∣∣∣∂Vβ(z)
∂zi

∣∣∣ |z1|αi , a∗ = max1≤i≤n{ai}.

For ∂Vβ(ε)
∂ε

T
F̃ , we can obtain that ∂Vβ(ε)

∂ε

T
F̃ ≤ Ψ(u, y, x̂)

∑n
i=2

∑i
j=2

∣∣∣∂Vβ(ε)
∂εi

∣∣∣ |ej |
Li−1+σ +

l
∑n

i=2

∑i
j=2

∣∣∣∂Vβ(ε)
∂εi

∣∣∣ |ej |βij

Li−1+σ . Note that under the condition βij < i
j−1 , there exists a

σ1 > 0 such that βij < i
j−1+σ1

, vj < 1−σ1
j−1+σ1

(2 ≤ j ≤ i ≤ n), and let 0 < σ <

σ1. Because L(t) > ϕ2 > 1, we have L(j−1+σ)βij−(i−1+σ) < L1−σ. Then, similarly by
Lemma 4.2 in [3], we have

∂Vβ(ε)
∂ε

T

F̃ ≤ Ψ(u, y, x̂)
n∑

i=2

i∑
j=2

∣∣∣∣∂Vβ(ε)
∂εi

∣∣∣∣ |εj |+ lL1−σ
n∑

i=2

i∑
j=2

∣∣∣∣∂Vβ(ε)
∂εi

∣∣∣∣ |εj |βij

≤ k2Ψ(u, y, x̂)
n∑

i=2

i∑
j=2

Vβ(ε)
q1−βi−1+βj−1

q1 + lk3L
1−σ

n∑
i=2

i∑
j=2

Vβ(ε)
q1−βi−1+βijβj−1

q1

≤ k2n
2Ψ(u, y, x̂)Vβ(ε) + lk3n

2L1−σVβ(ε)
q1+β̄

q1 , (21)

where β̄ = max2≤j≤i≤n{βijβj−1 − βi−1}, k2 = max{z:Vβ(z)=1}

∣∣∣∂Vβ(z)
∂zi

∣∣∣ |zj |, k3 =

max{z:Vβ(z)=1}

∣∣∣∂Vβ(z)
∂zi

∣∣∣ |zj |βij .
Then, by substituting (20) and (21) into (19), we have

dVβ(ε)
dt

∣∣∣
(9)

≤ −c1L
1−ησVβ(ε)γ1 + c̄1ϕ1L

1−σVβ(ε)− c̄1ϕ1ϕ2Vβ(ε)− c1ϕ3Ψ(u, y, x̂)Vβ(ε)

+ L1−(1−α)σa∗k1nVβ(ε) + k2n
2Ψ(u, y, x̂)Vβ(ε) + lk3n

2L1−σVβ(ε)
q1+β̄

q1 . (22)
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From Lemma 2.4, we know that γ1 > q1+β̄
q1

. Then, for all ε ∈ P, there exist d11 > 0,
d21 > 1, d31 > 0 such that when 0 < ϕ1 < d11, ϕ2 > d21, ϕ3 > d31, we have

dVβ(ε)
dt

∣∣∣∣
(9)

≤ −c̄1ϕ1ϕ2Vβ(ε), ε ∈ P, (23)

where d11 = c1
3c̄1

, d21 = max{( 3a∗k1n
c1

)
1

(1−α−η)σ , ( 3lk3n2

c1
)

1
(1−η)σ }, d31 = k2n2

c1
.

When ε ∈ BVβ ,1, we again use the q1 h-Lyapunov function Vβ(ε). First, we have

∂Vβ(ε)
∂ε

T

G̃1 ≤ L1−(1−α)σa∗k1nVβ(ε)
q1−βn−1+αn

q1 ,

∂Vβ(ε)
∂ε

T

F̃ ≤ k2n
2Ψ(u, y, x̂)Vβ(ε)

q1−βn−1+β

q1 + lk3n
2L1−σVβ(ε)

q1+β

q1 . (24)

Then from (19) and (24), we obtain
dVβ(ε)

dt

∣∣∣
(9)

≤ −c1L
1−ησVβ(ε)γ1 + c̄1ϕ1(L1−σ − ϕ2)Vβ(ε)− c1ϕ3Ψ(u, y, x̂)Vβ(ε) + a∗k1n

× L1−(1−α)σVβ(ε)
q1−βn−1+αn

q1 + k2n
2Ψ(u, y, x̂)Vβ(ε)

q1−βn−1+β

q1 + lk3n
2L1−σVβ(ε)

q1+β

q1 ,
where β = min2≤j≤i≤n{βijβj−1 − βi−1}. There exists a d22 > 1 such that 0 < g11 <
g13 < 1, 0 < g12, g14 < 1 when 0 < ϕ1 < d11, ϕ2 > d22, ϕ3 > d31. Then we have

dVβ(ε)
dt

∣∣∣∣
(9)

≤ −c̄1ϕ1ϕ2Vβ(ε), ε ∈ BVβ ,1 \ BVβ ,δ1 , (25)

where δ1 = max{g12, g13, g14}, g11 = ( 3c̄1ϕ1
c1

)
q1

β−1 ϕ2
− (1−η)σq1

β−1 , g12 = (3lk3n2

c1
)

q1
β−β−1

ϕ2
− (1−η)σq1

β−β−1 , g13 = (3a∗k1n
c1

)
q1

βn−αn ϕ2
− (1−α−η)σq1

βn−αn , g14 = (k2n2

c1
)

q1
βn−1−β ϕ

− q1
βn−1−β

3 .
Thus, from (23) and (25), we can derive

ddVβ(ε)
dt

∣∣∣∣
(9)

≤ −c̄1ϕ1ϕ2Vβ(ε), ε ∈ Rn \ BVβ ,δ1 . (26)

Part II: In this part, we will consider ε ∈ BVβ ,δ1 . Here, we use the q2 h-Lyapunov
function Vα(ε). Because Vβ(ε), Vα(ε) are homogeneous of degrees q1 and q2, respectively,
we have Vα(ε) ≤ k∗Vβ(ε)

q2
q1 , where k∗ = max{z:Vβ(z)=1} Vα(z). Then there exist d23 > 1,

d32 > 0 such that k∗δ
q2
q1
1 ≤ 1, i. e., Vα(ε) ≤ 1 when ϕ2 > d23, ϕ3 > d32. Under

this condition, based on (18), calculating the derivative of Vα(ε) along the solution of
system (9), using the same method as that in part I, we have

dVα(ε)
dt

∣∣∣∣
(9)

≤ −c2L
1−σVα(ε)γ2 + c̄2ϕ1(L1−σ − ϕ2)Vα(ε)− c2ϕ3Ψ(u, y, x̂)Vα(ε)

+
∂Vα(ε)

∂ε

T

G̃2 +
∂Vα(ε)

∂ε

T

F̃ , (27)

where G̃2 = (−L(β1−1)ησ+1a1dε1cβ1 , . . . ,−L(βn−1)ησ+1andε1cβn)T .
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For ∂Vα(ε)
∂ε

T
G̃2 and ∂Vα(ε)

∂ε

T
F̃ , similarly, we have

∂Vα(ε)
∂ε

T

G̃2 ≤ L(βn−1)ησ+1a∗k4nVα(ε),

∂Vα(ε)
∂ε

T

F̃ ≤ k5n
2Ψ(u, y, x̂)Vα(ε) + lk6n

2L1−σVα(ε)
q2+α

q2 , (28)

where α = min2≤j≤i≤n{βijαj−1 − αi−1}, k4 = max{z:Vα(z)=1}

∣∣∣∂Vα(z)
∂zi

∣∣∣ |z1|βi , k5 =

max{z:Vα(z)=1} |∂Vα(z)
∂zi

||zj |, k6 = max{z:Vα(z)=1} |∂Vα(z)
∂zi

||zj |βij .

Then by substituting (28) into (27), we have

dVα(ε)
dt

∣∣∣∣
(9)

≤ −c2L
1−σVα(ε)γ2 + c̄2ϕ1(L1−σ − ϕ2)Vα(ε)− c2ϕ3Ψ(u, y, x̂)Vα(ε)

+L(βn−1)ησ+1a∗k4nVα(ε) + k5n
2Ψ(u, y, x̂)Vα(ε) + lk6n

2L1−σVα(ε)
q2+α

q2 .

From Lemma 2.1 and Lemma 2.4, we know γ2 < q2+α
q2

, ϕ2 < L(t) < M . And because
0 < ϕ1 < d11, there exists a d24 > 0 such that g22 < g21, g22 < g23 when L(t) > ϕ2 >
d24. Moreover, there exists a d33 > 0 such that when ϕ3 > d33, ϕ2 > d24, we have

dVα(ε)
dt

∣∣∣∣
(9)

≤ −1
4
c2L

1−σVα(ε)γ2 , ε ∈ BVα,δ2 \ {0},

where δ2 = g22, d33 = k5n2

c2
, g21 = ( c2

4c̄2ϕ1
)

q2
1−α , g22 = ( c2

4a∗k4n )
q2

1−α ϕ
−σ(1+(βn−1)η)q2

1−α

2 , g23 =

( c2
4lk6n2 )

q2
α−α+1 .

Then, by Theorem 4.2 in [2], the system (9) is locally finite-time stable on BVα,δ2 .
From Vα(ε) ≤ k∗Vβ(ε)

q2
q1 , we can obtain BVβ ,δ3 ⊂ BVα,δ2 , where δ3 = ( g22

k∗ )
q1
q2 =

ϕ
−σ(1+(βn−1)η)q1

1−α

2 ( 1
k∗ )

q1
q2 ( c2

4a∗k4n )
q1

1−α . Then, BVβ ,δ3 is a domain of observer attraction,
i. e.,

dVα(ε)
dt

∣∣∣∣
(9)

≤ −1
4
c2L

1−σVα(ε)γ2 , ε ∈ BVβ ,δ3 \ {0}. (29)

Part III: For any ε > 0, there exist sufficiently large ϕ2, ϕ3 and 0 < ϕ1 < d11, ϕ2 >

d2i (1 ≤ i ≤ 4), ϕ3 > d3j (1 ≤ j ≤ 3) such that 0 < δ1 − δ3 < ε. Because dVα(ε)
dt

∣∣∣
(9)

is

continuous on Rn, we have

dVα(ε)
dt

∣∣∣∣
(9)

< 0, ε ∈ BVβ ,δ1 \ BVβ ,δ3 . (30)

Thus, from (26), (29) and (30), by combining global asymptotic stability and local finite-
time stability, we get that the system (9) is globally finite-time stable, i. e., there exists
a T1 > 0 such that εi(t) = 0 when t > T1.
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From Lemma 2.1, there exists an M∗ > 0 such that Li−1+σ ≤ M∗ (i = 1, . . . , n).
Then, we have ei(t)

M∗ ≤ ei(t)
Li−1+σ = εi(t) = 0 (t > T1), i. e., ei(t) = 0 (t > T1) (i =

1, . . . , n), which means system (6) is a global finite-time observer for system (1) under
the condition (2).

This completes the proof. �

2.3. Global finite-time observers for nonlinear system (1) for n ≥ 3 with
condition (3) where the mixed rational powers in the nonlinearities
satisfy n−i

n−j+1 < β1,ij < 1, 1 < β2,ij < i
j−1 (2 ≤ j ≤ i ≤ n)

Similarly to what is done in [25], we can extend the results to the system (1) with condi-
tion (3) for n ≥ 3 which is with mixed rational powers in the nonlinearities: system (6)
is a global finite-time observer for this kind of nonlinear system.

Theorem 2.7. If n−i
n−j+1 < β1,ij < 1, 1 < β2,ij < i

j−1 (2 ≤ j ≤ i ≤ n), then for n ≥ 3,
any α ∈ (1− 1

n , 1), there exist 0 < σ < 1, β > 1+σ
σ and 0 < η < 1− α such that global

finite-time observers in the form (6) with the observer gain (4) can be designed for the
nonlinear systems (1) with the condition (3).

P r o o f . The proof is similar to Theorem 2.6 and thus is omitted here. �

3. EXAMPLE

In this section, two examples are given to illustrate the effectiveness of the results as
proposed in Theorem 2.6 and Theorem 2.7, respectively.

Example 3.1. Consider nonlinear system
ẋ1 = x2,
ẋ2 = x3,

ẋ3 = x
3
2
3 − x3,

y = x1.

(31)

It can be verified that the following type of nonlinear condition holds: |(x
3
2
3 −x3)−(x̂

3
2
3 −

x̂3)| ≤ (1+ 3
2 |x̂3|

1
2 )|x3− x̂3|+ |x3− x̂3|

3
2 . Following the result in this paper, an observer

can be designed as follows:
˙̂x1 = x̂2 + 3Ldy − x̂1cα + 3L1−(β−1)(1−η)σdy − x̂1cβ ,
˙̂x2 = x̂3 + 3L2dy − x̂1c2α−1 + 3L2−2(β−1)(1−η)σdy − x̂1c2β−1,

˙̂x3 = x̂
3
2
3 − x̂3 + L3dy − x̂1c3α−2 + L3−3(β−1)(1−η)σdy − x̂1c3β−2,

L̇ = −L[ϕ1(L1−σ − ϕ2)− ϕ3(1 + 3
2 |x̂2|

1
2 )].

Condition I
Parameters: α = 0.95, β = 105, σ = 0.01, η = 0.01, ϕ1 = 0.1, ϕ2 = 1.2, ϕ3 = 0.2.

The initial values: x1(0) = 0.6, x2(0) = 0.1, x3(0) = 0.2, x̂1(0) = 0.2, x̂2(0) =
0.4, x̂3(0) = 0.1, L(0) = 1.5.
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Condition II

Parameters: α = 0.95, β = 105, σ = 0.01, η = 0.01, ϕ1 = 0.1, ϕ2 = 1.2, ϕ3 = 0.2.
The initial values: x1(0) = 0.6, x2(0) = 0.1, x3(0) = 0.2, x̂1(0) = 0.2, x̂2(0) =
0.4, x̂3(0) = 0.1, L(0) = 15.
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Fig. 1. Trajectories of the observation error of system (31) under

condition I and II without noise.

Figure 1 shows the simulation results.

Example 3.2. For the following nonlinear system
ẋ1 = x2,
ẋ2 = x3,

ẋ3 = −x
3
5
3 + x

5
3
3 ,

y = x1,

(32)

from Lemma A.4 in [13], we have that nonlinear condition with mixed rational powers

|(−x
3
5
3 +x

5
3
3 )− (−x̂

3
5
3 + x̂

5
3
3 )| ≤ (|x

3
5
3 − x̂

3
5
3 |+ |x

5
3
3 − x̂

5
3
3 |) ≤ 5

3 |x̂3|
2
3 |x3− x̂3|+2

2
5 |x3− x̂3|

3
5 +

|x3 − x̂3|
5
3 holds.

From Theorem 2.7, the observer dynamics is designed as follows
˙̂x1 = x̂2 + 3Ldy − x̂1cα + 3L1−(β−1)(1−η)σdy − x̂1cβ ,
˙̂x2 = x̂3 + 3L2dy − x̂1c2α−1 + 3L2−2(β−1)(1−η)σdy − x̂1c2β−1,

˙̂x3 = −x̂
3
5
3 + x̂

5
3
3 + L3dy − x̂1c3α−2 + L3−3(β−1)(1−η)σdy − x̂1c3β−2,

L̇ = −L[ϕ1(L1−σ − ϕ2)− 5
3ϕ3|x̂3|

2
3 ].

Condition I

Parameters: α = 0.9, σ = 0.1, η = 0.01, β = 104, ϕ1 = 0.2, ϕ2 = 1.5, ϕ3 = 2.
The initial values: x1(0) = 1, x2(0) = 0.1, x3(0) = 0.2, x̂1(0) = 0.5, x̂2(0) =
0.2, x̂3(0) = 0.1, L(0) = 2.
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Condition II

Parameters: α = 0.8, σ = 0.2, η = 0.1, β = 103, ϕ1 = 0.1, ϕ2 = 5, ϕ3 = 4.
The initial values: x1(0) = 0.5, x2(0) = 0.4, x3(0) = 0.3, x̂1(0) = 0.6, x̂2(0) =
0.1, x̂3(0) = 0.5, L(0) = 20.

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
Observation error

Time (second)

 

 
e

1

e
2

e
3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
−250

−200

−150

−100

−50

0

50

100
Observation error

Time (second)

 

 
e

1

e
2

e
3

Fig. 2. Trajectories of the observation error of system (32) under

condition I and II with noise added on x̂1, x̂2 and L.

In both example 3.1 and example 3.2, we choose a1 = a2 = 3, a3 = 1, i. e.,

A =

( −3 1 0
−3 0 1
−1 0 0

)
and P =

(
5 −3 0.2
−3 4 −3
0.2 −3 7

)
> 0. It can be verified that A and P

satisfy AT P + PA ≤ −I and a3P13 = 0.2 > 0.

The simulations (without noise in Example 3.1 and with uniform random number
noise imposed on x̂1, x̂2 in Example 3.2) in Figure 1 and Figure 2 show the dynamics
of the observation errors of Example 3.1 and Example 3.2, respectively. The simulation
results show the effectiveness of the proposed observers which can render the error
systems converge in finite time. And we can see that although the observation errors
converge faster with a bigger high gain, but they are a bit more noise-sensitive. Thus,
in future work, the design of finite-time adaptive observer can be an interesting topic.

4. CONCLUSION

This paper has addressed the problem of global finite-time observer design for a class of
nonlinear systems for n ≥ 3 with the rational powers in the increments of nonlinearities
satisfying n−i

n−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤ n) and the mixed rational powers satisfying

n−i
n−j+1 < β1,ij < 1, 1 < β2,ij < i

j−1 (2 ≤ j ≤ i ≤ n) where semi-global finite-time
observers exist for this kind of nonlinear systems with the rational and mixed rational
powers satisfying q−i

q−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤ n) and q−i

q−j+1 < β1,ij < 1, 1 < β2,ij <
i

j−1 (2 ≤ j ≤ i ≤ n) (where q > n is a positive real number). We have shown that, under
the same gain update law, by introducing two different homogeneous terms of degrees
α− 1 < 0 and β − 1 > 0 with respect to the weights {αi}1≤i≤n and {βi}1≤i≤n , we can
design global finite-time observers by combining global asymptotical stability and local
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finite-time stability. Moreover, through two examples, the validity of the observers we
designed was shown.

A. APPENDIX

In this section, the detailed proof of Lemma 2.5 is included. Before we give the explicit
proof of Lemma 2.5, let us introduce a useful result first.

Lemma A.1. If ai (1 ≤ i ≤ n) in (5) are chosen such that condition (11) holds, then,
for any x = (0, x2, . . . , xn)T , y = (x2, . . . , xn, 0)T ∈ Rn, we have xT Py + yT Px ≤
−
∑n

i=2 x2
i .

The following is the detailed proof of Lemma 2.5.

P r o o f . First, let us introduce some definitions. For π > 0, 0 < σ < 1, define

Fπ
∆= {ε : |ε1| = π},

B1,π
∆= {ε : εT ε ≤ π},

B1,π
∆= {ε : εT ε < π},

B2,π
∆=
{

(ε1, ρ
−(λn−1)λ1σε2, . . . , ρ

−(λn−1)λn−1σεn)T :
n∑

i=2

ε2
i ≤ π2

}
,

B3,π
∆=
{

(ε1, ρ
−λnλ1σε2, . . . , ρ

−λnλn−1σεn)T :
n∑

i=2

ε2
i ≤ π2},

B3,π
∆= {(ε1, ρ−λnλ1σε2, . . . , ρ−λnλn−1σεn)T :

n∑
i=2

ε2
i < π2}, Pπ

∆= {ε : |ε1| ≤ π
}

,

B4,π
∆=
{

(ε1, ρ
−2λ1σε2, . . . , ρ

−2λn−1σεn)T :
n∑

i=2

ε2
i ≤ π2},

B4,π
∆= {(ε1, ρ

−2λ1σε2, . . . , ρ
−2λn−1σεn)T :

n∑
i=2

ε2
i < π2}, Pπ

∆= {ε : |ε1| < π
}

and
Sπ

∆= {ε : εT ε = π}.

It is not difficult to get that V (ε) is C1 for ε ∈ Rn.
The proofs of (i) and (ii) are quite easy. For (i), by change of integration, it is

very easy to verify that V (ε) is homogeneous of degree q with respect to the weights
{λi}0≤i≤n−1. From condition (11), it is also not difficult to derive the inequality (12)
in (ii).

The proofs of (iii) and (iv) are a bit complicated, but the main ideas are the same.
Thus, in the following, we only give the proof of (iv), but the main difference between
the proofs of (iii) and (iv) will also be stated.

First, it is not difficult to verify that for n = 2, there does not exist such a1, a2 > 0
and P > 0 which satisfy the condition (11) and a2P12 > 0. And for n ≥ 3, it is always
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possible to find ai > 0 (1 ≤ i ≤ n) such that there exists PT = P > 0 satisfying the
condition (11) and anP1n > 0.

The proof is divided into two parts. The first part is to construct a compact set A
(where A will be given later) encircling the origin where some inequalities are obtained.
Actually, the compact set is constructed in four parts. In each part, dV (ε)

dt

∣∣∣
(10)

and

V (ε) satisfy some inequalities on a certain set. Then, the compact set A is derived by
combination of the four sets. In the second part, for any ε ∈ Rn \ {0}, the relationship
between dV (ε)

dt

∣∣∣
(10)

and dV (ε0)
dt

∣∣∣
(10)

, ε0 ∈ A is established by use of the homogeneity

theory. Then, we get the inequality (14) in (iv).

Part I: This part is divided into six parts. In the first four parts, we will show
that dV (ε)

dt

∣∣∣
(10)

satisfies some inequalities on the following sets S1 ∩Pρ−σ , (P(1+π1)ρ−σ \

P(1−π1)ρ−σ )∩B3,π1 , Fρ−hσ ∩(B1,1\B3,π1) and (Pρ−σ \Pρ−hσ )∩(B3,π1 \B3,π1), separately,
where π1 > 0, h > {h̄1, h̄2}, ρ > {ρ1, ρ2} will be given later. Then in the fifth part,
V (ε) admits some inequalities for ε belonging to each of these four sets. Finally, in the
sixth part, by combination of these four sets, we derive the compact set A.

(1) Let l1 be the largest l>0 such that max{v≤l} max{ε∈B1,2\B1, 1
2
} V̄ (vε1, . . . , v

λn−1εn)

≤ 1. Let l2 be the smallest l > 0 such that min{v≥l} min{ε∈B1,2\B1, 1
2
} V̄ (vε1, . . . , v

λn−1εn)

≥ 2. Then we have V (ε) =
∫ l2

l1
1

vq+1 (χ ◦ V̄ (vε1, . . . , v
λn−1εn)) dv + 1

qlq2
, ε ∈ B1,2 \ B1, 1

2
.

And

dV (ε)
dt

∣∣∣∣
(10)

= 2ρ

∫ l2

l1

χ′(V̄ (vε1, . . . , v
λn−1εn))

vq+λ
K(v, ε1, . . . , εn) dv, ε ∈ B1,2 \ B1, 1

2
, (A.1)

where

K(v, ε1, . . . , εn) =


0

vλ1ε2

...
vλn−1εn


T

P


vλ1ε2

...
vλn−1εn

0

+


vε1

0
...
0


T

P

 −a1ρ
(λ1−1)σdvε1cλ1

...
−anρ(λn−1)σdvε1cλn



+


vε1

0
...
0


T

P


vλ1ε2

...
vλn−1εn

0

+


0

vλ1ε2

...
vλn−1εn


T

P

 −a1ρ
(λ1−1)σdvε1cλ1

...
−anρ(λn−1)σdvε1cλn

 . (A.2)

When ε ∈ S1∩Pρ−σ , from Lemma A.1, equations (A.1) and (A.2), there exists ρ1 > 2

such that when ρ > ρ1, we have dV (ε)
dt

∣∣∣
(10)

< −ρ
2

∫ l2
l1

1
vq+λ

∑n
i=2 v2λi−1ε2

i χ
′(V̄ (vε1, . . .

. . . , vλn−1εn)) dv, ε ∈ S1 ∩ Pρ−σ , where a∗ = max{1≤i≤n} ai, p̄ = max{1≤i, j≤n} |Pij |.

And clearly, we have (S1 ∩ P0) ⊂ (S1 ∩ Pρ−σ ) ⊂ (S1 ∩ P2−σ ). Let l3 be the largest
l > 0 such that max{v≤l} max{ε∈S1∩P0} V̄ (vε, . . . , vλn−1εn) ≤ 1. Let l4 be the smallest
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l > 0 such that min{v≥l} min{ε∈S1∩P0} V̄ (vε, . . . , vλn−1εn) ≥ 2. It is not difficult to get
l3 ≥ l1, l4 ≤ l2. Then we have

dV (ε)
dt

∣∣∣∣
(10)

< −ρd1, ε ∈ S1 ∩ Pρ−σ , (A.3)

where d1 = 1
2 min{ε∈S1∩P2−σ}

∫ l4
l3

1
vq+λ

∑n
i=2 v2λi−1ε2

i χ
′(V̄ (vε1, . . . , v

λn−1εn)) dv.

(2) For ε = (±1, 0, . . . , 0)T , from Lemma A.1, (A.1) and (A.2), we have dV (ε)
dt

∣∣∣
(10)

=

−2ρ
∫ l2

l1

χ′(V̄ (±v,...,0))
vq+λ

∑n
i=1 aiP1iρ

(λi−1)σ|v|1+λi dv. Because a1P11 > 0, anP1n > 0, λn >

λi (1 ≤ i ≤ n) when λ > 1, there exist π1 ∈ (0, 1) and ρ2 > 1 such that when ρ > ρ2, we
have dV (ε)

dt

∣∣∣
(10)

< −ρ1−σ
∫ l2

l1

anP1n|v|1+λn

vq+λ χ′(V̄ (±v, 0, . . . , 0)) dv, ε ∈ (P1+π1 \ P1−π1) ∩

B2,π1 .

Because dV (ε)
dt

∣∣∣
(10)

is homogeneous of degree q + λ − 1 with respect to the weights

{λi}0≤i≤n−1, we get

dV (ε)
dt

∣∣∣∣
(10)

< −d2ρ
1−(q+λ)σ, ε ∈ (P(1+π1)ρ−σ \ P(1−π1)ρ−σ ) ∩ B3,π1 , (A.4)

where d2 =
∫ l2

l1
anP1nv1+λn

vq+λ χ′(V̄ (±v, 0, . . . , 0)) dv.

(3) Let l5 be the largest l > 0 such that max{v≤l} max{ε∈P(1+π1)ρ−σ∩(B1,1\B3,π1 )} V̄ (vε1,

. . . , vλn−1εn) ≤ 1. And let l6 be the smallest l > 0 such that

min
{v≥l}

min
{ε∈P(1+π1)ρ−σ∩(B1,1\B3,π1 )}

V̄ (vε1, . . . , v
λn−1εn) ≥ 2.

Then for ε ∈ P(1+π1)ρ−σ ∩ (B1,1 \ B3,π1), we have

V (ε) =
∫ l6

l5

1
vq+λ

(χ ◦ V̄ (vε1, . . . , v
λn−1εn)) dv +

1
qlq6

and
dV (ε)

dt

∣∣∣∣
(10)

= 2ρ

∫ l6

l5

1
vq+λ

χ′(V̄ (vε1, . . . , v
λn−1εn))K(v, ε1, . . . , εn) dv.

And for any ε ∈ P(1+π1)ρ−σ∩(B1,1\B3,π1), there exists ρ̃ ≥ 1 such that ε = (ρ̃σ(ρ̃−σρ−σε1),
ρ̃λ1σρ−λnλ1σε2, . . . , ρ̃

λn−1σρ−λnλn−1σεn)T , |ε1| ≤ 1 + π1,
∑n

i=2 ε2
i = π2

1 . By use of the
boundedness of the compact set ε ∈ P(1+π1)ρ−σ ∩ (B1,1 \ B3,π1), we can get that ρ̃ is
upper bounded with respect to ρ.
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For any ε ∈ Fρ−hσ ∩ (B1,1 \ B3,π1), there exists h̄1 > λnλn−1 such that when h ≥ h̄1,
we have

dV (ε)
ddt

∣∣∣∣
(10)

< −ρ

2

∫ l6

l5

χ′(V̄ (vρ−hσ, . . . , vλn−1 ρ̃λn−1σρ−λnλn−1σεn))
vq+λ

n∑
i=2

ρ̃2λi−1σρ−2λnλi−1σv2λi−1ε2
i dv.

And for any ε ∈ Fρ−hσ ∩ (B1,1 \B3,π1), let l7(ε) and l8(ε) be such that 5
4 ≤ V̄ (vε1, . . . ,

vλn−1εn) ≤ 7
4 when l7(ε) ≤ l ≤ l8(ε) (without loss of generality, it is assumed that

0 ≤ l7(ε) ≤ l8(ε)). Note that from the definition of χ(s), 1 ≤ χ′(s) ≤ 2 for 5
4 ≤ s ≤ 7

4 .
Then, there exists h̄2 > λnλn−1 such that when h > h̄2 we can have

dV (ε)
dt

∣∣∣∣
(10)

< −ρ

2

∫ l8(ε)

l7(ε)

∑n
i=2 ρ̃2λi−1σρ−2λnλi−1σv2λi−1ε2

i

vq+λ
dv

< − 5ρ

16λ̄(q + λ− 1)
l8(ε)q+λ−1 − l7(ε)q+λ−1

l7(ε)q+λ−1l8(ε)q+λ−1
,

where λ̄ = λmax(P ).

It is clear that {z : zT Pz = 5
4} ∩ {z : zT Pz = 7

4} = ∅, thus, we can derive the

following inequality M1 <
∑n

i=1(z
1
i

q+λ−1
λi−1 − z2

i

q+λ−1
λi−1 )2, where M1 > 0 is a positive real

number, z1 = (z1
1 , . . . , z1

n)T ∈ {z : zT Pz = 7
4} and z2 = (z2

1 , . . . , z2
n)T ∈ {z : zT Pz = 5

4}.
Because

(l8(ε)ρ̃σ(ρ̃−σρ−hσε1), l8(ε)λ1 ρ̃λ1σρ−λnλ1σε2, . . . , l8(ε)λn−1 ρ̃λn−1σρ−λnλn−1σεn)T

∈ {z : zT Pz =
7
4
},

(l7(ε)ρ̃σ(ρ̃−σρ−hσε1), l7(ε)λ1 ρ̃λ1σρ−λnλ1σε2, . . . , l7(ε)λn−1 ρ̃λn−1σρ−λnλn−1σεn)T

∈ {z : zT Pz =
5
4
},

we can get M1 ≤ ρ̃2(q+λ−1)σρ−2λn(q+λ−1)σ(l8(ε)q+λ−1−l7(ε)q+λ−1)2(1+
∑n

i=2 ε
2(q+λ−1)

λi−1
i ),∑n

i=2 ε2
i = π2

1 .

Note that {z : 1 ≤ zT Pz ≤ 2} is a bounded compact set. Then, there exist M2, M3 >

0 such that M2 <
∑n

i=2 z
2(q+λ−1)

λi−1
i < M3, z ∈ {z : 1 ≤ zT Pz ≤ 2}. It is clear to get that

there exist εj ∈ P(1+π1)ρ−σ ∩ (B1,1 \ B3,π1) such that

(lj(ε)ρ̃σ(ρ̃−σρ−hσεj
1), lj(ε)

λ1 ρ̃λ1σρ−λnλ1σεj
2, . . . , lj(ε)

λn−1

ρ̃λn−1σρ−λnλn−1σεj
n)T ∈ {z : 1 ≤ zT Pz ≤ 2}, j = 7, 8.

And,

M3 > ρ̃2(q+λ−1)σ ρ−2λn(q+λ−1)σlj(ε)2(q+λ−1)
n∑

i=2

εj
i

2(q+λ−1)
λi−1 , j = 7, 8,

n∑
i=2

εj
i

2
= π2

1 .
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Thus, we get

l8(ε)q+λ−1 − l7(ε)q+λ−1 > min
{ε:

Pn
i=2 ε2

i =π2
1}

√√√√ ρ2λn(q+λ−1)σM1

ρ̃2(q+λ−1)σ(
∑n

i=2 ε
2(q+λ−1)

λi−1
i + 1)

and

1
lj(ε)q+λ−1

> min
{ε:

Pn
i=2 ε2

i =π2
1}

√√√√ ρ̃2(q+λ−1)σ
∑n

i=2 ε
2(q+λ−1)

λi−1
i

ρ2λn(q+λ−1)σM3
, j = 7, 8.

Therefore, we have

dV (ε)
dt

∣∣∣∣
(10)

< −ρ1−λn(q+λ−1)σρ̃(q+λ−1)σd3, ε ∈ Fρ−hσ ∩ (B1,1 \ B3,π1), (A.5)

where d3 = min{ε:Pn
i=2 ε2

i =π2
1}

5
√

M1
Pn

i=2 ε

2(q+λ−1)
λi−1

i

16λ̄(q+λ−1)M3

sPn
i=2 ε

2(q+λ−1)
λi−1

i +1

.

(4) Fourthly, when ε ∈ (Pρ−σ \Pρ−hσ )∩(B3,π1 \B3,π1), because for any ε1 = (ε1
1, ε

1
2, . . . ,

ε1
n)T ∈ (Pρ−σ \Pρ−hσ )∩(B3,π1 \B3,π1) and any ε2 = (±ρ−σ, ε1

2, . . . , ε
1
n)T ∈ Fρ−σ∩(B3,π1 \

B3,π1), we have ‖ε1 − ε2‖2
2 ≤ 4ρ−2σ. Because of the continuity of dV (ε)

dt

∣∣∣
(10)

on ε ∈ Rn,

we have

dV (ε)
dt

∣∣∣∣
(10)

< −d2

2
ρ1−(q+λ)σ < 0, ε ∈ (Pρ−σ \ Pρ−hσ ) ∩ (B3,π1 \ B3,π1). (A.6)

(5) From (A.3), we can select ρ > max{1≤i≤2}{2, ρi} such that

V (ε)−γ ≥ d−γ
4 , ε ∈ S1 ∩ Pρ−σ , (A.7)

where d4 = maxPn
i=2 ε2

i =1 V (ε).

When ε ∈ Fρ−σ ∩ B3,π1 , we can have V (±ρ−σ, ρ−λnλ1σε2, . . . , ρ
−λnλn−1σεn) =

= ρ−qσV (±1, ρ−(λn−1)λ1σε2, . . . , ρ
−(λn−1)λn−1σεn) ≤ d5ρ

−qσ,

where d5 = maxPn
i=2 ε2

i≤π2
1
V (±1, ε2, . . . , . . . εn). Then, we have

V (ε)−γ > d−γ
5 ρσ(q+λ−1), ε ∈ Fρ−σ ∩ B3,π1 . (A.8)

When ε ∈ Fρ−hσ ∩ (B1,1 \ B3,π1),

V (±ρ̃σρ̃−σρ−hσ, ρ̃λ1σρ−λnλ1σε2, . . . , ρ̃
λn−1σρ−λnλn−1σεn) =

= ρ̃qσρ−λnqσV (±ρ̃−σρ−(h−λn)σ, ε2, . . . , εn) ≤ d6ρ̃
qσρ−λnqσ,

where d6 = max|ε1|≤1,
Pn

i=2 ε2
i≤π2

1
V (ε1, ε2, . . . , εn). Then the following inequality holds:

V (ε)−γ > d−γ
6 ρλn(q+λ−1)σρ̃−(q+λ−1)σ, ε ∈ Fρ−hσ ∩ (B1,1 \ B3,π1). (A.9)
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When ε ∈ (Pρ−σ \ Pρ−hσ ) ∩ (B3,π1 \ B3,π1),

V (±ρ−(1+(h−1)s)σ, ρ−λnλ1σε2, . . . , ρ
−λnλn−1σεn) =

= ρ−qσV (±ρ−(h−1)sσ, ρ−(λn−1)λ1σε2, . . . , ρ
−(λn−1)λn−1σεn) ≤ d6ρ

−qσ,

where 0 < s < 1. Therefore, we have

V (ε)−γ > d−γ
6 ρ(q+λ−1)σ, ε ∈ (Pρ−σ \ Pρ−hσ ) ∩ (B3,π1 \ B3,π1). (A.10)

(6) Thus, selecting h > {h̄1, h̄2} and ρ > {ρ1, ρ2}, from the above inequalities (A.3),
(A.7); (A.4), (A.8); (A.5), (A.9) and (A.6), (A.10), we can obtain a compact set which
encircles the origin A ∆= (S1∩Pρ−hσ )∪(Fρ−σ ∩B3,π1)∪(Fρ−hσ ∩(B1,1 \B3,π1))∪((Pρ−σ \
Pρ−hσ ) ∩ (B3,π1 \ B3,π1)). And

dV (ε)
dt

∣∣∣∣
(10)

V (ε)−γ ≤ −w4ρ
1−σ, ε ∈ A, (A.11)

where w4 = min{d1d
−γ
4 , d2d

−γ
5 , d3d

−γ
6 ,

d2d−γ
6

2 } > 0.

Part II: It is clear that V (ε) and dV (ε)
dt

∣∣∣
(10)

are homogeneous of degrees q and q+λ−1

with respect to the weights {λi}0≤i≤n−1. For any ε ∈ Rn \ {0}, there exist v0 > 0 and

ε0 ∈ A such that ε = (ε1, . . . , εn)T = (v0ε
0
1, . . . , v

λn−1
0 ε0

n)T . Then we have dV (ε)
dt

∣∣∣
(10)

=

vq+λ−1
0

dV (ε0)
dt

∣∣∣
(10)

and V (ε) = vq
0V (ε0).

Finally, from (A.11), we obtain

dV (ε)
dt

∣∣∣∣
(10)

= V (ε)−γ dV (ε0)
dt

∣∣∣∣
(10)

V (ε0)−γ ≤ −w4ρ
1−σV (ε)−γ , ε ∈ Rn \ {0}. (A.12)

As for the proof of (iii), it follows the same procedure as the proof of (iv). The main
difference compared with the proof (iv) is that in the proof of (iii), the compact set
is constructed from the following four parts: S1 ∩ Pρ−σ , (P(1+π2)ρ−σ \ P(1−π2)ρ−σ ) ∩
B4,π2 , Fρ−h∗σ ∩ (B1,1 \B4,π2) and (Pρ−σ \Pρ−h∗σ )∩ (B4,π2 \B4,π2), where π2 > 0, h∗ > 2
are two positive numbers.

This completes the proof. �
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