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Abstract

In this paper, we obtain Fekete–Szegö inequalities for a generalized

class of analytic functions f(z) ∈ A for which 1 + 1
b

(
z(Dn

α,β,λ,δf(z))
′

Dn
α,β,λ,δ

f(z)
− 1

)

(α, β, λ, δ ≥ 0; β > α; λ > δ; b ∈ C
∗; n ∈ N0; z ∈ U) lies in a region

starlike with respect to 1 and is symmetric with respect to the real axis.

Key words: analytic, subordination, Fekete–Szegö problem

2000 Mathematics Subject Classification: 30C45

1 Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z +

∞∑
k=2

akz
k (z ∈ U), (1.1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. Further
let S denote the family of functions of the form (1.1) which are univalent in U .
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A classical theorem of Fekete–Szegö [7] states that, for f(z) ∈ S given by (1.1)
that

∣∣a3 − μa22
∣∣ ≤

⎧⎪⎨
⎪⎩

3− 4μ, if μ ≤ 0,

1 + 2 exp
(

−2μ
1−μ

)
, if 0 ≤ μ ≤ 1,

4μ− 3, if μ ≥ 1.

(1.2)

The result is sharp.
Given two functions f(z) and g(z), which are analytic in U with f(0) =

g(0), the function f(z) is said to be subordinate to g(z) in U if there exists a
function w(z), analytic in U , such that w(0) = 0 and |w(z)| < 1 (z ∈ U) and
f(z) = g(w(z)) (z ∈ U). We denote this subordination by f(z) ≺ g(z) in U (see
[13]).
Let ϕ(z) be an analytic function with positive real part on U , which satisfies

ϕ(0) = 1 and ϕ′(0) > 0, and which maps the unit disc U onto a region starlike
with respect to 1 and symmetric with respect to the real axis. Let S∗(ϕ) be the
class of functions f(z) ∈ S for which

zf ′(z)
f(z)

≺ ϕ(z) (z ∈ U), (1.3)

and C(ϕ) be the class of functions f(z) ∈ S for which

1 +
zf ′′(z)
f ′(z)

≺ ϕ(z) (z ∈ U). (1.4)

The classes of S∗(ϕ) and C(ϕ) were introduced and studied by Ma and Minda
[12]. The familiar class S∗(α) of starlike functions of order α and the class C(α)
of convex functions of order α (0 ≤ α < 1) are the special cases of S∗(ϕ) and
C(ϕ), respectively, when

ϕ(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1).

Ma and Minda [12] have obtained the Fekete–Szegö problem for the functions
in the class C(ϕ). For a function f(z) ∈ S, Ramadan and Darus [18] introduced
the generalized differential operator Dn

α,β,λ,δ as following:

D0
α,β,λ,δf(z) = f(z),

D1
α,β,λ,δf(z) = [1− (λ− δ) (β − α)] f(z) + (λ− δ) (β − α) zf ′(z)

= z +
∞∑
k=2

[(λ− δ) (β − α) (k − 1) + 1] akz
k,

Dn
α,β,λ,δf(z) = D1

α,β,λ,δ

(
Dn−1

α,β,λ,δf(z)
)
,

Dn
α,β,λ,δf(z) = z +

∞∑
k=2

[(λ− δ) (β − α) (k − 1) + 1]
n
akz

k, (1.5)

(α, β, λ, δ ≥ 0; δ ≥ 0; β > α; λ > δ; n ∈ N0 = N ∪ {0} , N = {1, 2, 3, . . . }) .
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Remark 1 (i) Taking α = 0, then operator Dn
0,β,λ,δ = Dn

β,λ,δ , was introduced
and studied by Darus and Ibrahim [6];
(ii) Taking α = δ = 0 and β = 1, then operator Dn

0,1,λ,0 = Dn
λ , was intro-

duced and studied by Al-Oboudi [1];
(iii) Taking α = δ = 0 and λ = β = 1, then operator Dn

0,1,1,0 = Dn, was
introduced and studied by Salagean [20].

Using the generalized operator Dn
α,β,λ,δ we introduce a new class of analytic

functions as following:

Definition 1 For b ∈ C∗ = C\{0}, the classGn,b
α,β,λ,δ (ϕ) consists of all functions

f(z) ∈ A satisfying the following subordination:

1 +
1

b

⎛
⎜⎝z

(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

⎞
⎟⎠ ≺ ϕ(z), (1.6)

(α, β, λ, δ ≥ 0; β > α; λ > δ; n ∈ N0; z ∈ U) .

Specializing the parameters α, β, λ, δ, n, b and ϕ(z), we obtain the following
subclasses studied by various authors:

(i) Gn,1
α,β,λ,δ (ϕ) = Mn

α,β,λ,δ (ϕ) (see Ramadan and Darus [18]);

(ii) Gn,b
0,1,1,0 (ϕ) = Hn,b (ϕ) (see Aouf and Silverman [4]);

(iii) G0,b
0,1,1,0 (ϕ) = S∗

b (ϕ) and G1,b
0,1,1,0 (ϕ) = Cb (ϕ)

(see Ravichandran et al. [19]);

(iv) Gn,b
0,1,1,0

(
1+z
1−z

)
= Sn (b) (see Aouf et al. [2]);

(v) G0,b
0,1,1,0

(
1+z
1−z

)
= S (b) (see Nasr and Aouf [17] see also Aouf et al. [3]);

(vi) G1,b
0,1,1,0

(
1+z
1−z

)
= C (b) (see Nasr and Aouf [14] see also Aouf et al. [3]);

(vii) G
0,(1−ρ) cos ηe−iη

0,1,1,0

(
1+z
1−z

)
= Sη (ρ)

(|η| < π
2 , 0 ≤ ρ < 1

)
(see Libera [10] see also Keogh and Merkes [9]);

(viii) G
1,(1−ρ) cos ηe−iη

0,1,1,0

(
1+z
1−z

)
= Cη (ρ)

(|η| < π
2 , 0 ≤ ρ < 1

)
(see Chichra [5]).

Also we note that for additional choices of parameters we have the following
new subclasses of A:
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(i)

Gn,b
α,β,λ,δ

(
1 +Az

1 +Bz

)
= Sn,b

α,β,λ,δ(A,B)

=

{
f(z) ∈ A : 1 +

1

b

(
z
(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

)
≺ 1 +Az

1 +Bz

(−1 ≤ B < A ≤ 1; α, β, λ, δ ≥ 0; β > α; λ > δ; n ∈ N0; z ∈ U)

}
;

(ii)

Gn,b
α,β,λ,δ

(
1 + (1− 2ρ) z

1− z

)
= Sn,b

α,β,λ,δ(ρ)

=

{
f(z) ∈ A : Re

{
1 +

1

b

(
z
(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

)}
> ρ

(α, β, λ, δ ≥ 0; β > α; λ > δ; 0 ≤ ρ < 1; n ∈ N0; z ∈ U)

}
;

(iii)

G
n,(1−ρ) cos ηe−iη

α,β,λ,δ (ϕ) = Sn,ρ,η
α,β,λ,δ(ϕ)

=

{
f(z) ∈ A :

eiη
z(Dn

α,β,λ,δf(z))
′

Dn
α,β,λ,δf(z)

− ρ cos η − i sin η

(1− ρ) cos η
≺ ϕ(z)

(|η| < π
2 ; α, β, λ, δ ≥ 0; β > α; λ > δ; 0 ≤ ρ < 1; n ∈ N0; z ∈ U

)}
.

In this paper, we obtain the Fekete–Szegö inequalities for functions in the
class Gn,b

α,β,λ,δ (ϕ).

2 Fekete–Szegö problem

Unless otherwise mentioned, we assume in the reminder of this paper that
α, β, λ, δ ≥ 0, β > α, λ > δ, b ∈ C∗ and z ∈ U .
To prove our results, we shall need the following lemmas:

Lemma 1 [12] If p(z) = 1+ c1z+ c2z
2+ . . . (z ∈ U) is a function with positive

real part in U and μ is a complex number, then∣∣c2 − μc21
∣∣ ≤ 2max{1; |2μ− 1|}. (2.1)
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The result is sharp for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
(z ∈ U). (2.2)

Lemma 2 [12] If p1(z) = 1 + c1z + c2z
2 + . . . is a function with positive real

part in U , then

∣∣c2 − νc21
∣∣ ≤

⎧⎨
⎩

−4ν + 2, if ν ≤ 0,
2, if 0 ≤ ν ≤ 1,

4ν − 2, if ν ≥ 1.

When ν < 0 or ν > 1, the equality holds if and only if

p1(z) =
1 + z

1− z

or one of its rotations. If 0 < ν < 1, then the equality holds if and only if

p1(z) =
1 + z2

1− z2

or one of its rotations. If ν = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z

1 + z
(0 ≤ γ ≤ 1),

or one of its rotations. If ν = 1, the equality holds if and only if

1

p1(z)
=

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z

1 + z
(0 ≤ γ ≤ 1).

Also the above upper bound is sharp and it can be improved as follows when
0 < ν < 1: ∣∣c2 − νc21

∣∣+ ν |c1|2 ≤ 2 (0 < ν < 1
2 ),

and ∣∣c2 − νc21
∣∣+ (1− ν) |c1|2 ≤ 2 ( 12 < ν < 1).

Using Lemma 1, we have the following theorem:

Theorem 1 Let ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + . . . , where ϕ(z) ∈ A and
ϕ′(0) > 0. If f(z) given by (1.1) belongs to the class Gn,b

α,β,λ,δ (ϕ) and if μ is a
complex number, then

∣∣a3 − μa22
∣∣ ≤ |b|B1

2 [2 (λ− δ) (β − α) + 1]n

×max

{
1,

∣∣∣∣∣B2

B1
+

(
1− 2 [2 (λ− δ) (β − α) + 1]

n

[(λ− δ) (β − α) + 1]2n
μ

)
bB1

∣∣∣∣∣
}
. (2.3)

The result is sharp.



26 M. K. Aouf, R. M. El-Ashwah, A. A. M. Hassan, A. H. Hassan

Proof If f(z) ∈ Gn,b
α,β,λ,δ (ϕ), then there exists a Schwarz function w(z) which

is analytic in U with w(0) = 0 and |w(z)| < 1 in U and such that

1 +
1

b

⎛
⎜⎝z

(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

⎞
⎟⎠ = ϕ(w(z)). (2.4)

Define the function p1(z) by

p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + . . . (2.5)

Since w(z) is a Schwarz function, we see that Re {p1(z)} > 0 and p1(0) = 1.
Define the function p(z) by:

p(z) = 1 +
1

b

(
z
(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

)
= 1 + b1z + b2z

2 + . . . (2.6)

In view of the equations (2.4), (2.5) and (2.6), we have

p(z) = ϕ

(
p1(z)− 1

p1(z) + 1

)
= ϕ

(
c1z + c2z

2 + . . .

2 + c1z + c2z2 + . . .

)

= ϕ

(
1

2
c1z +

1

2

(
c2 − c21

2

)
z2 + . . .

)

= 1 +
1

2
B1c1z +

[
1

2
B1

(
c2 − c21

2

)
+

1

4
B2c

2
1

]
z2 + . . . (2.7)

Thus

b1 =
1

2
B1c1 and b2 =

1

2
B1

(
c2 − c21

2

)
+

1

4
B2c

2
1. (2.8)

Since

1 +
1

b

(
z
(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

)
= 1 +

{
1

b
([(λ− δ) (β − α) + 1]n a2)

}
z

+

{
1

b

(
2 [2 (λ− δ) (β − α) + 1]n a3 − [(λ− δ) (β − α) + 1]2n a22

)}
z2 + . . .

Then from (2.6) and (2.8), we obtain

a2 =
bB1c1

2 [(λ− δ) (β − α) + 1]n
, (2.9)

and

a3 =
bB1c2

4 [2 (λ− δ) (β − α) + 1]n
+

c21
8 [2 (λ− δ) (β − α) + 1]n

[
b2B2

1 − b (B1 −B2)
]
.

(2.10)



Fekete–Szegö problem for a new class of analytic functions. . . 27

Therefore, we have

a3 − μa22 =
bB1

4 [2 (λ− δ) (β − α) + 1]n
[
c2 − νc21

]
, (2.11)

where

ν =
1

2

[
1− B2

B1
+

(
2 [2 (λ− δ) (β − α) + 1]n

[(λ− δ) (β − α) + 1]
2n μ− 1

)
bB1

]
. (2.12)

Our result now follows by an application of Lemma 1. The result is sharp
for the function f(z) given by

1 +
1

b

⎛
⎜⎝z

(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

⎞
⎟⎠ = ϕ(z2), (2.13)

or

1 +
1

b

⎛
⎜⎝z

(
Dn

α,β,λ,δf(z)
)′

Dn
α,β,λ,δf(z)

− 1

⎞
⎟⎠ = ϕ(z). (2.14)

This completes the proof of Theorem 1. �

Remark 2 (i) Taking n = 0 in Theorem 1, we improve the result obtained by
Ravichandran et al. [19, Theorem 4.1];
(ii) Taking α = δ = 0, β = λ = 1, b = (1− ρ) cos ηe−iη (|η| < π

2 , 0 ≤ ρ < 1)
and ϕ(z) = 1+z

1−z (equivalently B1 = B2 = 2) in Theorem 1, we obtain the result
obtained by Goyal and Kumar [8, Corollary 2.10];
(iii) Taking b = (1−ρ) cos ηe−iη (|η| < π

2 , 0 ≤ ρ < 1), n = 0 and ϕ(z) = 1+z
1−z

in Theorem 1, we obtain the result obtained by Keogh and Merkes [9, Thm 1];
(iv) Taking α = δ = 0 and β = λ = 1 in Theorem 1, we obtain the result

obtained by Aouf and Silverman [4, Theorem 1].

Also by specializing the parameters in Theorem 1, we obtain the following
new sharp results.
Putting b = 1 in Theorem 1, we obtain the following corollary:

Corollary 1 If f(z) given by (1.1) belongs to the class Mn
α,β,λ,δ (ϕ), then for

any complex number μ, we have

∣∣a3 − μa22
∣∣ ≤ B1

2 [2 (λ− δ) (β − α) + 1]
n

×max

{
1,

∣∣∣∣∣B2

B1
+

(
1− 2 [2 (λ− δ) (β − α) + 1]

n

[(λ− δ) (β − α) + 1]2n
μ

)
B1

∣∣∣∣∣
}
. (2.15)

The result is sharp.
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Putting ϕ(z) = 1+Az
1−Bz (−1 ≤ B < A ≤ 1) (or equivalently, B1 = A− B and

B2 = −B(A−B)) in Theorem 1, we obtain the following corollary:

Corollary 2 If f(z) given by (1.1) belongs to the class Sn,b
α,β,λ,δ(A,B), then for

any complex number μ, we have

∣∣a3 − μa22
∣∣ ≤ (A−B) |b|

2 [2 (λ− δ) (β − α) + 1]
n

×max

{
1,

∣∣∣∣∣
(
1− 2 [2 (λ− δ) (β − α) + 1]

n

[(λ− δ) (β − α) + 1]2n
μ

)
(A−B) b−B

∣∣∣∣∣
}
. (2.16)

The result is sharp.

Putting ϕ(z) = 1+(1−2ρ)z
1−z (0 ≤ ρ < 1) in Theorem 1, we obtain the following

corollary:

Corollary 3 If f(z) given by (1.1) belongs to the class Sn,b
α,β,λ,δ(ρ), then for any

complex number μ, we have

∣∣a3 − μa22
∣∣ ≤ (1− ρ) |b|

[2 (λ− δ) (β − α) + 1]n

×max

{
1,

∣∣∣∣∣2
(
1− 2 [2 (λ− δ) (β − α) + 1]n

[(λ− δ) (β − α) + 1]2n
μ

)
(1− ρ)b+ 1

∣∣∣∣∣
}
. (2.17)

The result is sharp.

Putting b = (1− ρ) cos ηe−iη (|η| < π
2 , 0 ≤ ρ < 1) in Theorem 1, we obtain

the following corollary:

Corollary 4 If f(z) given by (1.1) belongs to the class Sn,ρ,η
α,β,λ,δ(ϕ), then for any

complex number μ, we have

∣∣a3 − μa22
∣∣ ≤ B1 (1− ρ) cos η

2 [2 (λ− δ) (β − α) + 1]n

×max

{
1,

∣∣∣∣∣B2

B1
eiη +

(
1− 2 [2(λ− δ)(β − α) + 1]n

[(λ− δ) (β − α) + 1]2n
μ

)
(1− ρ)B1 cos η

∣∣∣∣∣
}
.

(2.18)
The result is sharp.

Putting α = δ = 0, β = λ = 1 and ϕ(z) = 1+z
1−z in Theorem 1, we obtain the

result of Aouf et al. [2, Theorem 3, with m = 1]:

Corollary 5 If f(z) given by (1.1) belongs to the class Sn (b), then for any
complex number μ, we have

∣∣a3 − μa22
∣∣ ≤ |b|

3n
max

{
1,
∣∣1 + 2

(
1− 2

(
3
4

)n
μ
)
b
∣∣} . (2.19)

The result is sharp.
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Putting n = 0 and ϕ(z) = 1+z
1−z in Theorem 1, we obtain the result of and

Nasr and Aouf [17, Theorem 2] see also Nasr and Aouf [16, Theorem 1, with
m = 1]:

Corollary 6 If f(z) given by (1.1) belongs to the class S (b), then for any
complex number μ, we have∣∣a3 − μa22

∣∣ ≤ |b|max {1, |1 + 2 (1− 2μ) b|} . (2.20)

The result is sharp.

Putting α = δ = 0, β = λ = 1, n = 1 and ϕ(z) = 1+z
1−z in Theorem 1, we

obtain the result of Nasr and Aouf [15, Theorem 1, with m = 1] see also Nasr
and Aouf [14]:

Corollary 7 If f(z) given by (1.1) belongs to the class C(b), then for any com-
plex number μ, we have

∣∣a3 − μa22
∣∣ ≤ 1

3
|b|max

{
1,
∣∣1 + 2

(
1− 3

2μ
)
b
∣∣} . (2.21)

The result is sharp.

Putting α = δ = 0, β = λ = 1, n = 0, b = (1− ρ) cos ηe−iη (|η| < π
2 ,

0 ≤ ρ < 1) and ϕ(z) = 1+z
1−z in Theorem 1, we obtain the result of Keogh and

Merkes [9, Theorem 1]:

Corollary 8 If f(z) given by (1.1) belongs to the class Sη(ρ), then for any
complex number μ, we have∣∣a3 − μa22

∣∣ ≤ (1− ρ) cos ηmax
{
1,
∣∣2(2μ− 1)(1− ρ) cos η − eiη

∣∣} . (2.22)

The result is sharp.

Putting α = δ = 0, β = λ = 1, n = 1, b = (1 − ρ) cos ηe−iη (|η| < π
2 ,

0 ≤ ρ < 1) and ϕ(z) = 1+z
1−z in Theorem 1, we obtain the result of Libera and

M. Ziegler [11, Lemma 1, with ρ = 0] see also Chichra [5]:

Corollary 9 If f(z) given by (1.1) belongs to the class Cη(ρ), then for any
complex number μ, we have

∣∣a3 − μa22
∣∣ ≤ 1

3
(1− ρ) cos ηmax

{
1,
∣∣2 ( 32μ− 1

)
(1− ρ) cos η − eiη

∣∣} . (2.23)

The result is sharp.

Using Lemma 2, we have the following theorem:
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Theorem 2 Let ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + . . . (b > 0; Bi > 0; i ∈ N).
Also let

σ1 =
[(λ− δ)(β − α) + 1]

2n (
B2 −B1 + bB2

1

)
2 [2(λ− δ)(β − α) + 1]n bB2

1

,

and

σ2 =
[(λ− δ)(β − α) + 1]2n

(
B2 +B1 + bB2

1

)
2 [2(λ− δ)(β − α) + 1]n bB2

1

.

If f(z) is given by (1.1) belongs to the class Gn,b
α,β,λ,δ(ϕ), then we have the fol-

lowing sharp results:

(i) If μ ≤ σ1, then

∣∣a3 − μa22
∣∣ ≤ b

2 [2(λ− δ)(β − α) + 1]
n

×
{
B2 −

(
2
[2 (λ− δ) (β − α) + 1]n

[(λ− δ)(β − α) + 1]2n
μ− 1

)
bB2

1

}
. (2.24)

(ii) If σ1 ≤ μ ≤ σ2, then

∣∣a3 − μa22
∣∣ ≤ bB1

2 [2 (λ− δ) (β − α) + 1]
n . (2.25)

(iii) If μ ≥ σ2, then

∣∣a3 − μa22
∣∣ ≤ b

2 [2 (λ− δ) (β − α) + 1]n

×
{
−B2 +

(
2
[2(λ− δ)(β − α) + 1]n

[(λ− δ)(β − α) + 1]
2n μ− 1

)
bB2

1

}
. (2.26)

Proof For f(z) ∈ Gn,b
α,β,λ,δ (ϕ), p(z) given by (2.6) and p1(z) given by (2.5),

then a2 and a3 are given as same as in Theorem 1. Also

a3 − μa22 =
bB1

4 [2 (λ− δ) (β − α) + 1]n
[
c2 − νc21

]
, (2.27)

where

ν =
1

2

[
1− B2

B1
+

(
2 [2(λ− δ)(β − α) + 1]n

[(λ− δ)(β − α) + 1]
2n μ− 1

)
bB1

]
. (2.28)

First, if μ ≤ σ1, then we have ν ≤ 0, then by applying Lemma 2 to equality
(2.27), we have ∣∣a3 − μa22

∣∣ ≤
≤ b

2 [2(λ− δ)(β − α) + 1]
n

{
B2 −

(
2
[2(λ− δ)(β − α) + 1]n

[(λ− δ)(β − α) + 1]
2n μ− 1

)
bB2

1

}
,
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which is evidently inequality (2.24) of Theorem 2.
If μ = σ1, then we have ν = 0, therefore equality holds if and only if

p1(z) =

(
1 + γ

2

)
1 + z

1− z
+

(
1− γ

2

)
1− z

1 + z
(0 ≤ γ ≤ 1; z ∈ U).

Next, if σ1 ≤ μ ≤ σ2, we note that

max

{
1

2

[
1− B2

B1
+

(
2 [2(λ− δ)(β − α) + 1]

n

[(λ− δ)(β − α) + 1]2n
μ− 1

)
bB1

]}
≤ 1, (2.29)

then applying Lemma 2 to equality (2.27), we have

∣∣a3 − μa22
∣∣ ≤ bB1

2 [2(λ− δ)(β − α) + 1]n
,

which is evidently inequality (2.25) of Theorem 2.
If σ1 < μ < σ2, then we have

p1(z) =
1 + z2

1− z2
.

Finally, If μ ≥ σ2, then we have ν ≥ 1, therefore by applying Lemma 2 to (2.27),
we have ∣∣a3 − μa22

∣∣ ≤
≤ b

2 [2(λ− δ)(β − α) + 1]
n

{
−B2 +

(
2
[2(λ− δ)(β − α) + 1]n

[(λ− δ)(β − α) + 1]
2n μ− 1

)
bB2

1

}
,

which is evidently inequality (2.26) of Theorem 2.
If μ = σ2, then we have ν = 1, therefore equality holds if and only if

1

p1(z)
=

(
1 + γ

2

)
1 + z

1− z
+

(
1− γ

2

)
1− z

1 + z
(0 ≤ γ ≤ 1; z ∈ U).

To show that the bounds are sharp, we define the functions Ks
ϕ(s ≥ 2) by

1+
1

b

(
z(Dn

α,β,λ,δK
s
ϕ(z))

′

Dn
α,β,λ,δK

s
ϕ(z)

− 1

)
= ϕ

(
zs−1

)
, Ks

ϕ(0) = 0 = K ′s
ϕ (0)−1, (2.30)

and the functions Ft and Gt (0 ≤ t ≤ 1) by

1 +
1

b

(
z(Dn

α,β,λ,δFt(z))
′

Dn
α,β,λ,δFt(z)

− 1

)
= ϕ

(
z(z + t)

1 + tz

)
, Ft(0) = 0 = F ′

t (0)− 1,

(2.31)



32 M. K. Aouf, R. M. El-Ashwah, A. A. M. Hassan, A. H. Hassan

and

1 +
1

b

(
z(Dn

α,β,λ,δGt(z))
′

Dn
α,β,λ,δGt(z)

− 1

)
= ϕ

(
−z(z + t)

1 + tz

)
, Gt(0) = 0 = G′

t(0)− 1.

(2.32)

Cleary the functions Ks
ϕ, Ft and Gt ∈ Gn,b

α,β,λ,δ(ϕ). Also we write Kϕ = K2
ϕ.

If μ < σ1 or μ > σ2, then the equality holds if and only if f is Kϕ or one of
its rotations. When σ1 < μ < σ2, then the equality holds if f is K3

ϕ or one of
its rotations. If μ = σ1, then the equality holds if and only if f is Ft or one of
its rotations. If μ = σ2, then the equality holds if and only if f is Gt or one of
its rotations. �

Remark 3 (i) Taking b = 1 in Theorem 2, we improve the result obtained by
Ramadan and Darus [18, Theorem 1];
(ii) Taking α = δ = 0 and β = λ = 1 in Theorem 2, we obtain the result

obtained by Goyal and Kumar [8, Corollary 2.7] and Aouf and Silverman [4,
Theorem 2].

Also, using Lemma 2 we have the following theorem:

Theorem 3 For ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + . . . (b > 0; Bi > 0; i ∈ N)

and f(z) given by (1.1) belongs to the class Gn,b
α,β,λ,δ(ϕ) and σ1 ≤ μ ≤ σ2, then

in view of Lemma 2, Theorem 2 can be improved. Let

σ3 =
[(λ− δ)(β − α) + 1]2n

(
B2 + bB2

1

)
2 [2(λ− δ)(β − α) + 1]

n
bB2

1

,

(i) If σ1 ≤ μ ≤ σ3, then

∣∣a3 − μa22
∣∣+ [(λ− δ) (β − α) + 1]2n

2 [2 (λ− δ) (β − α) + 1]
n
bB1

×
{
1− B2

B1
+

(
2
[2(λ− δ)(β − α) + 1]

n

[(λ− δ)(β − α) + 1]2n
− 1

)
bB1

}
|a2|2

≤ bB1

2 [2(λ− δ)(β − α) + 1]n
; (2.33)

(ii) If σ3 ≤ μ ≤ σ2, then

∣∣a3 − μa22
∣∣+ [(λ− δ)(β − α) + 1]2n

2 [2(λ− δ)(β − α) + 1]
n
bB1

×
{
1 +

B2

B1
−
(
2
[2(λ− δ)(β − α) + 1]n

[(λ− δ)(β − α) + 1]
2n μ− 1

)
bB1

}
|a2|2

≤ bB1

2 [2(λ− δ)(β − α) + 1]
n . (2.34)
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Proof For the values of σ1 ≤ μ ≤ σ3, we have

∣∣a3 − μa22
∣∣+ (μ− σ1) |a2|2 =

bB1

4 [2(λ− δ)(β − α) + 1]
n

∣∣c2 − νc21
∣∣

+

(
μ− [(λ− δ)(β − α) + 1]

2n (
B2 −B1 + bB2

1

)
2 [2 (λ− δ) (β − α) + 1]

n
bB2

1

)
b2B2

1

4 [(λ− δ) (β − α) + 1]
2n |c1|2

=
bB1

2 [2 (λ− δ) (β − α) + 1]
n

{
1

2

( ∣∣c2 − νc21
∣∣+ ν |c1|2

)}
. (2.35)

Now apply Lemma 2 to equality (2.35), then we have

∣∣a3 − μa22
∣∣+ (μ− σ1) |a2|2 ≤ bB1

2 [2 (λ− δ) (β − α) + 1]n
,

which is evidently inequality (2.33) of Theorem 3.
Next, for the values of σ3 ≤ μ ≤ σ2, we have

∣∣a3 − μa22
∣∣+ (σ2 − μ) |a2|2 =

bB1

4 [2(λ− δ)(β − α) + 1]n
∣∣c2 − νc21

∣∣
+

(
[(λ− δ) (β − α) + 1]2n

(
B2 +B1 + bB2

1

)
2 [2 (λ− δ) (β − α) + 1]n bB2

1

− μ

)
b2B2

1

4 [(λ− δ) (β − α) + 1]2n
|c1|2

=
bB1

2 [2 (λ− δ) (β − α) + 1]n

{
1

2

( ∣∣c2−νc21
∣∣+ (1− ν) |c1|2

)}
. (2.36)

Now apply Lemma 2 to equality (2.36), then we have

∣∣a3 − μa22
∣∣+ (σ2 − μ) |a2|2 ≤ bB1

2 [2 (λ− δ) (β − α) + 1]n
,

which is evidently inequality (2.34). This completes the proof of Theorem 3. �

Remark 4 (i) taking α = δ = 0 and β = λ = 1 in Theorem 3, we improve the
result obtained by Goyal and Kumar [8, Remark 2.8];
(ii) taking b = 1 in Theorem 3, we improve the result obtained by Ramadan

and Darus [18, Remark 2].
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