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Abstract

In the present paper, we establish a common fixed point theorem for
four self-mappings of a complete 2-metric space using the weak commu-
tativity condition and A-contraction type condition and then extend the
theorem for a class of mappings.
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1 Introduction

In 1981, D. Delbosco [4] gave an unified approach for different contractive map-
pings to prove the fixed point theorem by considering the set F of all continuous
functions g : [0,+∞)

3 → [0,∞) satisfying the following conditions:

(g-1): g (1, 1, 1) = h < 1

(g-2): if u, v ∈ [0,∞) are such that u ≤ g (v, v, u) or, u ≤ g (v, u, v) or,
u ≤ g (u, v, v); then u ≤ hv.

Recently Akram et al. [1] have modified the above concept slightly and intro-
duced a general class of contractions called A-contraction which is a proper
superclass of Kannan’s contraction [8], Bianchini’s contraction [2] and Reich’s
contraction [11].
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1.1 A-contraction

Let a nonempty set A consisting of all functions α : R3
+ → R+ satisfying

(i) α is continuous on the set R3
+ of all triplets of nonnegative reals(with

respect to the Euclidean metric on R3).

(ii) a ≤ kb for some k ∈ [0, 1) whenever a ≤ α (a, b, b) or a ≤ α (b, a, b) or
a ≤ α (b, b, a), for all a, b.

Definition 1.1 A self map T on a metric space X is said to be A-contraction
if it satisfies the condition:

d (Tx, Ty) ≤ α (d (x, y) , d (x, Tx) , d (y, Ty)) (1.1)

for all x, y ∈ X and some α ∈ A.

Here we prove a common fixed point theorem for two pairs of weakly commuting
mappings using the idea of A-contraction and then extend the theorem for a
family of self-mappings in a 2-metric space. Before proving our main theorem
we need to state some preliminary ideas and definitions of weakly commuting
mappings in a 2-metric space.

2 Preliminaries

In sixties, S. Gähler ([6]–[7]) introduced the concept of 2-metric space. Since
then a number of mathematician have been investigating the different aspects
of fixed point theory in the setting of 2-metric space.

2.1 2-metric space

Let X be a non empty set. A real valued nonnegative function d on X×X×X
is said to be a 2-metric on X if

(I) given distinct elements x,y of X, there exists an element z of X such that
d(x, y, z) �= 0

(II) d(x, y, z) = 0 when at least two of x, y, z are equal,

(III) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z in X, and

(IV) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z, w in X.

When d is a 2-metric on X, then the ordered pair (X, d) is called a 2-metric
space.

A sequence {xn} in X is said to be a Cauchy sequence if for each u ∈ X,
lim d(xn, xm, u) = 0 as n,m → ∞.
A sequence {xn} in X is convergent to an element x ∈ X if for each u ∈ X,

limn→∞ d(xn, x, u) = 0
A complete 2-metric space is one in which every Cauchy sequence in X

converges to an element of X.
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In 1984, M. D. Khan [9] in his doctoral thesis, defined weakly commuting
mappings in a 2-metric space as follows.

Definition 2.1 Let S and T be two mappings from a 2-metric space (X, d) into
itself. Then a pair of mappings (S, T ) is said to be weakly commuting on x, if
d (STx, TSx, u) ≤ d (Tx, Sx, u) for all u ∈ X.

Note that a commuting pair (S, T ) on a 2-metric space (X, d) is weakly commut-
ing, but the converse is not true (see [10]). On the otherhand Cho–Khan–Singh
[3] have proved some common fixed point theorems for weakly commuting self-
mappings in a 2-metric space. Here we shall prove some common fixed point
theorems in 2-metric space in a more generalised conditions.

3 Main results

Theorem 3.1 Let I, J , S and T be four self mappings of a complete 2-metric
space (X, d) satisfying

I(X) ⊂ T (X) and J(X) ⊂ S(X). (3.1)

For α ∈ A and for all x, y, u ∈ X

d (Ix, Jy, u) ≤ α (d (Sx, Ty, u) , d (Sx, Ix, u) , d (Ty, Jy, u)) . (3.2)

If one of I, J , S and T is continuous and if I and J weakly commute with S
and T respectively, then I, J , S and T have a unique common fixed point z
in X.

Proof Let x0 be an arbitrary element of X. We define Ix2n+1 = y2n+2,
Tx2n = y2n and Jx2n = y2n+1, Sx2n+1 = y2n+1; n = 1, 2, . . . Taking x = x2n+1

and y = x2n in (3.2) we have

d (Ix2n+1, Jx2n, u) ≤
≤ α (d (Sx2n+1, Tx2n, u) , d (Sx2n+1, Ix2n+1, u) , d (Tx2n, Jx2n, u))

or,

d (y2n+2, y2n+1, u) ≤ α (d (y2n+1, y2n, u) , d (y2n+1, y2n+2, u) , d (y2n, y2n+1, u)) .

So by axiom (ii) of function α,

d (y2n+1, y2n+2, u) ≤ k.d (y2n, y2n+1, u) where k ∈ [0, 1) (3.3)

Similarly by putting x = x2n−1 and y = x2n in (3.2) we get

d (Ix2n−1, Jx2n, u) ≤
≤ α (d (Sx2n−1, Tx2n, u) , d (Sx2n−1, Ix2n−1, u) , d (Tx2n, Jx2n, u))
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or,

d (y2n, y2n+1, u) ≤ α (d (y2n−1, y2n, u) , d (y2n−1, y2n, u) , d (y2n, y2n+1, u)) .

So by axiom (ii) of function α,

d (y2n, y2n+1, u) ≤ k.d (y2n−1, y2n, u) where k ∈ [0, 1) (3.4)

So by (3.3) and (3.4) we get

d (y2n+1, y2n+2, u) ≤ k · d (y2n, y2n+1, u) ≤ k2 · d (y2n−1, y2n, u) .

Proceeding in this way

d (y2n+1, y2n+2, u) ≤ k2n+1 · d (y0, y1, u)

and
d (y2n, y2n+1, u) ≤ k2n · d (y0, y1, u) .

So in general
d (yn, yn+1, u) ≤ kn · d (y0, y1, u) . (3.5)

Then using property (IV) of 2-metric space we get

d (yn, yn+2, u) ≤ d (yn, yn+2, yn+1) + d (yn, yn+1, u) + d (yn+1, yn+2, u)

≤ d (yn, yn+2, yn+1) +

1∑

r=0

d (yn+r, yn+r+1, u) . (3.6)

Here we consider two possible cases to show that d (yn, yn+2, yn+1) = 0.

Case I. n = even = 2m (say)
Therefore

d (yn, yn+2, yn+1) = d (y2m, y2m+2, y2m+1)

= d (y2m+2, y2m+1, y2m)

= d (Ix2m+1, Jx2m, y2m)

≤ α (d (Sx2m+1, Tx2m, y2m) , d (Sx2m+1, Ix2m+1, y2m) ,

d (Tx2m, Jx2m, y2m))

= α (d (y2m+1, y2m, y2m) , d (y2m+1, y2m+2, y2m) ,

d (y2m, y2m+1, y2m))

= α (0, d (y2m+1, y2m+2, y2m) , 0) .

So by axiom (ii) of function α,

d (yn, yn+2, yn+1) = d (y2m, y2m+2, y2m+1) ≤ k · 0 = 0 where k ∈ [0, 1)

which implies d (yn, yn+2, yn+1) = 0.
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Case II. n = odd = 2m+ 1 (say)
Therefore

d (yn, yn+2, yn+1) = d (y2m+1, y2m+3, y2m+2)

= d (y2m+3, y2m+2, y2m+1)

= d (Jx2m+2, Ix2m+1, y2m+1)

≤ α (d (Sx2m+1, Tx2m+2, y2m+1) ,

d (Sx2m+1, Ix2m+1, y2m+1) , d (Tx2m+2, Jx2m+2, y2m+1))

= α (d (y2m+1, y2m+2, y2m+1) , d (y2m+1, y2m+2, y2m+1) ,

d (y2m+2, y2m+3, y2m+1))

= α (0, 0, d (y2m+2, y2m+3, y2m+1)) .

Then by axiom (ii) of function α,

d (yn, yn+2, yn+1) = d (y2m+1, y2m+3, y2m+2) ≤ k · 0 = 0 where k ∈ [0, 1)

So in either cases d (yn, yn+2, yn+1) = 0. Therefore from (3.6) we have

d (yn, yn+2, u) ≤
1∑

r=0

d (yn+r, yn+r+1, u) .

Proceeding in the same fashion we have for any p > 0,

d (yn, yn+p, u) ≤
p−1∑

r=0

d (yn+r, yn+r+1, u).

Then by (3.5) we get

d (yn, yn+p, u) ≤ kn

1− k
d (y0, y1, u) → 0 as n → ∞, p > 0 and k ∈ [0, 1).

Hence {yn} is a Cauchy sequence. Then by completeness of X, {yn} converges
to a point z ∈ X i.e. yn → z ∈ X as n → ∞. Since {yn} is a Cauchy sequence
and taking limit as n → ∞, we get Ix2n = Tx2n+1 → z, Jx2n−1 = Sx2n → z
and also Jx2n+1 → z.

Next suppose that S is continuous. Then {SIx2n} converges to Sz. Then
by property (IV) of 2-metric space, we have

d (ISx2n, Sz, u) ≤ d (ISx2n, Sz, SIx2n) + d (ISx2n, SIx2n, u) + d (SIx2n, Sz, u)

≤ d (ISx2n, Sz, SIx2n) + d (Sx2n, Ix2n, u) + d (SIx2n, Sz, u) ,

since I and S weakly commute.
Letting n → ∞, it follows that {ISx2n} converges to Sz. Again by using

(3.2) we have

d (ISx2n, Jx2n+1, u) ≤
≤ α

(
d
(
S2x2n, Tx2n+1, u

)
, d

(
S2x2n, ISx2n, u

)
, d (Tx2n+1, Jx2n+1, u)

)
.
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Since α is continuous, taking limit as n → ∞ we get
d (Sz, z, u) ≤ α (d (Sz, z, u) , d (Sz, Sz, u) , d (z, z, u))

implies
d (Sz, z, u) ≤ α (d (Sz, z, u) , 0, 0) .

So by axiom (ii) of function α,

d (Sz, z, u) ≤ k · 0 = 0 which gives Sz = z. (3.7)

Again using the inequality (3.2) we have

d (Iz, Jx2n+1, u) ≤ α (d (Sz, Tx2n+1, u) , d (Sz, Iz, u) , d (Tx2n+1, Jx2n+1, u)) .

Passing limit as n → ∞ we get
d (Iz, z, u) ≤ α (d (Sz, z, u) , d (z, Iz, u) , d (z, z, u))

implies
d (Iz, z, u) ≤ α (0, d (z, Iz, u) , 0) .

Then by axiom (ii) of function α,

d (Iz, z, u) ≤ k · 0 = 0 which gives Iz = z. (3.8)

Since I (X) ⊂ T (X), there exists a point z′ ∈ X such that Tz′ = z = Iz, so
by (3.2) we have

d (z, Jz′, u) = d (Iz, Jz′, u)
≤ α (d (Sz, Tz′, u) , d (Sz, Iz, u) , d (Tz′, Jz′, u))
= α (d (z, z, u) , d (z, z, u) , d (z, Jz′, u))
= α (0, 0, d (z, Jz′, u)) .

So by axiom (ii) of function α,

d (z, Jz′, u) ≤ k · 0 = 0 which implies Jz′ = z.

As J and T weakly commute

d (JTz′, TJz′, u) ≤ d (Tz′, Jz′, u) = 0

which gives JTz′ = TJz′ implies

Jz = JTz′ = TJz′ = Tz. (3.9)

Thus from (3.2) we have

d (z, Tz, u) = d (Iz, Jz, u)

≤ α (d (Sz, Tz, u) , d (Sz, Iz, u) , d (Tz, Jz, u))

= α (d (z, Tz, u) , 0, 0) .
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So by axiom (ii) of function α,

d (z, Tz, u) ≤ k · 0 = 0 which implies Tz = z. (3.10)

So by (3.7),(3.8),(3.9) and (3.10) we conclude that z is a common fixed point of
I, J , S and T .
For uniqueness, Let w be another common fixed point in X such that

Iz = Jz = Sz = Tz = z and Iw = Jw = Sw = Tw = w.

Then by (3.2) we have

d (w, z, u) = d (Iw, Jz, u)

≤ α (d (Sw, Tz, u) , d (Sw, Iw, u) , d (Tz, Jz, u))

= α (d (w, z, u) , d (w,w, u) , d (z, z, u))

= α (d (w, z, u) , 0, 0) .

So by axiom (ii) of function α,

d (w, z, u) ≤ k · 0 = 0 which implies w = z.

So uniqueness of z is proved.
The same result holds if any one of I, J and T is continuous. �

Corollary 3.2 Let S, T , I and J be four self mappings of a complete 2-metric
space (X, d) satisfying

I(X) ⊂ T (X) and J(X) ⊂ S(X) (3.11)

d (Ix, Jy, u) ≤ c ·max {d (Sx, Ty, u) , d (Sx, Ix, u) , d (Ty, Jy, u)} (3.12)
for all x, y, u in X, where 0 ≤ c < 1.
If one of S, T , I and J is continuous and if I and J weakly commute with

S and T respectively, then I, J , S and T have a unique common fixed point z
in X.

This result is a 2-metric analogue of the theorem of B. Fisher [5].

For any f : (X, d) → (X, d) we denote Ff = {x ∈ X : x = f(x)}.
Lemma 3.3 Let I, J , S and T be four self mappings of a complete 2-metric
space (X, d). If the inequality (3.2) holds for α ∈ A and for all x, y, u ∈ X.
Then (FS ∩ FT ) ∩ FI = (FS ∩ FT ) ∩ FJ .

Proof Let x ∈ (FS ∩ FT ) ∩ FI . Then by(3.2)

d (x, Jx, u) = d (Ix, Jx, u)

≤ α (d (Sx, Tx, u) , d (Sx, Ix, u) , d (Tx, Jx, u))

= α (0, 0, d (x, Jx, u)) .



86 Debashis Dey, Mantu Saha

So by axiom (ii) of function α,

d (x, Jx, u) ≤ k · 0 = 0 implies x = Jx.

Thus

(FS ∩ FT ) ∩ FI ⊂ (FS ∩ FT ) ∩ FJ .

Similarly we have

(FS ∩ FT ) ∩ FJ ⊂ (FS ∩ FT ) ∩ FI

and so (FS ∩ FT ) ∩ FI = (FS ∩ FT ) ∩ FJ �

Theorem 3.4 Let S, T and {In}n∈N be mappings from a complete 2-metric
space (X, d) into itself satisfying

I1(X) ⊂ T (X) and I2(X) ⊂ S(X). (3.13)

For α ∈ A and for all x, y, u ∈ X,

d (Inx, In+1y, u) ≤ α (d (Sx, Ty, u) , d (Sx, Inx, u) , d (Ty, In+1y, u)) (3.14)

holds for all n ∈ N . If one of S, T , I1 and I2 is continuous and if I1 and
I2 weakly commute with S and T respectively, then S, T and {In}n∈N have a
unique common fixed point z in X.

Proof By Theorem 3.1, S, T , I1 and I2 have a unique common fixed point z
in X. Now z is a unique common fixed point of S, T , I1 and also by Lemma 3.3,
(FS ∩ FT )∩FI1 = (FS ∩ FT )∩FI2 , z is a common fixed point of S, T , I2. Also
z is unique common fixed point of S, T , I2. If not, let w be another common
fixed point of S, T , I2. Then by (3.14)

d (z, w, u) = d (I1z, I2w, u)

≤ α (d (Sz, Tw, u) , d (Sz, I1z, u) , d (Tw, I2w, u))

= α (d (z, w, u) , d (z, z, u) , d (w,w, u))

= α (d (z, w, u) , 0, 0) .

So by axiom (ii) of function α,

d (z, w, u) ≤ k · 0 = 0 implies z = w.

In the similar manner we can show that z is a unique common fixed point of S,
T and I3. Continuing in this way, we arrive at desired result. �
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