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Abstract

We investigate an asymptotic behaviour of damped non-oscillatory
solutions of the initial value problem with a time singularity

(
p(t)u′(t)

)′
+ p(t)f(u(t)) = 0, u(0) = u0, u′(0) = 0

on the unbounded domain [0,∞). Function f is locally Lipschitz contin-
uous on R and has at least three zeros L0 < 0, 0 and L > 0. The initial
value u0 ∈ (L0, L)\{0}. Function p is continuous on [0,∞), has a positive
continuous derivative on (0,∞) and p(0) = 0. Asymptotic formulas for
damped non-oscillatory solutions and their first derivatives are derived
under some additional assumptions. Further, we provide conditions for
functions p and f , which guarantee the existence of Kneser solutions.

Key words: singular ordinary differential equation of the second
order, time singularities, unbounded domain, asymptotic properties,
Kneser solutions, damped solutions, non-oscillatory solutions

2000 Mathematics Subject Classification: 34D05, 34A12

1 Introduction

There exists an extensive literature which is devoted to a qualitative analysis
of solutions of the nonlinear equation

(p(t)u′)′ + q(t)f(u(t)) = 0, (1.1)
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where p, q and f are continuous on their domains. A lot of results are ob-
tained in the case that (1.1) is the Emden–Fowler equation, that is p ≡ 1 and
f(x) = |x|γ sgnx, γ > 0, γ �= 1. See e.g. [12], [14], [15], [16], [20] and [29].
Equation (1.1) with a nonconstant p and a more general f has been investi-
gated in [4], [5], [13], [17] and [30], while quasilinear equations can be found
in [2], [10], [11] and [31]. The nonlinearity f in all these papers has globally
monotonous behaviour which is characterized by the assumption xf(x) > 0 for
all x �= 0.
In our paper we investigate equation (1.1) with p = q and p(0) = 0. We

would like to stress that for our results the condition xf(x) > 0 need not be
fulfilled for all x �= 0 (see condition (1.5)). Since the case

∫ 1

0
dt
p(t) = ∞ is also

considered here, the differential operator in equation (1.1) can have a singu-
larity at t = 0. This is a fundamental difference from the papers cited above.
It is shown in [18] that such type of singular operators appears in models of
various practical problems, for example in hydrodynamics [3], [9], [28], in popu-
lation genetics [7], [8], in the homogeneous nucleation theory [1], in relativistic
cosmology [19], in the nonlinear field theory [6].
In particular, we study here the equation

(p(t)u′(t))′ + p(t)f (u(t)) = 0 (1.2)

on the half-line [0,∞) under the following assumptions:

L0 < 0 < L, f(L0) = f(0) = f(L) = 0, (1.3)

f ∈ Liploc(R), (1.4)

xf(x) > 0 for x ∈ (L0, L) \ {0}, (1.5)

F (L0) > F (L), where F (x) =

∫ x

0

f(z) dz, (1.6)

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (1.7)

p′ > 0 on (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (1.8)

In the whole paper we will assume that conditions (1.3)–(1.8) hold. Assump-
tion (1.6) implies

∃B ∈ (L0, L) : F (B) = F (L). (1.9)

We are interested in a solution u which meets the following definition.

Definition 1.1 A function u ∈ C1[0,∞)∩C2(0,∞) which satisfies equation (1.2)
for all t ∈ (0,∞) is called a solution of (1.2).

Definition 1.2 Let u be a solution of equation (1.2) and let L be of (1.3). If

sup{u(t) : t ∈ [0,∞)} < L, (1.10)

then u is called a damped solution of (1.2).
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Definition 1.3 A solution u of equation (1.2) is called oscillatory solution if it
has an unbounded set of zeros. If a solution u of equation (1.2) has a finite set of
zeros, then it is called a non-oscillatory solution. Further, u is called eventually
positive (eventually negative), if there exists t0 ≥ 0 such that u(t) > 0 (u(t) < 0)
for t ∈ [t0,∞).

Remark 1.4 By (1.4), solutions of equation (1.2) cannot vanish together with
their first derivative at a point from (0,∞). Therefore each non-oscillatory
solution of equation (1.2) is either eventually positive or eventually negative.

Let us consider the initial conditions

u(0) = u0, u′(0) = 0, (1.11)

where u0 ∈ (L0, L) \ {0}. In [24], under assumptions (1.3)–(1.8), it was proved
that for each u0 ∈ [B,L) there exists a (unique) solution of problem (1.2),
(1.11) which is damped (see Theorem 2.3 in [24]). On the other hand, if
u0 ∈ (L0, B), then the corresponding (unique) solution of problem (1.2), (1.11)
need not be damped (see [25] for more details). Further in [24], it was shown
that both damped oscillatory solutions and damped non-oscillatory solutions of
equation (1.2) can exist. We demonstrate it in the next example.

Example 1.5 Consider the equation(
t3u′(t)

)′
+ t3f (u(t)) = 0, (1.12)

where

f(x) =

⎧⎨
⎩

−12− 2x for x < −2,
x3 for x ∈ [−2, 1],

2− x for x > 1.

Here L0 = −6, L = 2, B = − 4
√
3, p(t) = t3. We can check by a direct

computation that for u0 ∈ [−2, 1], problem (1.12), (1.11) has a solution

u(t) =
8u0

8 + u2
0t

2
, t ∈ [0,∞).

If u0 ∈ (0, 1], the solution u is positive and decreasing in [0,∞), and hence
it is damped non-oscillatory. Similarly, we see that if u0 ∈ [−2, 0), then u is
negative and increasing on [0,∞), and so it is also damped and non-oscillatory.
On the other hand, numerical simulations give damped oscillatory solutions
provided u0 ∈ (1, 2).

All possible types of solutions to equation (1.2) (homoclinic, escape, damped)
have been studied in [22]–[27]. In our paper we investigate in more details
damped non-oscillatory solutions of (1.2) starting at a singular point t = 0
and we provide an interval for starting values u0 giving Kneser solutions (see
Theorems 3.4 and 3.5). We specify their behaviour by asymptotic formulas (see
Theorems 2.1, 2.2 and 2.3). The first information about asymptotic behaviour
of such solutions is given in the following lemma.
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Lemma 1.6 [24, Lemma 2.6] Let u be a damped non-oscillatory solution of
problem (1.2), (1.11) with u0 ∈ (L0, 0) ∪ (0, L). Then

lim
t→∞ u(t) = 0, lim

t→∞u′(t) = 0. (1.13)

In order to derive asymptotic formulas, we will need moreover the assump-
tions

lim sup
t→∞

tp′(t)
p(t)

∈ [1,∞), (1.14)

∃r > 1: lim inf
x→0

|f(x)|
|x|r > 0, lim sup

x→0

|f(x)|
|x|r < ∞. (1.15)

Remark 1.7 Let us show that the condition

lim sup
t→∞

tp′(t)
p(t)

∈ (0, 1) (1.16)

need not be considered here. We can see that if (1.16) holds, then there exists
λ ∈ (0, 1) and a sufficiently large T > 0 such that

0 <
tp′(t)
p(t)

< λ, t > T.

Therefore ∫ t

T

p′(s)
p(s)

ds < λ

∫ t

T

1

s
ds, t > T,

and
1

p(t)
>

(T )λ

p(T )
t−λ, t > T.

Since
∫∞
1

t−λ dt = ∞, we get ∫ ∞

1

dt

p(t)
= ∞. (1.17)

By Theorem 4.6 and Remark 4.3 in [27], condition (1.17) implies that each
damped solution of (1.2), (1.11) with u0 ∈ (L0, 0) ∪ (0, L) is oscillatory.

Remark 1.8 Let (1.15) hold with r = 1. If moreover

lim sup
t→∞

∣∣∣∣p′′(t)p′(t)

∣∣∣∣ < ∞

and p ∈ C2(0,∞), then by Theorem 2.10 in [24], each damped solution of (1.2),
(1.11) with u0 ∈ (L0, 0) ∪ (0, L) is oscillatory. In addition, if we take r ∈ (0, 1)

in (1.15), then limx→0+
f(x)
xr = c > 0 and

lim
x→0+

f(x)

x
= lim

x→0+

f(x)

xr
xr−1 = c lim

x→0+
xr−1 = ∞.

Therefore f does not fulfil (1.4) at x = 0. Hence, it is reasonable to have r > 1
in (1.15).
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2 Asymptotic formulas

In this section, asymptotic formulas for a damped non-oscillatory solution of
problem (1.2), (1.11) are derived in Theorem 2.1. Further, asymptotic formulas
for its first derivative are proved in Theorem 2.2, and under stronger assump-
tions in Theorem 2.3.

Theorem 2.1 Let (1.14) and (1.15) hold. Let u be a damped non-oscillatory
solution of problem (1.2), (1.11) with u0 ∈ (L0, 0) ∪ (0, L). Then

lim sup
t→∞

t
2

r−1 |u(t)| < ∞. (2.1)

Proof Let u be a damped non-oscillatory solution. Due to Remark 1.4 so-
lution u is either eventually positive or eventually negative. If u is eventually
positive, then there exists t0 ≥ 0 such that u(t) > 0 for t ∈ [t0,∞). By (1.13),
we can find t1 ≥ t0 such that u(t1) ∈ (0, L), u′(t1) ≤ 0 and u > 0 on [t1,∞).
Then conditions (1.5), (1.7) and (1.8) imply (pu′)′ < 0 on [t1,∞). Consequently,
pu′ is decreasing and hence u′(t) < 0 on (t1,∞). Similarly, if u is eventually
negative, then u < 0 for t ∈ [t0,∞), and there exists t1 ≥ t0 such that u′(t) > 0
on (t1,∞). By (1.15), there exist α, β > 0 and δ > 0 such that

α <
|f(x)|
|x|r < β, x ∈ (0, δ).

Condition (1.13) yields a ≥ t1 such that

0 < |u(t)| < δ, t ≥ a.

Hence we obtain

α|u(t)|r < |f(u(t))| < β|u(t)|r, t ≥ a. (2.2)

Further we integrate equation (1.2) from a to t ≥ a

p(t)u′(t)− p(a)u′(a) +
∫ t

a

p(s)f(u(s)) ds = 0.

Since u(a)u′(a) < 0, we get

p(t)|u′(t)| >
∫ t

a

p(s)|f(u(s))| ds, t > a.

Monotonous behaviour of u(t) for t > a and inequality (2.2) yield

p(t)|u′(t)| > α|u(t)|r
∫ t

a

p(s) ds.

Therefore
|u′(t)|
α|u(t)|r >

1

p(t)

∫ t

a

p(s) ds, t > a. (2.3)
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Due to (1.14), there exists λ ∈ (1,∞) and a sufficiently large T ≥ a such that

tp′(t)
p(t)

< λ, t > T,

and ∫ t

T

sp′(s) ds < λ

∫ t

T

p(s) ds, t > T. (2.4)

Integrating by parts we obtain∫ t

T

sp′(s) ds = tp(t)− Tp(T )−
∫ t

T

p(s) ds.

Therefore, by (2.4), for t > T,

tp(t)− Tp(T )−
∫ t

T

p(s) ds < λ

∫ t

T

p(s) ds,

tp(t)− Tp(T ) < (λ+ 1)

∫ t

T

p(s) ds,

t− T
p(T )

p(t)
<

λ+ 1

p(t)

∫ t

T

p(s) ds,

t− T

λ+ 1
<

1

p(t)

∫ t

T

p(s) ds.

Hence, according to (2.3), we obtain

|u′(t)|
α|u(t)|r >

1

p(t)

∫ t

a

p(s) ds ≥ 1

p(t)

∫ t

T

p(s) ds >
t− T

λ+ 1
, t > T. (2.5)

We integrate (2.5) from T to t > T and get∫ t

T

|u′(s)|
α|u(s)|r ds >

1

λ+ 1

∫ t

T

(s− T ) ds =
(t− T )2

2(λ+ 1)
.

Therefore the following estimate holds for t > T

1

α(r − 1)

(
1

|u(t)|r−1
− 1

|u(T )|r−1

)
>

(t− T )2

2(λ+ 1)
.

Consequently,

1

|u(t)|r−1
>

α(r − 1)(t− T )2

2(λ+ 1)
+

1

|u(T )|r−1
> Λ(t− T )2, t > T,

where Λ = α(r−1)
2(λ+1) . Further, it holds for t > T

0 < |u(t)| < (Λ(t− T )2
)−1/(r−1)

,

0 < |u(t)| < t−2/(r−1)
(
Λ(1− T/t)2

)−1/(r−1)
,

0 < t2/(r−1)|u(t)| < (Λ(1− T/t)2
)−1/(r−1)

.
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Letting t → ∞ we get

lim
t→∞

(
Λ(1− T/t)2

)−1/(r−1)
= Λ−1/(r−1) < ∞.

This limit implies that formula (2.1) holds. �

The previous result is essential for asymptotic formulas for first derivatives
of damped non-oscillatory solutions of problem (1.2), (1.11) as you can see
in the proof of following theorem.

Theorem 2.2 Let all assumptions of Theorem 2.1 be fulfilled. Denote

λ = lim sup
t→∞

tp′(t)
p(t)

. (2.6)

I. If λ ∈ [1, r+1
r−1 ), then

lim sup
t→∞

p(t)|u′(t)| < ∞. (2.7)

II. If λ ≥ r+1
r−1 , then for any λ0 > λ

lim sup
t→∞

p(t)t
r+1
r−1−λ0 |u′(t)| < ∞. (2.8)

Proof Let u be damped non-oscillatory and let t0 ≤ t1 ≤ a be the points
from the proof of Theorem 2.1. Then uu′ < 0 on [a,∞) and (2.2) holds. Choose
λ0 > λ. Due to (2.1) and (2.6), we can find c > 0 and a sufficiently large T ≥ a
such that

0 < t2/(r−1)|u(t)| < c, 0 <
tp′(t)
p(t)

< λ0, t > T. (2.9)

First, integrate equation (1.2) over (T, t) and put A1 = p(T )|u′(T )|. Then,
by (2.2),

0 < p(t)|u′(t)| = A1 +

∫ t

T

p(s)|f (u(s)) | ds < A1 + β

∫ t

T

p(s)|u(s)|r ds, t > T.

Now, integrate the second inequality in (2.9) over (T, t). As in Remark 1.7 we
deduce that

p(t) <
p(T )

Tλ0
tλ0 , t > T.

To summarize it, we get

0 < p(t)|u′(t)| < A1 + β
p(T )

Tλ0

∫ t

T

sλ0 |u(s)|r ds

= A1 + β
p(T )

Tλ0

∫ t

T

sλ0−2r/(r−1)
(
s2/(r−1)|u(s)|

)r
ds, t > T. (2.10)
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Put A2 = βp(T )
Tλ0

and μ = λ0 − 2r
r−1 . Then, due to the first inequality in (2.9),

inequality (2.10) yields

0 < p(t)|u′(t)| < A1 +A2c
r

∫ t

T

sμ ds, t > T. (2.11)

I. Let λ ∈ [1, r+1
r−1

)
. Then we choose λ0 ∈ (λ, r+1

r−1

)
and get μ = λ0− 2r

r−1 < −1.
Therefore

lim
t→∞

∫ t

T

sμ ds < ∞,

which together with (2.11) gives (2.7).
II. Let λ ≥ r+1

r−1 . Then we choose λ0 > λ, which implies μ = λ0 − 2r
r−1 > −1.

Therefore

lim
t→∞ t−μ−1

∫ t

T

sμ ds = lim
t→∞ t−μ−1 t

μ+1 − Tμ+1

μ+ 1
< ∞,

which together with (2.11) gives

lim sup
t→∞

p(t)t−μ−1|u′(t)| < ∞.

Since μ+ 1 = λ0 − 2r
r−1 + 1 = λ0 − r+1

r−1 , (2.8) holds. �

If we replace assumption (1.14) in Theorem 2.2 by

lim
t→∞

p′(t)
tn−2

∈ (0,∞), for some n ∈ (2,∞), (2.12)

we get more precise formulas, as it is seen in the next theorem. Let us note that
if (2.12) holds with n ∈ (1, 2], then (1.17) is satisfied. According to Remark 1.7
this case does not concern non-oscillatory solutions.

Theorem 2.3 Let (1.15) and (2.12) hold. Let u be a damped non-oscillatory
solution of problem (1.2), (1.11) with u0 ∈ (L0, 0) ∪ (0, L).

I. If n ∈
(
2, 2r

r−1

)
, then

lim sup
t→∞

tn−1|u′(t)| < ∞. (2.13)

II. If n = 2r
r−1 , then

lim sup
t→∞

t
r+1
r−1

1

ln t
|u′(t)| < ∞. (2.14)

III. If n > 2r
r−1 , then

lim sup
t→∞

t
r+1
r−1 |u′(t)| < ∞. (2.15)
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Proof By the l’Hôpital rule, assumption (2.12) implies the existence of the limit

lim
t→∞(n− 1)

p(t)

tn−1
= lim

t→∞
p′(t)
tn−2

∈ (0,∞). (2.16)

Consequently condition (1.14) is fulfilled, that is

lim
t→∞

tp′(t)
p(t)

= lim
t→∞

p′(t)
tn−2

tn−1

p(t)(n− 1)
(n− 1) = n− 1.

Therefore we can apply the results of Theorems 2.1 and 2.2. Due to (2.16),
there exists 0 < γ0 < γ and a sufficiently large T > 0 such that

γ0t
n−1 < p(t) < γtn−1, t > T. (2.17)

Using (1.2), (2.2), (2.9) and (2.17), we can modify the proof of Theorem 2.2 and
obtain the following estimates for a damped non-oscillatory solution u.

0 < p(t)|u′(t)| < A1 + βγ

∫ t

T

sn−1|u(s)|r ds

= A1 + βγ

∫ t

T

sn−1−2r/(r−1)
(
s2/(r−1)|u(s)|

)r
ds

< A1 + βγcr
∫ t

T

sn−1−2r/(r−1) ds

= A1 +A2

∫ t

T

sn−1−2r/(r−1) ds, t > T, (2.18)

where A1 = p(T )|u′(T )|, A2 = βγcr. Hence, (2.17) and (2.18) give

0 < γ0t
n−1|u′(t)| < A1 +A2

∫ t

T

sn−1−2r/(r−1) ds, t > T. (2.19)

I. Let n ∈ (2, 2r
r−1). Then

lim
t→∞

∫ t

T

sn−1−2r/(r−1) ds < ∞.

Therefore, by (2.19), we get (2.13).
II. Let n = 2r

r−1 . Then

lim
t→∞

1

ln t

∫ t

T

ds

s
< ∞,

which together with (2.19) yields (2.14).
III. Let n > 2r

r−1 . Then, by (2.19),

lim sup
t→∞

t
r+1
r−1 |u′(t)|

≤ lim
t→∞

1

γ0

(
A1t

2r
r−1−n +

A2

n− 2r
r−1

(
1−

(
T

t

)n−2r
r−1

))
=

A2

γ0(n− 2r
r−1)

.

Consequently, (2.15) is proved. �
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3 Kneser solutions

The main purpose of this section is to prove the existence of Kneser solutions
of equation (1.2), which are defined as follows.

Definition 3.1 A solution u of equation (1.2) is called a Kneser solution if
there exists t0 > 0 such that

u(t)u′(t) < 0 for t ∈ [t0,∞). (3.1)

First, we show a connection between damped non-oscillatory solutions (see
Definition 1.1 and 1.3) and Kneser solutions.

Theorem 3.2 Let u be a damped non-oscillatory solution of problem (1.2),
(1.11) with u0 ∈ (L0, 0)∪ (0, L). Then u is a Kneser solution of equation (1.2).

Proof According to Remark 1.4, u is either eventually positive or eventually
negative. Let u be eventually positive. Then there exists a > 0 such that

0 < u(t) < L, t ≥ a. (3.2)

By Lemma 1.6, u fulfils (1.13) and hence there exists t0 ≥ a such that

u′(t0) ≤ 0. (3.3)

Applying (1.5), (1.7), (1.8) and (3.2) to equation (1.2), we get (p(t)u′(t))′ < 0
for t ≥ a, which together with (3.3) yields

u′(t) < 0, t ∈ (t0,∞). (3.4)

Consequently, by virtue of Definition 3.1 and inequalities (3.2), (3.4), u is
a Kneser solution of equation (1.2). If u is eventually negative, we argue simi-
larly. �

In order to prove sufficient conditions for the existence of Kneser solutions
of equation (1.2), we will need the next identities of Pohozhaev type.

Lemma 3.3 Let u be a solution of equation (1.2). Then u fulfils

p(t)u(t)u′(t) =
∫ t

0

p(s)u′2(s) ds−
∫ t

0

p(s)f (u(s))u(s) ds, t > 0, (3.5)

P (t)

(
u′2(t)
2

+ F (u(t))

)
=

∫ t

0

p(s)F (u(s)) ds

−
∫ t

0

(
p′(s)P (s)

p2(s)
− 1

2

)
p(s)u′2(s) ds, t > 0, (3.6)

where P (t) =
∫ t

0
p(s) ds.
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Proof Consider a solution u of equation (1.2). To derive equality (3.5), we
use equation (1.2) in the form

p(t)u′′(t) + p′(t)u′(t) + p(t)f (u(t)) = 0, t > 0. (3.7)

Then, multiplying equation (3.7) by the solution u, we have

p(t)u′′(t)u(t) + p′(t)u′(t)u(t) + p(t)f (u(t))u(t) = 0, t > 0. (3.8)

Using (3.8) together with the equality

(p(t)u′(t)u(t))′ = p′(t)u′(t)u(t) + p(t)u′′(t)u(t) + p(t)u′2(t), t > 0,

we get
(p(t)u′(t)u(t))′ = p(t)u′2(t)− p(t)f (u(t))u(t), t > 0. (3.9)

We integrate (3.9) over (0, t) and obtain (3.5).

Further, we multiply equation (3.7) by P (t)u′(t)
p(t) and get

P (t)u′′(t)u′(t) +
P (t)p′(t)

p(t)
u′2(t) + P (t)f (u(t))u′(t) = 0, t > 0. (3.10)

According to the two following equalities(
P (t)u′2(t)

)′
= p(t)u′2(t) + 2P (t)u′(t)u′′(t), t > 0,

(P (t)F (u(t)))
′
= p(t)F (u(t)) + P (t)f (u(t))u′(t), t > 0,

and due to (3.10), we deduce(
P (t)

u′2(t)
2

+ P (t)F (u(t))

)′

=
p(t)

2
u′2(t)− P (t)p′(t)

p(t)
u′2(t) + p(t)F (u(t))

= −
(
P (t)p′(t)
p2(t)

− 1

2

)
p(t)u′2(t) + p(t)F (u(t)) , t > 0. (3.11)

Integrating (3.11) over (0, t) we obtain (3.6). �

The existence of a Kneser solution is guaranteed by two following theorems.

Theorem 3.4 (On the existence of Kneser solutions I.)
Assume that there exist c > 1

2 and A0 ∈ (0, L) such that the following inequalities

p′(t)P (t)

p2(t)
≥ c, t ∈ (0,∞), (3.12)

xf(x)

F (x)
≥ 2

2c− 1
, x ∈ (0, A0] (3.13)

hold. Then for each u0 ∈ (0, A0] there exists a unique solution u of problem
(1.2), (1.11). The solution u is damped, fulfils (1.13) and

u(t) > 0, u′(t) < 0, t ∈ (0,∞). (3.14)
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Proof By Theorem 2.3 in [24] there exists a unique solution u of problem (1.2),
(1.11) with u0 ∈ (0, A0]. Suppose, on the contrary, that there exists t0 > 0 such
that u(t) > 0 on [0, t0) and u(t0) = 0. Due to (1.4), (1.5) and equation (1.2),
the inequality u′(t0) < 0 holds and

0 < u(t) < A0, u′(t) < 0, t ∈ (0, t0). (3.15)

Now, we use equality (3.5) for t = t0

p(t0)u(t0)u
′(t0) =

∫ t0

0

p(s)u′2(s) ds−
∫ t0

0

p(s)f (u(s))u(s) ds.

Since u(t0) = 0, we get∫ t0

0

p(s)u′2(s) ds =
∫ t0

0

p(s)f (u(s))u(s) ds. (3.16)

Due to (3.6), where t = t0, it holds

0 < P (t0)

(
u′2(t0)

2
+ F (u(t0))

)

=

∫ t0

0

p(s)F (u(s)) ds−
∫ t0

0

(
p′(s)P (s)

p2(s)
− 1

2

)
p(s)u′2(s) ds.

According to (3.16) and (3.12) we get∫ t0

0

p(s)F (u(s)) ds >

∫ t0

0

(
p′(s)P (s)

p2(s)
− 1

2

)
p(s)u′2(s) ds

≥
(
c− 1

2

)∫ t0

0

p(s)u′2(s) ds =
2c− 1

2

∫ t0

0

p(s)f (u(s))u(s) ds.

This yields ∫ t0

0

p(s)F (u(s))

(
2

2c− 1
− f (u(s))u(s)

F (u(s))

)
ds > 0. (3.17)

Furthermore,
f (u(s))u(s)

F (u(s))
≥ 2

2c− 1
, s ∈ (0, t0),

is satisfied according to (3.13) and (3.15). Therefore(
2

2c− 1
− f (u(s))u(s)

F (u(s))

)
≤ 0, s ∈ (0, t0),

contrary to (3.17). The obtained contradiction implies u(t) > 0 on [0,∞). Due
to equation (1.2) and (1.5), we get u′(t) < 0 for t ∈ (0,∞). Hence (3.14) is
valid. Since A0 ∈ (0, L), u is damped and Lemma 1.6 gives (1.13). �

A dual theorem for initial values from a left neighbourhood of zero is proved
with similar arguments.
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Theorem 3.5 (On the existence of Kneser solutions II.)
Let condition (3.12) hold with a constant c > 1

2 and assume that there exists
B0 ∈ (L0, 0) such that the inequality

xf(x)

F (x)
≥ 2

2c− 1
, x ∈ [B0, 0) (3.18)

is satisfied. Then for each u0 ∈ [B0, 0) there exists a unique solution u of
problem (1.2), (1.11). The solution u is damped, fulfils (1.13) and

u(t) < 0, u′(t) > 0, t ∈ (0,∞). (3.19)

Proof By Theorem 2.3 in [24] there exists a unique solution u of prob-
lem (1.2), (1.11) with u0 ∈ [B0, 0). In the contradiction with (3.19), we suppose
the existence of t0 > 0 such that u(t) < 0 on [0, t0) and u(t0) = 0. By virtue of
(1.4), (1.5) and equation (1.2), the inequality u′(t0) > 0 holds and

B0 < u(t) < 0, u′(t) > 0, t ∈ (0, t0). (3.20)

Using the identities of Pohozhaev type (3.5), (3.6) and assumptions (3.12),
(3.18) and (3.20) as in the proof of Theorem 3.4, we obtain a contradiction
which implies that t0 cannot exist. Therefore (3.19) holds. This implies that u
is damped and, by Lemma 1.6, assertion (1.13) is valid. �

Corollary 3.6 Let u be a solution of equation (1.2) and let assumption (3.13)
or (3.18) be fulfilled. If the function p satisfies condition (3.12) only on (0, t0]
then, according to the proof of Theorem 3.4 or Theorem 3.5, each solution u of
problem (1.2), (1.11) with u0 ∈ (0, A0] or u0 ∈ [B0, 0) has no zero on (0, t0].

Example 3.7 Let L0 < B0 < 0 < A0 < L, α > 1, r > 1. Consider problem
(1.2), (1.11), where

p(t) = tα, t ∈ [0,∞), (3.21)

f(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|B0|r(L0 − x)

B0 − L0
for x ∈ [L0, B0),

|x|r sgn x for x ∈ [B0, A0],

Ar
0(x− L)

A0 − L
for x ∈ (A0, L],

(3.22)

and f is arbitrary Lipschitz continuous otherwhere and fulfils F (L0) > F (L).
To ensure the existence of Kneser solutions, we apply Theorems 3.4 and 3.5.
We see that p satisfies condition (3.12), because

p′(t)P (t)

p2(t)
=

α

α+ 1
= c >

1

2
, t ∈ (0,∞).



148 Jana Vampolová

Since
xf(x)

F (x)
= r + 1 for x ∈ [B0, 0) ∪ (0, A0],

conditions (3.13) and (3.18) are reduced to a simple inequality

r + 1 ≥ 2

2c− 1
. (3.23)

Lower bounds 2
2c−1 corresponding some values of α are given in the presented

table.

α 2 3 4 5 6 7 8 9 10 11
2

2c−1 6.00 4.00 3.33 3.00 2.80 2.67 2.57 2.50 2.44 2.40

For instance, put α = 3. Then c = 3
4 and

2
2c−1 = 4. Therefore, due

to (3.23), if r ≥ 3 we can apply Theorems 3.4 and 3.5. As a result, for each
u0 ∈ [B0, 0)∪(0, A0], problem (1.2), (1.11), where p and f are given by (3.21) and
(3.22), respectively, has a damped Kneser solution u. In addition, the function p
satisfies (1.14) and (2.12) with n = 4 and the function f fulfils (1.15). According
to Theorem 2.1, the solution u has the asymptotic formula

lim sup
t→∞

t
2

r−1 |u(t)| < ∞.

The inequality r ≥ 3 yields 2r
r−1 ≤ 3 and hence

4 = n >
2r

r − 1
.

Thus, an asymptotic formula for u′ has the form

lim sup
t→∞

t
r+1
r−1 |u′(t)| < ∞,

due to Theorem 2.3.

Example 3.8 Consider problem (1.2), (1.11) where

p(t) = t4 + t3, t ∈ [0,∞), (3.24)

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

−x+3
2 for x < −1

x3 for x ∈ [−1, 1]

2− x for x > 1.

(3.25)

We verify that assumptions (3.12), (3.13) and (3.18) are satisfied. For t > 0 it
holds

p′(t)P (t)

p2(t)
=

(4t3 + 3t2)( t
5

5 + t4

4 )

(t4 + t3)2
=

16t8 + 32t7 + 15t6

20(t8 + 2t7 + t6)
≥ 3

4
= c >

1

2
,
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since

16t8 + 32t7 + 15t6 ≥ 15t8 + 30t7 + 15t6.

Further
xf(x)

F (x)
= 4 =

2

2c− 1
, x ∈ [−1, 0) ∪ (0, 1].

Hence, for each u0 ∈ [−1, 0) ∪ (0, 1] and p, f given by (3.24), (3.25), problem
(1.2), (1.11) has a damped Kneser solution u. We can apply asymptotic formulas
for u and u′ since p satisfies (1.14) and (2.12) with n = 5 and f fulfils (1.15)
with r = 3. These formulas are given by

lim sup
t→∞

t|u(t)| < ∞, lim sup
t→∞

t2|u′(t)| < ∞,

according to Theorems 2.1 and 2.3.

In following examples we illustrate other types of function p which appear
to satisfy condition for existence of Kneser solutions (3.12)

p′(t)P (t)

p2(t)
= c >

1

2
, t ∈ (0,∞).

Example 3.9 Let us consider problem (1.2), (1.11), where

p(t) = t3 + t cos(t), t ∈ [0,∞), (3.26)

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

−x+3
2 for x < −1

x4 sgnx for x ∈ [−1, 1]

2− x for x > 1.

(3.27)

The graph (Figure 1) of the function

p′(t)P (t)

p2(t)
=

3t2 + cos(t)− t sin(t)

(t3 + t cos(t))2

(
t4

4
+ cos(t) + t sin(t)

)

shows that condition (3.12) is satisfied with c = 0.7

p′(t)P (t)

p2(t)
≥ 0.7, t ∈ (0,∞). (3.28)

Since
xf(x)

F (x)
= 5 =

2

2c− 1
, x ∈ [−1, 0) ∪ (0, 1],

problem (1.2), (1.11) has for each u0 ∈ [−1, 0) ∪ (0, 1] a damped Kneser solu-
tion u, according to Theorems 3.4, 3.5. Moreover, we can apply Theorems 2.1
and 2.3. Function p satisfies conditions (1.14) and (2.12) with n = 4 and func-
tion f fulfils (1.15) with r = 4. Therefore, asymptotic formulas for u and u′ are
given by

lim sup
t→∞

t2/3|u(t)| < ∞, lim sup
t→∞

t5/3|u′(t)| < ∞.
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Figure 1: Condition (3.12) for p(t) = t3 + t cos(t)

Example 3.10 Let us consider problem (1.2), (1.11), where

p(t) =
t3

1 + t
, t ∈ [0,∞), (3.29)

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

−x+3
2 for x < −1

x5 for x ∈ [−1, 1]

2− x for x > 1.

(3.30)

The graph (Figure 2) of the function

p′(t)P (t)

p2(t)
=

t2(2t+ 3)

(t+ 1)2

(
t3

3
− t2

2
+ t− log(t+ 1)

)
(1 + t)2

t6

=
1

6t4
(
4t4 + 3t2 + 18t− 12t log(t+ 1)− 18 log(t+ 1)

)
shows that

p′(t)P (t)

p2(t)
is monotonous on (0,∞) with lim

t→∞
p′(t)P (t)

p2(t)
=

2

3
. (3.31)

We put c = 2
3 , then

2
2c−1 = 6 and condition (3.23) with r = 5 is satisfied.

Therefore, problem (1.2), (1.11) has for each u0 ∈ [−1, 0) ∪ (0, 1] a damped
Kneser solution, due to Theorem 3.4 and 3.5. In addition, assumptions (1.14),
(2.12) and (1.15) are fulfilled with n = 3, r = 5. Therefore, the asymptotic
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Figure 2: Condition (3.12) for p(t) = t3

1+t

formulas
lim sup
t→∞

t1/2|u(t)| < ∞, lim sup
t→∞

t3/2|u′(t)| < ∞.

hold, according to Theorems 2.1, 2.3.

Remark 3.11 We are aware that analytical proofs of estimate (3.28) and mono-
tonicity (3.31) cannot be replaced by any graph. However, we are able to illus-
trate the fulfilment of assumption (3.12) graphically only.
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[23] Rach̊unková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problem. Math-
ematical and Computer Modelling 51 (2010), 658–669.
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