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SOME MEAN CONVERGENCE AND COMPLETE CONVERGENCE

THEOREMS FOR SEQUENCES OF m-LINEARLY NEGATIVE

QUADRANT DEPENDENT RANDOM VARIABLES
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1, Tongling, Andrew Rosalsky, Gainesville,

Andrei Volodin, Regina

(Received September 12, 2011)

Abstract. The structure of linearly negative quadrant dependent random variables is
extended by introducing the structure of m-linearly negative quadrant dependent random
variables (m = 1, 2, . . .). For a sequence of m-linearly negative quadrant dependent random
variables {Xn, n > 1} and 1 < p < 2 (resp. 1 6 p < 2), conditions are provided under which

n−1/p
n∑

k=1
(Xk − EXk) → 0 in L1 (resp. in Lp). Moreover, for 1 6 p < 2, conditions are

provided under which n−1/p
n∑

k=1
(Xk −EXk) converges completely to 0. The current work

extends some results of Pyke and Root (1968) and it extends and improves some results of
Wu, Wang, and Wu (2006). An open problem is posed.

Keywords: m-linearly negative quadrant dependence, mean convergence, complete con-
vergence

MSC 2010 : 60F15, 60F25

1. Introduction

The concept of negative quadrant dependent (NQD, for short) random variables

was introduced by Lehmann in [7].

Definition 1.1. Two random variables X and Y are said to be NQD if for all

x, y ∈ R,

P (X 6 x, Y 6 y) 6 P (X 6 x)P (Y 6 y).

1 Corresponding author.
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A sequence of random variables {Xn, n > 1} is said to be pairwise NQD if every

pair of random variables in the sequence is NQD.

The concept of linearly negative quadrant dependent (LNQD, for short) random

variables was introduced by Newman in [8].

Definition 1.2. A sequence {Xn, n > 1} of random variables is said to be LNQD

if for all finite disjoint subsets A, B ⊂ N and rj , rk > 0,
∑

j∈A

rjXj and
∑

k∈B

rkXk are

NQD.

Remark 1.1. It is easily seen that if {Xn, n > 1} is a sequence of LNQD random

variables, then {aXn + b, n > 1} is also a sequence of LNQD random variables for

all choices of a and b.

The concept of LNQD random variables is much weaker (see [8]) than the concepts

of independent random variables and negatively associated (NA, for short, cf. [4])

random variables. The convergence properties of LNQD sequences have been stud-

ied; we refer to [8] for the central limit theorem (CLT, for short), [13] for uniform

rates of convergence in the CLT, [5] for the Hoeffding-type inequality, [6] for strong

convergence, and [14] for exponential inequalities, complete convergence, and almost

sure convergence.

Now we introduce the concept of m-linearly negative quadrant dependent (m-

LNQD, for short) random variables.

Definition 1.3. Let m > 1 be a fixed integer. A sequence of random variables

{Xn, n > 1} is said to be m-LNQD if for all n > 2 and all choices of i1, . . . , in such

that |ik − ij| > m for all 1 6 k 6= j 6 n, we have that Xi1 , . . . , Xin are LNQD.

It is easily seen that this concept is a natural extension of the concept of LNQD

random variables (wherein m = 1). Indeed, if {Xn, n > 1} is m-LNQD for some

m > 1, then {Xn, n > 1} is m′-LNQD for all m′ > m.

We now provide three examples of sequences of m-LNQD random variables. The

first two examples are straightforward.

E x am p l e 1.1. Let {Xn, n > 1} be a LNQD sequence of random variables and

let m > 2. For n > 1, let r > 1 be such that (r−1)m+1 6 n 6 rm and let Zn = Xr.

Then {Zn, n > 1} is a sequence of m-LNQD random variables.

E x am p l e 1.2. Let {Xn, n > 1} be a LNQD sequence of random variables and

let {Yij , i > 1, 1 6 j 6 m − 1} be an array of independent random variables which

is independent of {Xn, n > 1}. Let m > 2. For n > 1, let r > 1 be such that
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(r − 1)m + 1 6 n 6 rm and let

Zn =

{

Xr if n = (r − 1)m + 1,

Yr,n−(r−1)m−1 if (r − 1)m + 2 6 n 6 rm.

Then {Zn, n > 1} is a sequence of m-LNQD random variables.

The third example is more interesting as it is concerned with moving averages;

these processes are important in time series analysis and for econometric applications.

The moving average process smooths the data under consideration and provides a

powerful tool for trend detection.

E x am p l e 1.3. Let {Xn, n > 1} be a LNQD sequence of random variables and

let m > 2. Then the sequence of moving averages {Zn, n > 1} defined by

Zn =
1

m

m+n−1
∑

k=n

Xk, n > 1,

is a sequence of m-LNQD random variables.

A sequence of random variables {Un, n > 1} is said to converge completely to a

constant a if
∞
∑

n=1

P (|Un − a| > ε) < ∞ for all ε > 0.

This concept of complete convergence was introduced by Hsu and Robbins in [3].

Definition 1.4 ([1]). A sequence {Xn, n > 1} of random variables is said to be

uniformly integrable in the Cesàro sense if

(1.1) lim
x→∞

sup
n>1

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > x) = 0.

Chandra [1] showed that (1.1) implies

(1.2) sup
n>1

1

n

n
∑

k=1

E|Xk|
p < ∞

and

(1.3) lim
x→∞

sup
n>1

1

n

n
∑

k=1

xP (|Xk|
p > x) = 0.
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In [9], the notion of h-uniform integrability with respect to an array of constants

{ank} was introduced and it was shown that this notion is weaker than (1.1). In the

current work, we will need a particular case of the notion of h-uniform integrability

with respect to the array of constants {ank = 1/n, 1 6 k 6 n, n > 1}:

(1.4) lim
n→∞

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n)) = 0,

where {h(n), n > 1} is a sequence of positive constants satisfying h(n) ↑ ∞ and

h(n)/n → 0 as n ↑ ∞; see also [11].

R em a r k 1.2.

(i) We refer to Remark 1 of [9], where it is shown that (1.1) implies (1.4).

(ii) Obviously, (1.4) implies

(1.5) lim
n→∞

sup
y>h(n)

1

n

n
∑

k=1

yP (|Xk|
p > y) = 0.

In this paper, we will establish an exponential inequality of Kolmogorov’s type

for m-LNQD random variables, and we will study mean convergence and complete

convergence for sequences of m-LNQD random variables.

Throughout, C is a generic positive constant, whose value may vary from one

place to another, and I(A) is the indicator function of the event A.

2. Main results

In this section we give the statements of the main results; they will be proved in

Section 4. Theorems 2.1 and 2.2 are mean convergence results and Theorem 2.3 is a

complete convergence result.

Theorem 2.1. Let {Xn, n > 1} be a sequence of m-LNQD random variables.

Then for 1 < p < 2, conditions (1.2) and (1.5) imply

(2.1) n−1/p
n

∑

k=1

(Xk − EXk) → 0

in L1 and, hence, in probability as n → ∞.
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Theorem 2.2. Let {Xn, n > 1} be a sequence of m-LNQD random variables.

Then for 1 6 p < 2, conditions (1.2) and (1.4) imply

(2.2) n−1/p
n

∑

k=1

(Xk − EXk) → 0

in Lp and, hence, in probability as n → ∞.

R em a r k 2.1. Wu, Wang, and Wu [15] obtained p-mean convergence for a se-

quence of NA random variables under the condition (1.1). Since (1.1) implies (1.2)

and (1.4), and NA implies m-LNQD, Theorem 2.2 extends and improves the result

of [15].

Corollary 2.1. Let {Xn, n > 1} be a sequence of identically distributedm-LNQD

random variables with E|X1|
p < ∞ for some 1 6 p < 2. Then (2.2) holds.

R em a r k 2.2. Pyke and Root [10] obtained p-mean convergence for the partial

sums from a sequence of independent and identically distributed random variables

with E|X1|
p < ∞ for some 1 6 p < 2. Therefore, Theorem 2.2 extends the result

of [10].

R em a r k 2.3. Wan [12] obtained p-mean convergence and convergence in proba-

bility, respectively, for a sequence of pairwise NQD random variables under conditions

(1.1) and (1.3). Therefore, we put forward the following open problem:

O p e n p r o b l e m. Do Theorems 2.1 and 2.2 hold for a sequence of pairwise

NQD random variables (instead of for a sequence of m-LNQD random variables)?

Theorem 2.3. Let {Xn, n > 1} be a sequence of m-LNQD random variables and

let 1 6 p < 2. Suppose that
∞
∑

n=1
(h(n)/n)λ(2−p)/p < ∞ for some λ > p. Then (1.2)

and

(2.3)

∞
∑

n=1

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n)) < ∞

imply

(2.4)

∞
∑

n=1

P

(
∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> εn1/p

)

< ∞ for all ε > 0.
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3. Lemmas

To prove the results in this paper, we need the following five lemmas.

Lemma 3.1 ([7]). Let {Xn, n > 1} be a sequence of pairwise NQD random

variables. Let {fn, n > 1} be a sequence of increasing functions. Then {fn(Xn),

n > 1} is a sequence of pairwise NQD random variables.

Lemma 3.2 ([6]). Suppose {Xn, n > 1} is a sequence of LNQD random variables.

Then for all n > 1

E exp

( n
∑

k=1

Xk

)

6

n
∏

k=1

E exp(Xk).

Lemma 3.3. Let {Xn, n > 1} be a sequence of LNQD random variables with

EXn = 0 and 0 < Bn =
n
∑

k=1

EX2
k < ∞, n > 1. Let Sn =

n
∑

k=1

Xk, n > 1. Then for

all n > 1,

P (|Sn| > x) 6 P
(

max
16k6n

|Xk| > y
)

+ 2 exp
(x

y
−

x

y
log

(

1 +
xy

Bn

))

for all x > 0, y > 0.

The proof of Lemma 3.3 can be obtained by applying Lemma 3.2 and following

the approach of Fuk and Nagaev in [2]. We omit the details.

Lemma 3.4. Let {Xn, n > 1} be a sequence of m-LNQD random variables with

zero means and finite second moments. Let Sn =
n
∑

k=1

Xk and Bn =
n
∑

k=1

EX2
k , n > 1.

Then for all n > m > 1, x > 0, and y > 0,

P (|Sn| > x) 6 mP
(

max
16k6n

|Xk| > y
)

+ 2m exp
( x

my
−

x

my
log

(

1 +
xy

mBn

))

.

P r o o f. For all 1 6 k 6 n, take τ = [n/m]. Let

Yk =

{

Xk if 1 6 k 6 n,

0 if k > n
and Tnj =

τ
∑

i=0

Ymi+j (1 6 j 6 m).
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By Lemma 3.3, we have

P (Sn > x) 6 P

( m
⋃

j=1

[Tnj > x/m]

)

6

m
∑

j=1

P (Tnj > x/m)

6

m
∑

j=1

P
(

max
06i6τ

Ymi+j > y
)

+

m
∑

j=1

exp
( x

my
−

x

my
log

(

1 +
xy

m
∑τ

i=0 EY 2
mi+j

))

6 mP
(

max
16k6n

Xk > y
)

+ m exp
( x

my
−

x

my
log

(

1 +
xy

m
∑n

k=1 EX2
k

))

= mP
(

max
16k6n

Xk > y
)

+ m exp
( x

my
−

x

my
log

(

1 +
xy

mBn

))

.

By a similar argument as above, we get

P (−Sn > x) 6 mP
(

max
16k6n

−Xk > y
)

+ m exp
( x

my
−

x

my
log

(

1 +
xy

mBn

))

.

Therefore, the proof is complete. �

The following lemma is similar to Lemma 2.2 of [11]. The proof follows essentially

the same steps but for the sake of completeness we present it.

Lemma 3.5. Let {Xn, n > 1} be a sequence of random variables satisfying (1.2)

and (1.5) for some real number p > 0. Then the following statements hold:

(i) for all 0 < α < p,

(3.1) lim
n→∞

n−α/p
n

∑

k=1

E|Xk|
αI(|Xk|

p > n) = 0;

(ii) for all β > p,

(3.2) lim
n→∞

n−β/p
n

∑

k=1

E|Xk|
βI(|Xk|

p 6 n) = 0.
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P r o o f. First, we prove (3.1). Put I = n−α/p
n
∑

k=1

E|Xk|
αI(|Xk|

p > n). Then

I = n−α/p
n

∑

k=1

E|Xk|
αI(|Xk|

p > n) = n−α/p
n

∑

k=1

∫

∞

0

P (|Xk|
αI(|Xk|

p > n) > t) dt

= n−α/p
n

∑

k=1

∫ nα/p

0

P (|Xk|
αI(|Xk|

p > n) > t) dt

+ n−α/p
n

∑

k=1

∫

∞

nα/p

P (|Xk|
αI(|Xk|

p > n) > t) dt

6

n
∑

k=1

P (|Xk|
p > n) + n−α/p

n
∑

k=1

∫

∞

nα/p

P (|Xk|
α > t) dt =: I ′ + I ′′.

Since h(n)/n → 0 as n → ∞, there exists N1 such that h(n) 6 n if n > N1.

Hence, by taking y = n in (1.5), we get I ′ → 0 as n → ∞. Letting t = yα/p, we have

I ′′ = (α/p)n−α/p
n

∑

k=1

∫

∞

n

yα/p−1P (|Xk|
p > y) dy.

Let ε > 0. By (1.5), there exists N2 such that n−1
n
∑

k=1

yP (|Xk|
p > y) 6 ε if n > N2.

Then for n > max{N1, N2} we come to

I ′′ 6 ε(α/p)n1−α/p

∫

∞

n

yα/p−2 dy = ε
α

α − p
n1−α/pyα/p−1|∞n = ε

α

p − α
.

Thus lim sup
n→∞

I ′′ 6 ε by 0 < α < p. Since ε > 0 is arbitrary, I ′′ → 0 as n → ∞. The

proof of (3.1) is complete.

Next we prove (3.2). Again let ε > 0. Put J = n−β/p
n
∑

k=1

E|Xk|
βI(|Xk|

p 6 n).

Then

J = n−β/p
n

∑

k=1

∫

∞

0

P (|Xk|
βI(|Xk|

p 6 n) > t) dt

= n−β/p
n

∑

k=1

∫ nβ/p

0

P (|Xk|
βI(|Xk|

p 6 n) > t) dt

6 n−β/p
n

∑

k=1

∫ nβ/p

0

P (|Xk|
β > t) dt.
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Letting t = yβ/r, we have for n > N1

J 6 (β/p)n−β/p
n

∑

k=1

∫ n

0

yβ/p−1P (|Xk|
p > y) dy

= (β/p)n−β/p
n

∑

k=1

∫ h(n)

0

yβ/p−1P (|Xk|
p > y) dy

+ (β/p)n−β/p
n

∑

k=1

∫ n

h(n)

yβ/p−1P (|Xk|
p > y) dy =: J ′ + J ′′.

By β/p > 1, (1.2), and h(n)/n → 0 as n → ∞, we obtain

J ′ 6 (β/p)(h(n))β/p−1n−β/p
n

∑

k=1

∫ h(n)

0

P (|Xk|
p > y) dy

6 (β/p)(h(n)/n)β/p−1 sup
n>1

n−1
n

∑

k=1

E|Xk|
p → 0 as n → ∞.

For n > max{N1, N2} we have

J ′′
6 ε(β/p)n1−β/p

∫ n

h(n)

yβ/p−2 dy = ε
β

β − p
n1−β/p(nβ/p−1 − (h(n))β/p−1)

= ε
β

β − p
(1 − (h(n)/n)β/p−1).

Thus lim sup
n→∞

J ′′ 6 ε. Since ε > 0 is arbitrary, J ′′ → 0 as n → ∞. The proof of

(3.2) is complete. �

4. Proofs of Theorems 2.1, 2.2, and 2.3

With the lemmas of Section 3 accounted for, the main results will now be proved.

P r o o f of Theorem 2.1. Let

Yk = −tI(Xk 6 −t) + XkI(|Xk| < t) + tI(Xk > t), k > 1

and

Zk = Xk − Yk = (Xk + t)I(Xk 6 −t) + (Xk − t)I(Xk > t), k > 1.
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By Lemma 3.1, it follows that both {Yk, k > 1} and {Zk, k > 1} are m-LNQD

sequences. Let ε > 0 and without loss of generality we may assume that 0 < ε < 1.

We have

E

(

n−1/p

∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

)

= n−1/p

∫

∞

0

P

(∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> t

)

dt

6 ε1/p + n−1/p

∫

∞

(nε)1/p

P

(∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> t

)

dt

6 ε1/p + n−1/p

∫

∞

(nε)1/p

P

(∣

∣

∣

∣

n
∑

k=1

(Zk − EZk)

∣

∣

∣

∣

> t/2

)

dt

+ n−1/p

∫

∞

(nε)1/p

P

(∣

∣

∣

∣

n
∑

k=1

(Yk − EYk)

∣

∣

∣

∣

> t/2

)

dt =: ε1/p + I1 + I2.

Taking α = 1 and β = 2 in Lemma 3.5, we get

(4.1) lim
n→∞

n−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n) = 0

and

(4.2) lim
n→∞

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 n) = 0.

Since h(n)/n → 0 as n → ∞, there exists N such that h(n) 6 nε if n > N . Since

|Zk| 6 |Xk|I(|Xk| > t), we have

max
t>(nε)1/p

1

t

∣

∣

∣

∣

n
∑

k=1

EZk

∣

∣

∣

∣

6 max
t>(nε)1/p

1

t

n
∑

k=1

E|Zk|

6 max
t>(nε)1/p

1

t

n
∑

k=1

E|Xk|I(|Xk| > t) 6 (nε)−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > nε)

= (nε)−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n) + (nε)−1/p

n
∑

k=1

E|Xk|I(nε < |Xk|
p

6 n)

6 ε−1/pn−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n) + ε−2/pn−2/p

n
∑

k=1

EX2
kI(|Xk|

p 6 n).

Then by (4.1) and (4.2) we obtain t−1
∣

∣

∣

n
∑

k=1

EZk

∣

∣

∣
→ 0 whenever n → ∞ uniformly

for t > (nε)1/p. Hence, for sufficiently large n, we have that
∣

∣

∣

n
∑

k=1

EZk

∣

∣

∣
6 t/4 for all
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t > (nε)1/p. By (4.1) and (4.2) we get

I1 6 n−1/p

∫

∞

(nε)1/p

P

(∣

∣

∣

∣

n
∑

k=1

Zk

∣

∣

∣

∣

> t/4

)

dt 6 n−1/p

∫

∞

(nε)1/p

P

( n
⋃

k=1

[|Xk| > t]

)

dt

6 n−1/p
n

∑

k=1

∫

∞

(nε)1/p

P (|Xk| > t) dt 6 n−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > nε)

= n−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n) + n−1/p

n
∑

k=1

E|Xk|I(nε < |Xk|
p 6 n)

6 n−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n) + ε−1/pn−2/p

n
∑

k=1

EX2
kI(|Xk|

p
6 n) → 0

as n → ∞.

Next we prove that I2 → 0 as n → ∞. Let Bn =
n
∑

k=1

E(Yk − EYk)2, x = t/2,

y = t/(2mη), η > 1. By Lemma 3.4 we arrive at

I2 = n−1/p

∫

∞

(nε)1/p

P

(
∣

∣

∣

∣

n
∑

k=1

(Yk − EYk)

∣

∣

∣

∣

> t/2

)

dt

6 Cn−1/p

∫

∞

(nε)1/p

P
(

max
16k6n

|Yk − EYk| > t/(2mη)
)

dt

+ Cn−1/p

∫

∞

(nε)1/p

( 1

t2
Bn

)η

dt =: I3 + I4.

For all t > (nε)1/p, by Jensen’s inequality, we have

max
16k6n

1

t
|EYk| 6 max

16k6n

{1

t
E|Xk|I(|Xk| 6 t) + P (|Xk| > t)

}

6 max
16k6n

{1

t
E|Xk|I(|Xk| 6 n1/p) + ε−1/pn−1/pE|Xk|I(n1/p < |Xk| 6 t)

+ P (|Xk| > t)
}

6

(

max
16k6n

1

t2
EX2

kI(|Xk| 6 n1/p)
)1/2

+ ε−1/pn−1/p
n

∑

k=1

E|Xk|I(|Xk| > n1/p)

+
n

∑

k=1

P (|Xk|
p > nε) 6 ε−1/p

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 n)

)1/2

+ ε−1/pn−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n) +

n
∑

k=1

P (|Xk|
p > nε) =: I31 + I32 + I33.

By (4.1) and (4.2) we find that I31 → 0 and I32 → 0 as n → ∞. Recalling that

h(n) 6 nε for n > N , by taking y = nε in (1.5) we get that I33 → 0 as n → ∞.
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Therefore, by a similar argument as in the proof of I1 → 0, we have

I3 6 Cn−1/p

∫

∞

(nε)1/p

P
(

max
16k6n

|Yk| > t/(4mη)
)

dt (since |Yk| 6 |Xk|)

6 Cn−1/p
n

∑

k=1

∫

∞

(nε)1/p

P (|Xk| > t/(4mη)) dt

6 Cn−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > nε/(4mη)p) → 0 as n → ∞.

Finally, we prove that I4 → 0 as n → ∞. By the Cr-inequality we get

I4 6 Cn−1/p

∫

∞

(nε)1/p

(

1

t2

n
∑

k=1

EX2
kI(|Xk| 6 t) +

n
∑

k=1

P (|Xk| > t)

)η

dt

= Cn−1/p

∫

∞

(nε)1/p

(

1

t2

n
∑

k=1

EX2
kI(|Xk| 6 (nε)1/p)

+
1

t2

n
∑

k=1

EX2
kI((nε)1/p < |Xk| 6 t) +

n
∑

k=1

P (|Xk| > t)

)η

dt

6 Cn−1/p

∫

∞

(nε)1/p

(

1

t2

n
∑

k=1

EX2
kI(|Xk| 6 (nε)1/p)

)η

dt

+ Cn−1/p

∫

∞

(nε)1/p

(

1

t

n
∑

k=1

E|Xk|I((nε)1/p < |Xk| 6 t)

)η

dt

+ Cn−1/p

∫

∞

(nε)1/p

( n
∑

k=1

P (|Xk| > t)

)η

dt =: I41 + I42 + I43.

By η > 1 and (4.2) we obtain

I41 6 Cn−1/p

( n
∑

k=1

EX2
kI(|Xk|

p
6 nε)

)η ∫

∞

(nε)1/p

1

t2η
dt

6 C

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 nε)

)η

(since 0 < ε < 1)

6 C

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 n)

)η

→ 0 as n → ∞.

By a similar argument as in the proof of I1 → 0 we find

I42 6 Cn−1/p

( n
∑

k=1

E|Xk|I(|Xk|
p > nε)

)η ∫

∞

(nε)1/p

1

tη
dt

6 C

(

n−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > nε)

)η

→ 0 as n → ∞.

522



Following the proof of I33 → 0, we have

max
t>(nε)1/p

n
∑

k=1

P (|Xk| > t) 6

n
∑

k=1

P (|Xk|
p > nε) → 0 as n → ∞.

Hence, by a similar argument as in the proof of I1 → 0, we come to

I43 6 Cn−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > nε) → 0 as n → ∞.

The proof is complete. �

P r o o f of Theorem 2.2. Let

Yk = −t1/pI(Xk < −t1/p) + XkI(|Xk| 6 t1/p) + t1/pI(Xk > t1/p), k > 1,

and

Zk = Xk − Yk = (Xk + t1/p)I(Xk < −t1/p) + (Xk − t1/p)I(Xk > t1/p), k > 1.

Let ε > 0 and without loss of generality we may assume that 0 < ε < 1. Since

E

(

n−1/p

∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

)p

=
1

n

∫

∞

0

P

(∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> t1/p

)

dt

6 ε +
1

n

∫

∞

nε

P

(∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> t1/p

)

dt

6 ε +
1

n

∫

∞

nε

P

(∣

∣

∣

∣

n
∑

k=1

(Zk − EZk)

∣

∣

∣

∣

> t1/p/2

)

dt

+
1

n

∫

∞

nε

P

(∣

∣

∣

∣

n
∑

k=1

(Yk − EYk)

∣

∣

∣

∣

> t1/p/2

)

dt =: ε + I5 + I6,

it suffices to show that I5 → 0 and I6 → 0 as n → ∞.

Let N be such that h(n) 6 nε for n > N . Then by |Zk| 6 |Xk|I(|Xk| > t1/p) and

(1.4) we obtain

max
t>nε

t−1/p

∣

∣

∣

∣

n
∑

k=1

EZk

∣

∣

∣

∣

6 max
t>nε

t−1/p
n

∑

k=1

E|Xk|I(|Xk| > t1/p)

6 (nε)−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > nε) 6 ε−1 1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > nε)

6 ε−1 1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n)) → 0 as n → ∞.
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Thus, for sufficiently large n, we have that
∣

∣

∣

n
∑

k=1

EZk

∣

∣

∣
6 t1/p/4 holds uniformly for

t > nε. Hence, we get

I5 6
1

n

∫

∞

nε

P

(
∣

∣

∣

∣

n
∑

k=1

Zk

∣

∣

∣

∣

> t1/p/4

)

dt 6
1

n

∫

∞

nε

P

( n
⋃

k=1

[|Xk| > t1/p]

)

dt

6
1

n

n
∑

k=1

∫

∞

nε

P (|Xk| > t1/p) dt 6
1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > nε)

6
1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n)) → 0 as n → ∞.

Next we prove that I6 → 0 as n → ∞. Let Bn =
n
∑

k=1

E(Yk − EYk)2, x = t1/p/2,

y = t1/p/(2mγ), γ > p. By Lemma 3.4 we have

I6 6
C

n

∫

∞

nε

P
(

max
16k6n

|Yk − EYk| > t1/p/(2mγ)
)

dt

+
C

n

∫

∞

nε

(t−2/pBn)γ dt =: I7 + I8.

For all t > nε, by Jensen’s inequality we get

max
16k6n

t−1/p|EYk| 6 max
16k6n

{t−1/pE|Xk|I(|Xk| 6 t1/p) + P (|Xk| > t1/p)}

6 max
16k6n

{t−1/pE|Xk|I(|Xk| 6 n1/p) + ε−1/pn−1/pE|Xk|I(n1/p < |Xk| 6 t1/p)

+ P (|Xk| > t1/p)}

6

(

max
16k6n

t−2/pEX2
kI(|Xk| 6 n1/p)

)1/2

+ ε−1/pn−1/p
n

∑

k=1

E|Xk|I(|Xk| > n1/p)

+

n
∑

k=1

P (|Xk|
p > nε) 6 ε−1/p

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 n)

)1/2

+ ε−1/pn−1
n

∑

k=1

E|Xk|
pI(|Xk|

p > n) +
n

∑

k=1

P (|Xk|
p > nε) =: I71 + I72 + I73.

Recalling that (1.4) implies (1.5), by Lemma 3.5 we have that (1.2) and (1.4) imply

(4.1) and (4.2). Hence, by a similar argument as in the proof of I31 → 0 and I33 → 0,

we can prove that I71 → 0 and I73 → 0. Clearly, by (1.4) we have I72 → 0. Therefore,
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by a similar argument as in the proof of I5 → 0, we arrive at

I7 6
C

n

∫

∞

nε

P
(

max
16k6n

|Yk| > t1/p/(4mγ)
)

dt

6
C

n

n
∑

k=1

∫

∞

nε

P (|Xk| > t1/p/(4mγ)) dt

6
C

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > nε/(4mγ)p) → 0 as n → ∞.

Now by the Cr-inequality we come to

I8 6
C

n

∫

∞

nε

(

t−2/p
n

∑

k=1

EX2
kI(|Xk| 6 t1/p) +

n
∑

k=1

P (|Xk| > t1/p)

)γ

dt

=
C

n

∫

∞

nε

(

t−2/p
n

∑

k=1

EX2
kI(|Xk| 6 (nε)1/p)

+ t−2/p
n

∑

k=1

EX2
kI((nε)1/p < |Xk| 6 t1/p) +

n
∑

k=1

P (|Xk| > t1/p)

)γ

dt

6
C

n

∫

∞

nε

(

t−2/p
n

∑

k=1

EX2
kI(|Xk| 6 (nε)1/p)

)γ

dt

+
C

n

∫

∞

nε

(

t−1
n

∑

k=1

E|Xk|
pI((nε)1/p < |Xk| 6 t1/p)

)γ

dt

+
C

n

∫

∞

nε

( n
∑

k=1

P (|Xk| > t1/p)

)γ

dt =: I81 + I82 + I83.

By a similar argument as in I41 → 0 and I43 → 0, we can prove that I81 → 0 and

I83 → 0. By γ > p > 1 and (1.4) we get

I82 6
C

n

( n
∑

k=1

E|Xk|
pI(|Xk|

p > nε)

)γ ∫

∞

nε

t−γ dt

6 C

(

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > nε)

)γ

→ 0 as n → ∞.

The proof is complete. �

P r o o f of Theorem 2.3. Let

Yk = −n1/pI(Xk < −n1/p) + XkI(|Xk| 6 n1/p) + n1/pI(Xk > n1/p), k > 1
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and

Zk = Xk − Yk = (Xk + n1/p)I(Xk < −n1/p) + (Xk − n1/p)I(Xk > n1/p), k > 1.

Then we have

∞
∑

n=1

P

(
∣

∣

∣

∣

n
∑

k=1

(Xk − EXk)

∣

∣

∣

∣

> εn1/p

)

6

∞
∑

n=1

P

(
∣

∣

∣

∣

n
∑

k=1

(Zk − EZk)

∣

∣

∣

∣

> εn1/p/2

)

+
∞
∑

n=1

P

(∣

∣

∣

∣

n
∑

k=1

(Yk − EYk)

∣

∣

∣

∣

> εn1/p/2

)

=: I9 + I10.

By |Zk| 6 |Xk|I(|Xk| > n1/p) and (2.3) we have

n−1/p

∣

∣

∣

∣

n
∑

k=1

EZk

∣

∣

∣

∣

6 n−1/p
n

∑

k=1

E|Zk| 6 n−1/p
n

∑

k=1

E|Xk|I(|Xk|
p > n)

6
1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > n) 6
1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n)) → 0 as n → ∞.

Therefore, we find that

I9 6 C +
∞
∑

n=1

P

(∣

∣

∣

∣

n
∑

k=1

Zk

∣

∣

∣

∣

> εn1/p/4

)

6 C +
∞
∑

n=1

P

( n
⋃

k=1

[|Xk| > n1/p]

)

6 C +

∞
∑

n=1

n
∑

k=1

P (|Xk| > n1/p) 6 C +

∞
∑

n=1

n−1
n

∑

k=1

E|Xk|
pI(|Xk|

p > n)

6 C +
∞
∑

n=1

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n)) < ∞.

Let Bn =
n
∑

k=1

E(Yk−EYk)2, x = εn1/p/2, y = εn1/p/(2mλ), λ > p. By Lemma 3.4

we get

I10 6 C

∞
∑

n=1

P
(

max
16k6n

|Yk − EYk| > εn1/p/(2mλ)
)

+ C

∞
∑

n=1

(n−2/pBn)λ

=: I11 + I12.
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By Jensen’s inequality we have

n−1/p max
16k6n

|EYk| 6 n−1/p max
16k6n

E|Xk|I(|Xk|
p 6 n) + max

16k6n
P (|Xk|

p > n)

6

(

n−2/p max
16k6n

EX2
kI(|Xk|

p
6 n)

)1/2

+
1

n
max

16k6n
E|Xk|

pI(|Xk|
p > n)

6

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 n)

)1/2

+
1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > n)

=: I ′11 + I ′′11.

Clearly, by (2.3) we have that I ′′11 → 0 as n → ∞. Note that (2.3) implies (1.4) and

(1.4) implies (1.5). Hence, from (4.2) we have that I ′11 → 0 as n → ∞. Therefore,

by (2.3) we obtain

I11 6 C

∞
∑

n=1

P
(

max
16k6n

|Yk| > εn1/p/(4mλ)
)

6 C

∞
∑

n=1

n
∑

k=1

P (|Xk| > εn1/p/(4mλ))

6 C

∞
∑

n=1

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > (ε/(4mλ))pn) < ∞.

Finally, we prove that I12 < ∞. By the Cr-inequality we see that

I12 6 C
∞
∑

n=1

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 n)

)λ

+ C

∞
∑

n=1

( n
∑

k=1

P (|Xk|
p > n)

)λ

=: I ′12 + I ′′12.

By λ > p > 1 and (2.3) we observe

I ′′12 6 C

∞
∑

n=1

(

1

n

n
∑

k=1

E|Xk|
p(|Xk|

p > n)

)λ

6 C

( ∞
∑

n=1

1

n

n
∑

k=1

E|Xk|
p(|Xk|

p > h(n))

)λ

< ∞.
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By
∞
∑

n=1
(h(n)/n)λ(2−p)/p < ∞, (1.2) and (2.3) we have

I ′12 6 C

∞
∑

n=1

(

n−2/p
n

∑

k=1

EX2
kI(|Xk|

p 6 h(n))

)λ

+ C

∞
∑

n=1

(

n−2/p
n

∑

k=1

EX2
kI(h(n) < |Xk|

p
6 n)

)λ

6 C

∞
∑

n=1

(h(n)/n)λ(2−p)/p

(

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p 6 h(n))

)λ

+ C

( ∞
∑

n=1

1

n

n
∑

k=1

E|Xk|
pI(h(n) < |Xk|

p
6 n)

)λ

6 C
∞
∑

n=1

(h(n)/n)λ(2−p)/p

(

sup
n>1

1

n

n
∑

k=1

E|Xk|
p

)λ

+ C

( ∞
∑

n=1

1

n

n
∑

k=1

E|Xk|
pI(|Xk|

p > h(n))

)λ

< ∞.

The proof is complete. �
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