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Abstract. In this paper we use the fixed point method to prove asymptotic stability
results of the zero solution of a generalized linear neutral difference equation with variable
delays. An asymptotic stability theorem with a sufficient condition is proved, which im-
proves and generalizes some results due to Y.N.Raffoul (2006), E.Yankson (2009), M. Islam
and E.Yankson (2005).
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1. Introduction

The Lyapunov direct method has been one among the efficient tools for the study

of stability properties of a large class of ordinary, functional, partial differential and

difference equations. Nevertheless, the application of this method to problems of

stability in differential and difference equations with delay has encountered serious

difficulties if the delay is unbounded or if the equation has unbounded terms ([4],

[5], [8]–[10], [12], [21]). Recently, Burton, Furumochi, Zhang and others have noticed

that some of these difficulties vanish or might be overcome by means of the fixed

point theory (see [1], [2], [4], [5], [13], [19], [20], [23]–[25]). The application of the

fixed point theory to certain problems on stability has shown a significant advantage

over Lyapunov’s direct method. The conditions of the former are often averages but

those of the latter are usually pointwise (see [4]). It is also worth adding that there

is a wide number of investigators working on stability theory of difference equations,

The research has been supported by the Laboratory of Applied Mathematics (LMA) of
UBM.
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with or without delay, who have established and proved interesting results by using

other ideas than Lyapunov’s method, see the papers [2], [3], [6], [11], [15]–[18], [26].

Let a, b, c, aj, cj : Z
+ → R and τ, τj : Z

+ → Z
+ with n−τ(n) → ∞ and n−τj(n) →

∞ as n→ ∞. Here∆ denotes the forward difference operator∆x(t) = x(n+1)−x(n)

for any sequence {x(n), n ∈ Z
+}.

In [19], Raffoul studied the equation

(1.1) ∆x(n) = −a(n)x(n− τ(n)),

and proved the following theorem.

Theorem A (Raffoul [19]). Suppose that τ(n) = r and a(n + r) 6= 1 and there

exists a constant α < 1 such that

(1.2)

n−1
∑

s=n−r

|a(s+ r)| +

n−1
∑

s=0

(

|a(s+ r)|

∣

∣

∣

∣

n−1
∏

k=s+1

[1 − a(k + r)]

∣

∣

∣

∣

s−1
∑

u=s−r

|a(u+ r)|

)

6 α

for all n ∈ Z
+, and

n−1
∏

s=0
[1 − a(s + r)] → 0 as n → ∞. Then, for every small initial

sequence ψ : [−r, 0]∩ Z → R, the solution x(n) = x(n, 0, ψ) of (1.1) is bounded and

tends to zero as n→ ∞.

In [23], Yankson studied the generalization of (1.1) as follows,

(1.3) ∆x(n) = −
N

∑

j=1

aj(n)x(n − τj(n)),

and obtained the following theorem.

Theorem B (Yankson [23]). Suppose that Q(n) 6= 0 for all n ∈ [n0,∞) ∩ Z, the

inverse sequence gj of n − τj(n) exists and there exists a constant α ∈ (0, 1) for all

n ∈ [n0,∞) ∩ Z such that

(1.4)

N
∑

j=1

n−1
∑

s=n−τj(n)

|aj(gj(s))|

+
n−1
∑

s=n0

(

|1 −Q(s)|

∣

∣

∣

∣

n−1
∏

k=s+1

Q(k)

∣

∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))|

)

6 α,

where Q(n) = 1 −
N
∑

j=1

aj(gj(n)). Then the zero solution of (1.3) is asymptotically

stable if
n−1
∏

s=n0

Q(s) → 0 as n→ ∞.
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Obviously, Theorem B improves and generalizes Theorem A. On the other hand,

Islam and Yankson in [13] considered the linear neutral difference equation

(1.5) x(n+ 1) = a(n)x(n) + b(n)x(n− τ(n)) + c(n)∆x(n − τ(n)),

and obtained the following theorem.

Theorem C (Islam and Yankson [13]). Suppose that a(n) 6= 0 and there exists

a constant α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such that

(1.6) |c(n− 1)| +

n−1
∑

s=n0

|b(s) − ϕ(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

a(u)

∣

∣

∣

∣

6 α,

where ϕ(s) = c(s) − c(s − 1)a(s). Then the zero solution of (1.5) is asymptotically

stable if
n−1
∏

s=n0

a(s) → 0 as n→ ∞.

In this paper, we consider the generalization of a linear neutral difference equation

with variable delays (1.5) of the form

(1.7) ∆x(n) = −

N
∑

j=1

aj(n)x(n − τj(n)) +

N
∑

j=1

cj(n)∆x(n − τj(n))

with the initial condition

(1.8) x(n) = ψ(n) for n ∈ [m(n0), n0] ∩ Z,

where ψ : [m(n0), n0] ∩ Z → R is a bounded sequence and for n0 > 0,

mj(n0) = inf{n− τj(n), n > n0}, m(n0) = min{mj(n0), 1 6 j 6 N}.

Note that (1.7) becomes (1.5) for N = 2, τ1 = 0, τ2 = τ, a1 = 1−a, a2 = −b, c1 = 0,

c2 = c. Thus, we know that (1.7) includes (1.1), (1.3) and (1.5) as special cases.

Equation (1.7) can be viewed as a discrete analogue of the linear neutral differential

equation

(1.9) x′(t) = −

N
∑

j=1

aj(t)x(t − τj(t)) +

N
∑

j=1

cj(t)x
′(t− τj(t)).

In [1], the authors investigated (1.9) and obtained
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Theorem D (Ardjouni and Djoudi [1]). Suppose that τj is twice differentiable and

τ ′j(t) 6= 1 for all t ∈ R
+, and there exist continuous functions hj : [mj(t0),∞) → R

for j = 1, 2, . . . , N and a constant α ∈ (0, 1) such that for t > 0

lim
t→∞

inf

∫ t

0

H(s) ds > −∞,

and

N
∑

j=1

∣

∣

∣

cj(t)

1 − τ ′j(t)

∣

∣

∣
+

N
∑

j=1

∫ t

t−τj(t)

|hj(s)| ds

+

N
∑

j=1

∫ t

0

e−
∫

t

s
H(u) du| − aj(s) + hj(s− τj(s))(1 − τ ′j(s)) − rj(s)| ds

+

N
∑

j=1

∫ t

0

e−
∫

t

s
H(u) du|H(s)|

(
∫ s

s−τj(s)

|hj(u)| du

)

ds 6 α,

where

H(t) =

N
∑

j=1

hj(t) and rj(t) =
[cj(t)H(t) + c′j(t)](1 − τ ′j(t)) + cj(t)τ

′′

j (t)

(1 − τ ′j(t))
2

.

Then the zero solution of (1.9) is asymptotically stable if and only if

∫ t

0

H(s) ds→ ∞ as t→ ∞.

Our purpose here is to give, by using the contraction mapping principle, asymp-

totic stability results for the generalized linear neutral difference equation with vari-

able delays (1.7). For details on the contraction mapping principle we refer the reader

to [22] and for more on the calculus of difference equations, we refer the reader to

[7] and [14]. The results presented in the present paper improve and generalize the

main results in [13], [19], [23].
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2. Main results

For a fixed n0, we denote by D(n0) the set of bounded sequences ψ : [m(n0), n0]∩

Z → R with the norm |ψ|0 = max{|ψ(n)| : n ∈ [m(n0), n0]∩Z}. Also, let (B, ‖.‖) be

the Banach space of bounded sequences x : [m(n0),∞) ∩ Z → R with the maximum

norm ‖.‖. For each (n0, ψ) ∈ Z
+ × D(n0), a solution of (1.7) through (n0, ψ) is

a sequence x : [m(n0),∞) ∩ Z → R such that x satisfies (1.7) on [n0,∞) ∩ Z and

x = ψ on [m(n0), n0] ∩ Z. We denote such a solution by x(n) = x(n, n0, ψ). For

each (n0, ψ) ∈ Z
+ ×D(n0), there exists a unique solution x(n) = x(n, n0, ψ) of (1.7)

defined on [m(n0),∞) ∩ Z.

Let hj : [m(n0),∞) ∩ Z → R be an arbitrary sequence. Rewrite (1.7) as

(2.1) ∆x(n) = −

N
∑

j=1

hj(n)x(n) + ∆n

N
∑

j=1

n−1
∑

s=n−τj(n)

hj(s)x(s)

+

N
∑

j=1

{hj(n− τj(n)) − aj(n)}x(n− τj(n))

+

N
∑

j=1

cj(n)∆x(n− τj(n)),

where ∆n indicates that the difference is taken with respect to n. If we let H(n) =

1 −
N
∑

j=1

hj(n) then (2.1) is equivalent to

(2.2) x(n+ 1) = H(n)x(n) + ∆n

N
∑

j=1

n−1
∑

s=n−τj(n)

hj(s)x(s)

+

N
∑

j=1

{hj(n− τj(n)) − aj(n)}x(n− τj(n))

+
N

∑

j=1

cj(n)∆x(n− τj(n)).

In the process, for any sequence x we denote

b
∑

k=a

x(k) = 0 and

b
∏

k=a

x(k) = 1 for any a > b.
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Lemma 2.1. Suppose that H(n) 6= 0 for all n ∈ [n0,∞)∩Z. Then x is a solution

of equation (1.7) if and only if

(2.3) x(n) =

{

x(n0) −
N

∑

j=1

cj(n0 − 1)x(n0 − τj(n0))

−

N
∑

j=1

n0−1
∑

s=n0−τj(n0)

hj(s)x(s)

} n−1
∏

u=n0

H(u)

+

N
∑

j=1

cj(n− 1)x(n− τj(n)) +

N
∑

j=1

n−1
∑

s=n−τj(n)

hj(s)x(s)

+

N
∑

j=1

n−1
∑

s=n0

n−1
∏

u=s+1

H(u){hj(s− τj(s)) − aj(s) − ϕj(s)}x(s− τj(s))

−

N
∑

j=1

n−1
∑

s=n0

{1 −H(s)}

n−1
∏

u=s+1

H(u)

s−1
∑

v=s−τj(s)

hj(v)x(v),

where

(2.4) ϕj(n) = cj(n) − cj(n− 1)H(n).

P r o o f. Let x be a solution of (1.7). By multiplying both sides of (2.2) by
n
∏

u=n0

[H(u)]−1 and by summing from n0 to n− 1 we obtain

n−1
∑

s=n0

∆

[ s−1
∏

u=n0

[H(u)]−1x(s)

]

=

n−1
∑

s=n0

s
∏

u=n0

[H(u)]−1∆s

N
∑

j=1

s−1
∑

v=s−τj(s)

hj(v)x(v)

+

n−1
∑

s=n0

s
∏

u=n0

[H(u)]−1
N

∑

j=1

{hj(s− τj(s)) − aj(s)}x(s− τj(s))

+
n−1
∑

s=n0

s
∏

u=n0

[H(u)]−1
N

∑

j=1

cj(s)∆x(s − τj(s)).

As a consequence, we arrive at

n−1
∏

u=n0

[H(u)]−1x(n) −

n0−1
∏

u=n0

[H(u)]−1x(n0)
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=

N
∑

j=1

n−1
∑

s=n0

s
∏

u=n0

[H(u)]−1∆s

s−1
∑

v=s−τj(s)

hj(v)x(v)

+

N
∑

j=1

n−1
∑

s=n0

s
∏

u=n0

[H(u)]−1{hj(s− τj(s)) − aj(s)}x(s− τj(s))

+

N
∑

j=1

n−1
∑

s=n0

s
∏

u=n0

[H(u)]−1cj(s)∆x(s − τj(s)).

By dividing both sides of the above expression by
n−1
∏

u=n0

[H(u)]−1 we get

(2.5) x(n) = x(n0)

n−1
∏

u=n0

H(u) +

N
∑

j=1

n−1
∑

s=n0

n−1
∏

u=s+1

H(u)∆s

s−1
∑

v=s−τj(s)

hj(v)x(v)

+

N
∑

j=1

n−1
∑

s=n0

n−1
∏

u=s+1

H(u){hj(s− τj(s)) − aj(s)}x(s− τj(s))

+

N
∑

j=1

n−1
∑

s=n0

n−1
∏

u=s+1

H(u)cj(s)∆x(s − τj(s)).

By performing a summation by parts, we have

(2.6)

n−1
∑

s=n0

n−1
∏

u=s+1

H(u)∆s

s−1
∑

v=s−τj(s)

hj(v)x(v)

=

n−1
∑

s=n−τj(n)

hj(s)x(s) −

n−1
∏

u=n0

H(u)

n0−1
∑

s=n0−τj(n0)

hj(s)x(s)

−

n−1
∑

s=n0

{1 −H(s)}

n−1
∏

u=s+1

H(u)

s−1
∑

v=s−τj(s)

hj(v)x(v),

and

(2.7)
n−1
∑

s=n0

n−1
∏

u=s+1

H(u)cj(s)∆x(s − τj(s))

= − cj(n0 − 1)x(n0 − τj(n0))
n−1
∏

u=n0

H(u) + cj(n− 1)x(n− τj(n))

−
n−1
∑

s=n0

n−1
∏

u=s+1

H(u)ϕj(s)x(s− τj(s)),
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where ϕj is given by (2.4). Finally, substituting (2.6) and (2.7) into (2.5) completes

the proof. �

Definition 2.2. The zero solution of (1.7) is Lyapunov stable if for any ε > 0 and

any integer n0 > 0 there exists a δ > 0 such that |ψ(n)| 6 δ for n ∈ [m(n0), n0] ∩ Z

implies |x(n, n0, ψ)| 6 ε for n ∈ [n0,∞) ∩ Z.

Theorem 2.3. Suppose that H(n) 6= 0 for all n ∈ [n0,∞) ∩ Z, and there exist

a positive constant M and a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z

(2.8)

∣

∣

∣

∣

n−1
∏

u=n0

H(u)

∣

∣

∣

∣

6 M,

and

(2.9)

N
∑

j=1

|cj(n− 1)| +

N
∑

j=1

n−1
∑

s=n−τj(n)

|hj(s)|

+

N
∑

j=1

n−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|

+
N

∑

j=1

n−1
∑

s=n0

|1 −H(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τj(s)

|hj(v)| 6 α.

Then the zero solution of (1.7) is stable.

P r o o f. Let ε > 0 be given. Choose δ > 0 such that

(M + αM)δ + αε 6 ε.

Let ψ ∈ D(n0) be such that |ψ(n)| 6 δ for n ∈ [m(n0), n0] ∩ Z. Define

Sε={ϕ ∈ B : ϕ(n) = ψ(n) for n ∈ [m(n0), n0] ∩ Z, ‖ϕ‖ 6 ε}.

Then (Sε, ‖ · ‖) is a complete metric space where ‖ · ‖ is the maximum norm.
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Use (2.3) to define the operator P : Sε → B by (Pϕ)(n) = ψ(n) for n ∈

[m(n0), n0] ∩ Z and

(2.10) (Pϕ)(n)

=

{

ψ(n0) −

N
∑

j=1

cj(n0 − 1)ψ(n0 − τj(n0)) −

N
∑

j=1

n0−1
∑

s=n0−τj(n0)

hj(s)ψ(s)

}

×

n−1
∏

u=n0

H(u) +

N
∑

j=1

cj(n− 1)ϕ(n− τj(n)) +

N
∑

j=1

n−1
∑

s=n−τj(n)

hj(s)ϕ(s)

+

N
∑

j=1

n−1
∑

s=n0

n−1
∏

u=s+1

H(u){hj(s− τj(s)) − aj(s) − ϕj(s)}ϕ(s− τj(s))

−

N
∑

j=1

n−1
∑

s=n0

{1 −H(s)}

n−1
∏

u=s+1

H(u)

s−1
∑

v=s−τj(s)

hj(v)ϕ(v)

for n ∈ [n0,∞)∩Z. Clearly, Pϕ is bounded by (2.9). We first show that P maps Sε

into Sε. We have

|(Pϕ)(n)| 6 Mδ + αMδ +

{ N
∑

j=1

|cj(n− 1)| +

N
∑

j=1

n−1
∑

s=n−τj(n)

|hj(s)|

+

N
∑

j=1

n−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|

+

N
∑

j=1

n−1
∑

s=n0

|1 −H(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τj(s)

|hj(v)|

}

‖ϕ‖

6 (M + αM)δ + αε 6 ε,

by (2.8) and (2.9). Thus P maps Sε into itself. We next show that P is a contraction.

Let ϕ1, ϕ2 ∈ Sε, then

|(Pϕ1)(n) − (Pϕ2)(n)|

6

{ N
∑

j=1

|cj(n− 1)| +

N
∑

j=1

n−1
∑

s=n−τj(n)

|hj(s)|

+
N

∑

j=1

n−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|

+

N
∑

j=1

n−1
∑

s=n0

|1 −H(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τj(s)

|hj(v)|

}

‖ϕ1 − ϕ2‖

6 α‖ϕ1 − ϕ2‖,
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by (2.8). This shows that P is a contraction with contraction constant α. Thus, by

the contraction mapping principle ([22], p. 2), P has a unique fixed point x in Sε

which is a solution of (1.7) with x = ψ on [m(n0), n0]∩Z and |x(n)| = |x(n, n0, ψ)| 6 ε

for n ∈ [n0,∞) ∩ Z. This proves that the zero solution of (1.7) is stable. �

Definition 2.4. The zero solution of (1.7) is asymptotically stable if it is Lya-

punov stable and if for any integer n0 > 0 there exists a δ > 0 such that |ψ(n)| 6 δ

for n ∈ [m(n0), n0] ∩ Z implies x(n, n0, ψ) → 0 as n→ ∞.

Theorem 2.5. Assume that the hypotheses of Theorem 2.3 hold. Also assume

that

(2.11)

n−1
∏

u=n0

H(u) → 0 as n→ ∞.

Then the zero solution of (1.7) is asymptotically stable.

P r o o f. We have already proved that the zero solution of (1.7) is stable. For

a given ε > 0 let ψ ∈ D(n0) be such that |ψ(n)| 6 δ for n ∈ [m(n0), n0] ∩ Z where

δ > 0, and define

S
∗

ε={ϕ ∈ B : ϕ(n) = ψ(n) for n ∈ [m(n0), n0] ∩ Z,

‖ϕ‖ 6 ε and ϕ(n) → 0 as n→ ∞}.

Define P : S
∗

ε → S
∗

ε by (2.10). From the proof of Theorem 2.3, the map P is a con-

traction with the contraction constant α and for every ϕ ∈ S
∗

ε, ‖Pϕ‖ 6 ε.

We next show that (Pϕ)(n) → 0 as n → ∞. There are five terms on the right

hand side in (2.10). Denote them, respectively, by Ik, k = 1, 2, . . . , 5. It is obvious

that the first term I1 tends to zero as t → ∞, by condition (2.11). Also, due to

the facts that ϕ(n) → 0 and n − τj(n) → ∞ for j = 1, 2, . . . , N as n → ∞, the

second term I2 tends to zero as n→ ∞. What is left is to show that each one of the

remaining terms in (2.10) goes to zero at infinity.

Let ϕ ∈ S
∗

ε be fixed. For a given ε1 ∈ (0, ε), we choose N0 > n0 large enough such

that n− τj(n) > N0, j = 1, 2, . . . , N , implies |ϕ(s)| < ε1 if s > n− τj(n). Therefore,

the third term I3 in (2.10) satisfies

|I3| =

∣

∣

∣

∣

N
∑

j=1

n−1
∑

s=n−τj(n)

hj(s)ϕ(s)

∣

∣

∣

∣

6

N
∑

j=1

n−1
∑

s=n−τj(n)

|hj(s)||ϕ(s)|

6 ε1

N
∑

j=1

n−1
∑

s=n−τj(n)

|hj(s)| 6 αε1 < ε1.
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Thus, I3 → 0 as n → ∞. Now for a given ε2 ∈ (0, ε), there exists an N1 > n0 such

that s > N1 implies |ϕ(s − τj(s))| < ε2 for j = 1, 2, . . . , N. Thus, for n > N1, the

term I4 in (2.10) satisfies

|I4| =

∣

∣

∣

∣

N
∑

j=1

n−1
∑

s=n0

n−1
∏

u=s+1

H(u){hj(s− τj(s)) − aj(s) − ϕj(s)}ϕ(s− τj(s))

∣

∣

∣

∣

6

N
∑

j=1

N1−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)||ϕ(s− τj(s))|

+
N

∑

j=1

n−1
∑

s=N1

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)||ϕ(s− τj(s))|

6 sup
σ>m(n0)

|ϕ(σ)|

N
∑

j=1

N1−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|

+ ε2

N
∑

j=1

n−1
∑

s=N1

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|.

By (2.11), we can find N2 > N1 such that n > N2 implies

sup
σ>m(n0)

|ϕ(σ)|

N
∑

j=1

N1−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|

= sup
σ>m(n0)

|ϕ(σ)|

∣

∣

∣

∣

n−1
∏

u=N2

H(u)

∣

∣

∣

∣

N
∑

j=1

N1−1
∑

s=n0

∣

∣

∣

∣

N2−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s) − ϕj(s)|

< ε2.

Now, apply (2.9) to obtain |I4| < ε2 +αε2 < 2ε2. Thus, I4 → 0 as n→ ∞. Similarly,

by using (2.9), then, if n > N2, the term I5 in (2.10) satisfies

|I5| =

∣

∣

∣

∣

N
∑

j=1

n−1
∑

s=n0

{1 −H(s)}

n−1
∏

u=s+1

H(u)

s−1
∑

v=s−τj(s)

hj(v)ϕ(v)

∣

∣

∣

∣

6 sup
σ>m(n0)

|ϕ(σ)|

∣

∣

∣

∣

n−1
∏

u=N2

H(u)

∣

∣

∣

∣

N
∑

j=1

N1−1
∑

s=n0

|1 −H(s)|

∣

∣

∣

∣

N2−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τj(s)

|hj(v)|

+ ε2

N
∑

j=1

n−1
∑

s=N1

|1 −H(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τj(s)

|hj(v)|

< ε2 + αε2 < 2ε2.

Thus, I5 → 0 as n → ∞. In conclusion (Pϕ)(n) → 0 as n→ ∞, as required. Hence

P maps S∗ε into S
∗

ε.
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By the contraction mapping principle, P has a unique fixed point x ∈ S
∗

ε which

solves (1.7). Therefore, the zero solution of (1.7) is asymptotically stable. �

Letting N = 2, τ1 = 0, τ2 = τ, a1 = 1 − a, a2 = −b, c1 = 0, c2 = c, we have

Corollary 2.6. Suppose that H(n) 6= 0 for all n ∈ [n0,∞) ∩ Z and there exists

a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z

(2.12) |c(n− 1)| +

n−1
∑

s=n−τ(n)

|h2(s)|

+

n−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

(|h1(s) − 1 + a(s)| + |h2(s− τ(s)) + b(s) − ϕ(s)|)

+

n−1
∑

s=n0

|1 −H(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τ(s)

|h2(v)| 6 α,

where H(n) = 1−
2
∑

j=1

hj(n) and ϕ(n) = c(n)− c(n−1)H(n). Then the zero solution

of (1.5) is asymptotically stable if

n−1
∏

u=n0

H(u) → 0 as n→ ∞.

R em a r k 2.7. When h1(s) = 1 − a(s) and h2(s) = 0, Corollary 2.6 reduces to

Theorem C.

For the special case cj = 0, we can get

Corollary 2.8. Suppose that H(n) 6= 0 for all n ∈ [n0,∞) ∩ Z and there exists

a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z

(2.13)

N
∑

j=1

n−1
∑

s=n−τj(n)

|hj(s)| +

N
∑

j=1

n−1
∑

s=n0

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

|hj(s− τj(s)) − aj(s)|

+

N
∑

j=1

n−1
∑

s=n0

|1 −H(s)|

∣

∣

∣

∣

n−1
∏

u=s+1

H(u)

∣

∣

∣

∣

s−1
∑

v=s−τj(s)

|hj(v)| 6 α.

Then the zero solution of (1.3) is asymptotically stable if

n−1
∏

u=n0

H(u) → 0 as n→ ∞.

R em a r k 2.9. When hj(s) = aj(gj(s)) for j = 1, 2, . . . , N , Corollary 2.8 reduces

to Theorem B.
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