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A NOTE ON THE KERNELS OF HIGHER DERIVATIONS

Jiantao Li, Xiankun Du, Changchun

(Received February 21, 2012)

Abstract. Let k ⊆ k′ be a field extension. We give relations between the kernels of higher
derivations on k[X] and k′[X], where k[X] := k[x1, . . . , xn] denotes the polynomial ring in
n variables over the field k. More precisely, let D = {Dn}

∞
n=0 a higher k-derivation on

k[X] and D′ = {D′
n}

∞
n=0 a higher k′-derivation on k′[X] such that D′

m(xi) = Dm(xi) for

all m > 0 and i = 1, 2, . . . , n. Then (1) k[X]D = k if and only if k′[X]D
′

= k′; (2) k[X]D

is a finitely generated k-algebra if and only if k′[X]D
′

is a finitely generated k′-algebra.

Furthermore, we also show that the kernel k[X]D of a higher derivation D of k[X] can be
generated by a set of closed polynomials.
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1. Introduction

Throughout this paper, k[X ] = k[x1, x2, . . . , xn] is the polynomial ring in n vari-

ables over a field k.

Let R be a commutative ring and A an R-algebra. Recall that a set of R-linear

endomorphisms D = {Dn}∞n=0 is called a higher R-derivation on A if D satisfies the

following conditions:

(1) D0 is the identity map of A;

(2) Dn(ab) =
∑

i+j=n

Di(a)Dj(b) for all n > 0 and for any a, b ∈ A.

A higher R-derivation D is called locally finite if for any a ∈ A, there exists n ∈ N

such that Dm(a) = 0 for any integer m > n. And D is called iterative if for any
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i, j ∈ N, Di ◦ Dj =
(

i+j

i

)

Di+j . For a higher R-derivation D on A, AD is the kernel

of D defined by AD =
⋂

n>1

KerDn.

Higher derivations and their kernels play an important role when we deal with

some curves and affine surfaces. For example, a Ga-action on an affine scheme

X = Spec(A) can be interpreted in terms of a locally finite iterative higher derivation

on A, and many things become easier to treat by observing the locally finite iterative

higher derivation on A associated with the Ga-action [4]. Recently, in [2], [7], [8]

the kernels of higher derivations have been studied. In [3], the structure of higher

derivations is studied. In this short note, we prove the following results.

(1) Let k ⊆ k′ be a field extension. Let D = {Dn}∞n=0 be a higher k-derivation

on the polynomial ring k[X ] over a field k and let D′ = {D′
n}

∞
n=0 be a higher

k′-derivation on k′[X ] such that D′
m(xi) = Dm(xi) for all m > 0 and i = 1, 2, . . . , n.

Then

(i) k[X ]D = k if and only if k′[X ]D
′

= k′;

(ii) k[X ]D is a finitely generated k-algebra if and only if k′[X ]D
′

is a finitely gener-

ated k′-algebra.

(2) Let D = {Dn}∞n=0 be a higher k-derivation of k[X ]. Then there exists a set S

of closed polynomials in k[X ] such that k[X ]D = k[S].

In the case of derivations on k[X ], similar results can be found in [5].

2. Higher derivations under extension of fields

Let k ⊆ k′ be a field extension and A a k-algebra. Let D = {Dn}∞n=0 be a higher

k-derivation on A. Consider the tensor product A⊗k k′, then A⊗k k′ is a k′-algebra.

Consider the set of k′-linear mappings D ⊗ 1 of A ⊗k k′ given by

D ⊗ 1 = {Dn ⊗ 1: A ⊗k k′ → A ⊗k k′}∞n=0.

Proposition 2.1. The set of k′-linear mappings D ⊗ 1 is a higher k′-derivation

on the k′-algebra A ⊗k k′. Moreover, if D is locally finite or iterative, then D ⊗ 1 is

also locally finite or iterative, respectively.

P r o o f. It is obvious that D0 ⊗ 1 is the identity map of A ⊗k k′.
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For any a ⊗ p, b ⊗ q ∈ A ⊗k k′,

(Dn ⊗ 1)((a ⊗ p) · (b ⊗ q)) = (Dn ⊗ 1)(ab ⊗ pq) = Dn(ab) ⊗ pq

=
(

∑

i+j=n

Di(a)Dj(b)
)

⊗ pq =
∑

i+j=n

Di(a)Dj(b) ⊗ pq

=
∑

i+j=n

((Di(a) ⊗ p) · (Dj(b) ⊗ q))

=
∑

i+j=n

(Di ⊗ 1)(a ⊗ p) · (Dj ⊗ 1)(b ⊗ q).

Since Di⊗1 are k′-linear mappings of A⊗kk′, i = 0, 1, 2, . . ., it follows from the above

equation that (Dn ⊗ 1)(xy) =
∑

i+j=n

(Di ⊗ 1)(x) · (Dj ⊗ 1)(y) for any x =
∑

i

ai ⊗ pi,

y =
∑

j

bj ⊗ qj ∈ A ⊗k k′, where ai, bj ∈ A and pi, qj ∈ k′. Thus, D ⊗ 1 is a higher

k′-derivation on A ⊗k k′.

Moreover, D is locally finite, that is, for any a ∈ A there exists n ∈ N such that

Dm(a) = 0 for any m > n. Define νD(a) = n where n is the least integer such that

Dn−1(a) 6= 0 and Dm(a) = 0 for any m > n. Note that any element of A ⊗k k′ is

a finite sum of the form
∑

i

ai ⊗ pi, where ai ∈ A, pi ∈ k′. Set N = max
i

{νD(ai)}.

Then for any m > N ,

(Dm ⊗ 1)
(

∑

i

ai ⊗ pi

)

=
∑

i

(Dm ⊗ 1)(ai ⊗ pi) =
∑

i

Dm(ai) ⊗ pi =
∑

i

0 ⊗ pi = 0.

Thus, D ⊗ 1 is a locally finite higher k′-derivation.

If D is iterative, that is, Di ◦ Dj =
(

i+j
i

)

Di+j for any i, j ∈ N, then

(Di ⊗ 1) ◦ (Dj ⊗ 1) = (Di ◦ Dj) ⊗ 1 =

((

i + j

i

)

Di+j

)

⊗ 1 =

(

i + j

i

)

Di+j ⊗ 1.

Thus, D ⊗ 1 is an iterative higher k′-derivation. �

The kernel of D ⊗ 1 is closely related to the kernel of D.

Proposition 2.2. The k′-algebras AD ⊗k k′ and (A ⊗k k′)D⊗1 are isomorphic.

P r o o f. It is obvious that k′ is flat as a k-algebra. Then the exact sequences

0 −→ KerDi
id
−→ A

Di−→ A, i = 1, 2, . . . .

of k-vector spaces induce the following exact sequences of k′-vector spaces:

0 −→ KerDi ⊗k k′ id⊗1
−→ A ⊗k k′ Di⊗1

−→ A ⊗k k′, i = 1, 2, . . . .
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Thus,

KerDi ⊗k k′ ∼= Im id ⊗ 1 ∼= KerDi ⊗ 1.

Note that if U, V are vector spaces and U1, U2 are subspaces of U , then it is known

(see for instance [6, Chapter 14: Tensor Products]) that

(U1 ⊗ V ) ∩ (U2 ⊗ V ) ∼= (U1 ∩ U2) ⊗ V.

Therefore,

(A ⊗k k′)D⊗1 =
⋂

i>1

KerDi ⊗ 1 ∼=
⋂

i>1

KerDi ⊗k k′ ∼=
(

⋂

i>1

KerDi

)

⊗k k′

= AD ⊗k k′.

�

Lemma 2.3 ([5]). A is a finitely generated algebra over k if and only if A ⊗k k′

is a finitely generated algebra over k′.

As a direct corollary of Proposition 2.2 and Lemma 2.3, we have

Corollary 2.4. Let k ⊆ k′ be a field extension and let D = {Dn}∞n=0 and

D ⊗ 1 = {Dn ⊗ 1}∞n=0 be higher derivations on A and A ⊗k k′, respectively. Then

(1) AD = k if and only if (A ⊗k k′)D⊗1 = k′;

(2) AD is a finitely generated k-algebra if and only if (A ⊗k k′)D⊗1 is a finitely

generated k′-algebra.

In most cases, we deal with higher derivations on polynomial rings. In that case,

we can get the following theorem.

Theorem 2.5. Let D = {Dn}∞n=0 be a higher k-derivation on the polynomial

ring k[X ] over a field k. Let k ⊆ k′ be a field extension and D′ = {D′
n}

∞
n=0 a higher

k′-derivation on k′[X ] such that D′
m(xi) = Dm(xi) for all m > 0 and i = 1, 2, . . . , n.

Then

(1) k[X ]D = k if and only if k′[X ]D
′

= k′;

(2) k[X ]D is a finitely generated k-algebra if and only if k′[X ]D
′

is a finitely gener-

ated k′-algebra.
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3. Kernels of higher k-derivations on k[X ]

Recall that a polynomial f ∈ k[X ] \ k is called closed if the subalgebra k[f ] is

a maximal element in the family L of subalgebras defined by L = {k[f ] : f ∈ k[X ]\k}.

It is known that f is a closed polynomial if and only if k[f ] is integrally closed in k[X ].

Define a generative polynomial hf of a polynomial f ∈ k[X ]\k as a closed polynomial

such that f = F (hf ) for some F ∈ k[t]. Such a generative polynomial hf is unique

up to affine transformations [1]. In [5], it is shown that if d is a derivation of k[X ]

and f ∈ k[X ]d is a nonconstant polynomial, then the generative polynomial hf of f

also belongs to k[X ]d, and hence, there is a set S of closed polynomials such that

k[X ]d = k[S]. Next we generalize such results to the case of higher derivations.

For a higher R-derivation D = {Dn}∞n=0 on an R-algebra A we can define a map-

ping ϕD from A to A[[t]] (here, A[[t]] is the formal power series ring in one variable

t over A) associated with D by

ϕD(a) =
∑

i>0

Di(a)ti for any a ∈ A.

Lemma 3.1 ([2]). Let D = {Dn}∞n=0 be a set of R-endomorphisms of the R-

algebra A where D0 is the identity map. Then the following statements are equiva-

lent.

(1) D is a higher R-derivation on A;

(2) ϕD is a homomorphism of the R-algebras A and A[[t]].

Moreover, D is a locally finite higher R-derivation on A if and only if ϕD is a homo-

morphism of the R-algebras A and A[t].

It is clear that for any a ∈ A, a ∈ AD if and only if ϕD(a) = a.

We are now in a position to show the main result of this section.

Theorem 3.2. Let D = {Dn}∞n=0 be a higher k-derivation of k[X ]. Then there

exists a set S of closed polynomials in k[X ] such that k[X ]D = k[S].

P r o o f. If k[X ]D = k, then put S = ∅. Now assume that k[X ]D 6= k. Choose

f ∈ k[X ]D \ k and let hf be the generative polynomial of f . Then hf is a closed

polynomial and there exists F (x) = anxn+. . .+a1x+a0 ∈ k[x] such that f = F (hf ),

where ai ∈ k and an 6= 0, and we can assume that F has the minimal degree. Thus,

f = anhn
f + . . . + a1hf + a0.

Applying ϕD to the above equation, we obtain

ϕD(f) = anϕD(hf )n + . . . + a1ϕD(hf ) + a0.
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Since f ∈ k[X ]D, it follows that ϕD(f) = f . Thus,

f = anϕD(hf )n + . . . + a1ϕD(hf ) + a0.

If ϕD(hf ) 6= hf , then ϕD(hf ) =
∑

i>0

Di(hf )ti is algebraically independent over k[X ],

even over the field of rational functions k(X). Hence ϕD(hf ) does not satisfy a non-

trivial algebraic equation over k[X ]. This contradiction forces ϕD(hf ) = hf . Thus,

hf ∈ k[X ]D. Therefore, it is proved that if f ∈ k[X ]d, then the generative polynomial

hf of f also belongs to k[X ]d.

Set S = {hf : f ∈ k[X ]D \ k}. Then S is clearly a set of closed polynomials in

k[X ] and k[X ]D = k[S]. �
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