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ON UNITARY CONVEX DECOMPOSITIONS
OF VECTORS IN A JB∗-ALGEBRA

Akhlaq A. Siddiqui

Abstract. By exploiting his recent results, the author further investigates the
extent to which variation in the coefficients of a unitary convex decomposition
of a vector in a unital JB∗-algebra permits the vector decomposable as convex
combination of fewer unitaries; certain C∗-algebra results due to M. Rørdam
have been extended to the general setting of JB∗-algebras.

Introduction

It is well known that the class of JB∗-algebras includes all C∗-algebras (cf. [15]).
The present author developed a theory of unitary isotopes of a unital JB∗-algebra
and by applying the same he has obtained various results on the geometry of the unit
ball in a JB∗-algebra with his special interest in studying decompositions of vectors
as convex combinations of unitaries, called unitary convex decompositions (cf.
[6]–[14]); these include generalization of some well known results due to B. Russo,
H. A. Dye, R. V. Kadison, C. L. Olsen, G. K. Pedersen and M. Rørdam. In
turn, we proved in [7] generalization of some C∗-algebra results on asymmetric
decompositions of vector, due to R. V. Kadison and G. K. Pedersen appeared in
[3], for general JB∗-algebras. Now, with our recent results appeared in [6, 8, 14],
we further investigate the extent to which variation in the coefficients of a unitary
convex decomposition of a vector in a unital JB∗-algebra J permits the vector
decomposable as convex combination of fewer unitaries in J . In the course of our
analysis we also obtain extension of certain C∗-algebra results due to M. Rørdam to
the general setting of JB∗-algebras. As we have seen in [6, 8, 14], the set V(x) (see
below) plays a basic role in the study of convex combinations of unitaries; this set
is an interval and also gives major information about those convex combinations of
unitaries which can represent an element of the unit ball of a JB∗-algebra. Inspired
by the work of M. Rørdam [5], we give some further results about the set V(x) in
relation to the unitary convex decompositions of vectors in the unit ball of a unital
JB∗-algebra.
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Isotopes of Jordan algebras

We recall (from [2], for instance) that a commutative (not necessarily associative)
algebra (J , ◦) over a field of characteristic 6= 2 is called a Jordan algebra if for all
x, y ∈ J , x2 ◦ (x ◦ y) = (x2 ◦ y) ◦ x; a Jordan algebra with unit is called unital. An
element x in a Jordan algebra J with unit e is said to be invertible if there exists
x−1 ∈ J , called the inverse of x, such that x ◦ x−1 = e and x2 ◦ x−1 = x. The set
of all invertible elements of J is symbolized as Jinv.

For any Jordan algebra J and x ∈ J , the x-homotope of J , denoted by J[x],
is the Jordan algebra consisting of the same elements and linear space structure
as J but a different product, denoted by “.x”, defined by a.xb = {axb} for all
a, b ∈ J , where {pqr} denotes the Jordan triple product of p, q, r given by {pqr} =
(p ◦ q) ◦ r − (p ◦ r) ◦ q + (q ◦ r) ◦ p.

If J is a unital Jordan algebra and x ∈ Jinv, then by x-isotope of J , denoted
by J [x], we mean the x−1-homotope J[x−1] of J ; clearly, x acts as the unit for
J [x]. For any invertible element a in J (unital Jordan algebra), Jinv = J [a]

inv (see
[11, Lemma 4.2]); thus, the set of invertible elements in a unital Jordan algebra is
invariant on passage to any of its isotopes.

Unitary isotopes of JB∗-algebras

A real or complex Jordan algebra J with product “◦” is called a Banach Jordan
algebra if there is a complete norm ‖ · ‖ on J satisfying ‖a ◦ b‖ ≤ ‖a‖‖b‖ for all a,
b ∈ J . If, in addition, J has a unit e with ‖e‖ = 1 then it is called a unital Banach
Jordan algebra; throughout the sequel, we will only be considering complex unital
Banach Jordan algebras.

In this article, we are interested in a special class of Banach Jordan algebras,
called JB∗-algebras (originally, Jordan C∗-algebras); this includes all C∗-algebras
as a proper subclass: a complex Banach Jordan algebra J with involution “∗” is
called a JB∗-algebra if ‖{xx∗x}‖ = ‖x‖3 for all x ∈ J (cf. [15, 16]). We denote
the open and closed unit balls in a JB∗-algebra J by (J )◦1 and (J )1, respectively.
A JB∗-algebra J is said to be of topological stable rank 1 (in short, tsr 1) if Jinv
is norm dense in J ; for some interesting properties of such algebras see [11].

An element u in a unital JB∗-algebra J is called a unitary if u∗ = u−1 (the
inverse of u); in such a case, ‖u‖ = 1. The set of all unitary elements in a JB∗-algebra
J is denoted by U(J ); the algebraic convex hull of U(J ) is symbolized by co U(J )
and its norm closure by c̄oU(J ). For any unitary element u of JB∗-algebra J ,
the isotope J [u] is called a unitary isotope of J ; which indeed is a JB∗-algebra
with u as its unit with respect to the original norm and the new involution ∗u
given as x∗u = {ux∗u} (see [1], for instance). For any unitary element u in unital
JB∗-algebra J , U(J ) = U(J [u]) (see [11, Theorem 4.6]); thus, the set of unitaries
is invariant on passage to unitary isotopes.

Unitary convex decompositions

In papers [6] and [7], the author presented several applications of the theory
of unitary isotopes of JB∗-algebras; these include a new proof of the celebrated



ON UNITARY CONVEX DECOMPOSITIONS OF VECTORS IN A JB∗-ALGEBRA 81

Russo-Dye theorem for JB∗-algebras and various other results on means and convex
combinations of unitaries.

For any element x in a unital JB∗-algebra J , The numbers uc(x) and um(x)
are defined by

uc(x) = min
{
n : x =

n∑
j=1

αjuj with uj ∈ U(J ), αj ≥ 0,
n∑
j=1

αj = 1
}
,

um(x) = min
{
n : x = 1

n

n∑
j=1

uj , uj ∈ U(J )
}
.

If x has no unitary convex decomposition, the uc(x) is defined to be the ∞. Indeed,
each convex combination of unitaries in a unital JB∗-algebra J is the mean of the
same number of unitaries in J . Hence, um(x) = uc(x) (see [13, Corollary 4.5], also
see [3, Corollary 15] for C∗-algebras); this number is called unitary rank of x and
is symbolized simply by u(x).

Let J be a unital JB∗-algebra. For every positive integer n, the set con U(J )
in J is defined by

con U(J ) =
{ n∑
i=1

αiui : ui ∈ U(J ), αi ≥ 0,
n∑
i=1

αi = 1
}
.

Hence, con U(J ) = {x ∈ J : u(x) ≤ n}. Another related set con+ U(J ) is defined
as the set of vectors x in J such that for each real number ε > 0 there is a convex
decomposition

∑n+1
i=1 αiui of x with ui ∈ U(J ) and αn+1 < ε.

Asymmetric decompositions

Inspired by the work of R. V. Kadison and G. K. Pedersen [3] and M. Rørdam [5].
In [7] the present author began a study of asymmetric decompositions of vectors in
a unitary JB∗-algebra. From [7], we know the following results on unitary convex
decompositions (see [3], for C∗-algebra case):

Lemma 1. Let J be a unital JB∗-algebra and x ∈ J such that ‖x‖ ≤ 1 − ε

for some ε ∈ (0, (n+ 1)−1). If dist(x, con U(J )) < ε2

1−ε , then there exist unitaries
ui ∈ U(J ), i = 1, . . . , n+ 1, such that

x =
n∑
i=1

αiui + εun+1 ,

where αk ≥ 0 and
∑n
i=1 αi + ε = 1.

Lemma 2. For any unital JB∗-algebra J ,

(J )◦1 ∩ c̄onU(J ) = (J )◦1 ∩ con+ U(J ) .

By using the above Lemmas 1 and 2, the author obtained the following generali-
zation of [3, Proposition 18]; this gives us two characterizations of JB∗-algebras of
tsr 1 (see [7, Theorem 11]):
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Theorem 3. For any unital JB∗-algebra J , the following statements are equiva-
lent:

(i) J is of tsr 1;
(ii) 1

2U(J ) + 1
2U(J ) is norm dense in (J )1;

(iii) (J )◦1 ⊆ co2+ U(J ).

Generally, it is not possible to replace co2+ U(J ) by co2 U(J ) in the statement
(iii) of the above theorem: this follows from the fact that any C∗-algebra can be
considered as a JB∗-algebra and the illustration given with the C∗-algebra of
convergent complex number sequences, by Kadison and Pedersen in [3].

For vectors of unitary rank ≥ 3, we know the following fact from [7, Theorem 13]:

Theorem 4. Let J be a unital JB∗-algebra and x ∈ J such that u(x) = n ≥ 3.
Suppose x =

∑n
i=1 αiui, where u1, . . . , un ∈ U(J ) and α1, . . . , αn are non-negative

real numbers with sum equal to 1. Then
(i) αi ≤ αj + αk, (for j 6= k);
(ii) 1

n−1 ≤ αj + αk, (for j 6= k);
(iii) αj ≤ 2

n+1 , ∀j.

More about asymmetric decompositions

We continue the study of asymmetric decompositions. By using our recent results
appeared in [6, 8, 14], we keep on investigating the extent to which variation in the
coefficients of a unitary convex decomposition of a vector in a unital JB∗-algebra
J permits the vector decomposable as convex combination of fewer unitaries in
J . In the sequel, we extend certain C∗-algebra results due to M. Rørdam to the
general setting of JB∗-algebras.

Let J be a unital JB∗-algebra. For each real number δ ≥ 1, consider the subset
coδ U(J ) of coU(J ) given by

coδ U(J ) =
{
δ−1

n−1∑
i=1

ui + δ−1(1 + δ − n)un : uj ∈ U(J ), j = 1, . . . , n
}
,

where n is the integer given by n − 1 < δ ≤ n. Clearly, coδ U(J ) = con U(J ) if
δ = n. For any element x ∈ (J )1, we can define the set V(x) as follows:

V(x) = {β ≥ 1 : x ∈ coβ U(J )} .

As mentioned above, the set V(x) is an interval in the real line and it plays
a vital role in the study of convex combinations of unitaries (cf. [6, 8, 14]). We
shall see below that the set V(x) also gives major information about those convex
combinations of unitaries which can represent an element of the unit ball of a
JB∗-algebra.

Theorem 5. Let (a1, . . . , am) ∈ <m, aj ≥ 0 and
∑m
j=1 aj = 1. Let x ∈ (J )1 and

ao = max{a1, . . . , am}.
(i) If V(x) = [γ,∞), then there exist u1, . . . , um ∈ U(J ) such that x =

∑m
j=1 ajuj

if and only if ao ≤ γ−1.
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(ii) If V(x) = (γ,∞), then there exist u1, . . . , um ∈ U(J ) such that x =
∑m
j=1 ajuj

if ao < γ−1 and only if ao ≤ γ−1.

Proof. Without any loss of generality, we suppose ao = a1 ≥ a2 ≥ . . . ≥ am.
Assuming x =

∑m
j=1 ajuj for some uj ∈ U(J ), we have ‖a−1

1 x−u1‖ ≤ a−1
1 (a2+. . .+

am) = a−1
1 (1−a1) = a−1

1 −1. Hence, by [14, Theorem 2.2], (a−1
1 ,∞) ⊆ V(x) so that

ao ≤ γ−1. For the other hand, suppose ao ≤ γ−1 if V(x) = [γ,∞) (and ao < γ−1 if
V(x) = (γ,∞)). Let n ∈ N such that n− 1 < a−1

o ≤ n. Since mao ≥ 1, n ≤ m and
x = ao(v1 + . . .+vn−1)+ao(a−1

o +1−n)vn+0vn+1 + . . .+0vm = b1v1 + . . .+bmvm
(say) where bn+1 = . . . = bm = 0. By [3, Lemma 13] and [13, Theorem 4.4],
there exist u1, . . . , um ∈ U(J ) with x =

∑m
j=1 ajuj if

∑k
j=1 aj ≤

∑k
j=1 bj for

all k = 1, . . . ,m − 1. However,
∑k
j=1 aj ≤ 1 =

∑k
j=1 bj for k ≥ n; otherwise∑k

j=1 aj ≤ kao =
∑k
j=1 bj . �

From the examples appearing in [5, Remark 3.13]), we know the existence of at
least two operators x with V(x) = (2,∞): one of the operators has no representation
as a convex combination of unitaries having 1

2 as a coefficient; whereas in case of
the second operator 1

2 appears as a coefficient in such a representation.
The next result gives us more information in determining the convex combinations

which represent a given element of the unit ball of a JB∗-algebra.

Theorem 6. Let (a1, . . . , an) ∈ <n and (b1, . . . , bm) ∈ <m be such that aj ≥
0, bj ≥ 0 and

∑n
j=1 aj =

∑m
k=1 bk = 1. Let ao = max{a1, . . . , an} and bo =

max{b1, . . . , bm}. Then for any unital JB∗-algebra J ,
a1U(J ) + . . .+ anU(J ) ⊆ b1U(J ) + . . .+ bmU(J )

if ao > bo or if ao = bo and l ≥ l′

where l = card{j : aj = ao} and l′ = card{k : bk = bo}.

Proof. Without any loss of generality, assume ao = a1 ≥ a2 ≥ . . . ≥ an and
bo = b1 ≥ b2 ≥ . . . ≥ bm. Let x ∈ a1U(J ) + . . . + anU(J ). Then there exist
u1, . . . , un ∈ U(J ) such that x =

∑n
j=1 ajuj . So, ‖a−1

1 x − u1‖ ≤ a−1
1 − 1 since

a1 ≥ a2 ≥ . . . ≥ an. Hence, by [14, Theorem 2.2], (a−1
o ,∞) ⊆ V(x). If ao > bo then,

by previous theorem, x = b1U(J ) + . . .+ bmU(J ). Now, assume ao = bo and l ≥ l′.
Then

∑n
i=l′+1 ai = 1 − l′bo =

∑m
i=l′+1 bi and there exist u1, . . . , un ∈ U(J ) such

that

(i) x =
n∑
i=1

aiui = bo

l′∑
j=1

uj + (bl′+1 + . . .+ bm)y

where y = (1 − l′ao)−1(al′+1ul′+1 + . . . + anun) ∈ (J )1. For any k > l′, we have
0 ≤ b−1

o bk < 1 and so by [13, Theorem 2.6] (repeating m− l′ times) we get

(ii) ul′ + (b−1
o bl′+1 + . . .+ b−1

o bm)y = vl′ + b−1
o bl′+1vl′+1 + . . .+ b−1

o bmvm

with vl′ , . . . , vm ∈ U(J ). It follows from above observations (i) and (ii) that
x ∈ b1U(J ) + . . .+ bmU(J ). �
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In [5], Rørdam remarks that for certain C∗-algebras “if” in the above theorem
(the C∗-algebra version) can be replaced with “if and only if”; for more details
see [4].

Corollary 7. For any unital JB∗-algebra J , if aj ≥ 0 and bk ≥ 0 with
∑n
j=1 aj =

1 =
∑m
k=1 bk, then one of the sets a1U(J )+. . .+anU(J ) and b1U(J )+. . .+bmU(J )

contains the other.

Proof. Follows immediately from the previous theorem. �

Next, we consider the extension coγ+ U(J ) of the construct con+ U(J ) (see
above) given for any number γ ≥ 1 by coγ+ U(J ) = ∩δ>γ coδ U(J ).

From [14, Corollary 2.3], it follows that coγ U(J ) ⊆ coγ+ U(J ), and x ∈
coγ+ U(J ) if and only if (γ,∞) ⊆ V(x).

Next, we need to recall the following result on invertibles appeared in our paper
[14, Corollary 2.8]:

Lemma 8. If x is an invertible element of the unit ball in a JB∗-algebra, then
V(x) = [2(1 + ‖x−1‖−1)−1,∞); in particular, the interval V(x) is closed.

Theorem 9. Let J be a unital JB∗-algebra. Let (a1, . . . , an) ∈ <n be such that
aj ≥ 0 and

∑n
j=1 aj = 1, and put a = max{a1, . . . , an}.

(i) coa−1 U(J ) ⊆ a1U(J ) + . . .+ anU(J ) ⊆ coa−1+ U(J ).
(ii) For 1 ≤ δ < 2, coδ U(J ) = c̄oδ+U(J ).

Proof. (i) Follows immediately from Theorem 6.
(ii) We observe that x ∈ coδ+ U(J ) together with 1 ≤ δ < 2 gives x =

αu1 + (1 − α)u2 for some unitaries u1, u2 ∈ U(J ) with 0 ≤ α < 1
2 , by the

construction of coδ+ U(J ). So that ‖x− u2‖ < 1 since ‖u‖ = 1 for all u ∈ U(J ).
Hence, x ∈ J [u2]

inv by the construction of the unitary isotope J [u2] (see above) and
[11, Lemma 2.1]. This together with [11, Lemma 4.2] gives that x ∈ Jinv. Thus,
V(x) is a closed interval by the previous lemma. However, x ∈ coδ+U(J ) clearly
gives the set inclusion (δ,∞) ⊆ V(x) . Therefore, [δ,∞) ⊆ V(x); this in turn gives
x ∈ coδ U(J ). Thus, the required result follows from [14, Corollary 2.9]. �

The next couple of results describe the set coδ+ U(J ) for the case δ ≥ 2. Here,
α(x) denotes the distance from vector x ∈ J to the set Jinv of invertibles in the
JB∗-algebra J ; see [11] for some of its properties.

Theorem 10. Let J be a unital JB∗-algebra and δ ≥ 2. Then:
(i) coδ+ U(J ) ⊆ {x ∈ (J )1 : α(x) ≤ 1− 2δ−1}.
(ii) coδ+ U(J ) ⊆ c̄oδU(J ).

Proof. (i) Suppose x ∈ (J )1 and α(x) > 1− 2δ−1 ≥ 0. Then x is non-invertible
(otherwise, α(x) must be zero). From this and the fact α ≤ ‖x‖ (cf. [11]), we get
V(x) ⊆ [βx,∞) with βx = 2(1 − α(x))−1 by [8, Theorem 30]. However, δ < βx.
Therefore, (δ,∞) 6⊆ V(x). This proves the part (i).
(ii) Let x ∈ coδ+ U(J ) and let m ∈ N be given by m ≤ δ < m + 1. Let ε > 0
and choose γ > δ such that |γ − δ| < (2m)−1δ2ε and γ < m + 1. It follows from
the definition of coδ+ U(J ) that x ∈ coγ U(J ), and hence x = γ−1(

∑m
j=1 uj + (γ−
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m)um+1) with u1, . . . , um+1 ∈ U(J ). Setting y = δ−1(
∑m
j=1 uj + (δ −m)um+1),

we see that y ∈ coδ U(J ) satisfying

‖x− y‖ ≤ m|δ−1 − γ−1|+ |γ−1(γ −m)− δ−1(δ −m)|

= (δγ)−1(m|γ − δ|+ |δ(γ −m)− γ(δ −m)|) ≤ 2mδ−2|γ − δ| < ε .

From this, we immediately conclude x ∈ c̄oδU(J ). �

From [14], we recall that the λu-function is defined on the closed unit ball (J )1
of unital JB∗-algebra J as follows:

λu(x) := sup{0 ≤ λ ≤ 1 : x = λv + (1− λ)y with v ∈ U(J ), y ∈ (J )1} ,

for all x ∈ (J )1. In [6], we introduced the following Λ-conditions for elements x in
a JB∗-algebra, where βx denotes the number 2(1− α(x))−1:
(Λ1): (βx,∞) ⊆ V(x).
(Λ2): (λu(x))−1 = inf V(x) = βx.
(Λ3): For all γ > βx, there exists u ∈ U(J ) such that ‖γx− u‖ ≤ γ − 1.
(Λ4): λu(x) ≥ β−1

x .
For any x ∈ (J )1 with α(x) < 1, the above conditions are equivalent to each

other (see [6, Theorem 3.6]). The next result improves the previous theorem,
provided that any one of the above conditions (Λ1)–(Λ4) is satisfied:

Theorem 11. Let J be a unital JB∗-algebra such that for any x ∈ (J )1 with
α(x) < 1, x satisfies any one of the conditions (Λ1)–(Λ4) and let δ ≥ 2. Then
(i) coδ+ U(J ) = {x ∈ (J )1 : α(x) ≤ 1− 2δ−1}.
(ii) c̄oδU(J ) = coδ+ U(J ).

Proof. (i) Let x ∈ (J )1 and α(x) ≤ 1− 2δ−1 with δ ≥ 2. If x is invertible, then
(δ,∞) ⊆ V(x) by [14, Corollary 2.8]. On the other hand, if x is non-invertible, then
under the hypothesis we have (δ,∞) ⊆ (βx,∞) ⊆ V(x) because δ ≥ βx. Thus, in
any case, x ∈ coδ+ U(J ) by the construction of coδ+ U(J ) (see above). Hence, the
part (i) follows from the previous theorem.
(ii) If δ ≥ 2, then by the part (i) we have coδ+ U(J ) = {x ∈ (J )1 : α(x) ≤
1 − 2δ−1}. By the continuity of α(x) (cf. [11, Lemma 6.2]), the set {x ∈ (J )1 :
α(x) ≤ 1 − 2δ−1}, and hence also the coδ+ U(J ) are closed. We conclude that
c̄oδU(J ) = coδ+ U(J ). �
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