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Abstract. The paper deals with a nonlocal problem related to the equilibrium of a confined
plasma in a Tokamak machine. This problem involves terms u

′
∗(|u > u(x)|) and |u > u(x)|,

which are neither local, nor continuous, nor monotone. By using the Galerkin approximate
method and establishing some properties of the decreasing rearrangement, we prove the
existence of solutions to such problem.
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1. Introduction and statement of the main results

In this paper, we are mainly interested in the resolution of a class of nonlocal

problems governing the equilibrium of a plasma in a Tokamak (a toroidal machine).

For a detailed presentation of this model, we refer the reader to [3], [23], [33] and the

references therein. The configuration is assumed to be axi-symmetric (for example

the cylindrical machine), thus the problem can be reduced to a two-dimensional one

in the meridian section of the torus. From the Maxwell equations and the magneto-

hydrodynamic theory of equilibrium in the plasma, one can deduce that the flux

function u satisfies the problem

(P)





−∆u = f(x, u) in {u > 0},

−∆u = 0 in {u 6 0},

u = γ (a negative constant to be determined) on ∂Ω,

−
∫
∂Ω ∂u/∂n = I (a given positive constant),
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where Ω (representing the cross section of the Tokamak) is a bounded, open and

connected subset of R2 with regular boundary ∂Ω with the outward unit normal n.

The set Ωp := {u > 0} is the region occupied by the plasma, the set Ωv := {u 6 0}

is the vacuum region.

The term f(x, u) represents the derivative dp/du where p is the pressure term.

The exact expression of f cannot be obtained from the MHD system and some

constitutive law must be assumed. A simple model is proposed that f depends on

u in a local way (the typical example is f(u) = λu+). This typical model was

considered by several authors to study the equilibrium states of a confined plasma in

Tokamak devices (see [2], [33], [35]) and in Stellarator devices (see [7], [8], [9], [25]).

Assuming that the fluid is adiabatic, a more sophisticated model is considered by

H.Grad in [14] (see also [23], [34] and [17]): f depending on u in a nonlocal way, i.e. f

depends on x, u, |u > u(x)|, u′∗(|u > u(x)|) or even the term u′′∗(|u > u(x)|), where u∗
denotes the decreasing rearrangement of u (see Section 2 below) and u′∗(s) = du∗/ds.

When f depends on the nonlocal term |u > u(x)|, this model has also been studied

in literature (see [13], [18], [19], [21], [22], [26], [29]). Rakotoson has studied a Grad-

Shafranov problem in [28] in the case of f(x, u) = k(|u > u(x)|)u′∗(|u > u(x)|).

Ferone et al. [10] (see also [11]) have considered the case of f(x, u) = G(x, u, |u >

u(x)|, k(|u > u(x)|)u′∗(|u > u(x)|)), satisfying the growth condition µ0s+ + δ′ 6

G(x, s, t, r) 6 κ1|s|+ κ2, where µ0, δ
′, κ1, κ2 are positive constants and the function

k is defined by

(1.1) k(s) = min{s1/2, (|Ω| − s)1/2}.

Concerning the case f(x, u) = g(u, |u > u(x)|, u′∗(|u > u(x)|)) in a Stellarator model,

the existence of solutions has been studied recently in [37].

In this paper, we consider problem (P) with the general pressure law

(1.2) f(x, u) = λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|q + g(x),

where ϕ : [0,∞] → [0,∞] is a continuous function, q is a positive constant with

1 6 q < 2 and 0 6 g ∈ Lr(Ω) with r > 1. As in [6] (see also [3], [33], and [28]),

λ > 0 is the parameter which represents the ratio between the particle pressure and

the magnetic pressure.

Clearly, under this pressure law, problem (P) is equivalent to the problem

(P)





−∆u = λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχ{u>0} + g(x)χ{u>0} in Ω,

u = γ (a negative constant to be determined) on ∂Ω,

−
∫

∂Ω ∂u/∂n = I (a given positive constant).
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Our main goal in this paper is to study the existence of solutions to problem (P).

The main difficulties lie in the boundary conditions, and the facts that the operator

is in general not coercive and the nonlinearity g is only known to be continuous on

V = {v ∈ H1(Ω): |{x : ∇v(x) = 0}| = 0}. To overcome these difficulties, we will

introduce a truncated problems (Ph) which will be approximated by a family of

problems (Phε), and solve the problem (Phε) by means of the Galerkin method

and a topological degree theory. Finally, thanks to the L∞ estimates on uh+ (see

Theorem 4.3), we prove that u = uh is a solution of problem (P) if h is large enough.

Thus, as in [21] (see also [29]), our main results are stated as follows.

Theorem 1.1. Let α = min{2/q, r}. Suppose that
∫
Ω
g(x) dx > I and

(1.3)
1

4π

∫ |Ω|

0

1

θ

∫ θ

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds dθ < sup

s>0
W (s),

where W is defined as

(1.4) W (s) =

∫ s

0

exp

(
−
q

8π

∫ s

θ

ϕ2/q(τ) dτ

)
dθ.

Assume that (1.2) holds and ϕ is a monotone increasing function, then problem (P)

admits a solution u ∈ H1(Ω) ∩W 2,α(Ω) with u+ ∈ L∞(Ω) in the following sense:

(1) −∆u = f̂χ{u>0} + g(x)χ{u>0}, where f̂ ∈ Lα(Ω) is such that

f̂(x) ∈ λϕ(u+)|k(β(u(x)))u′∗(β(u(x)))|q ,

where β(u(x)) = [|u > u(x)|, |u > u(x)|].

(2) u|∂Ω
= γ < 0.

(3) −
∫
∂Ω
∂u/∂n = I.

R em a r k 1.1. We point out that
∫
Ω g(x) dx > I is a sufficient condition for the

existence of a free boundary u|∂Ω
< 0 and u+ 6≡ 0. Indeed, we have

−

∫

∂Ω

∂u

∂n
=

∫

{u>0}

f̂ + g(x) dx = I > 0,

thus u+ 6≡ 0. Moreover, arguing as in (4.40), we obtain u|∂Ω
< 0. The existence of a

free boundary to problem (P) (or (P)) is physically expected, since the plasma can

not touch the vacuum vessel ∂Ω in this case.
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R em a r k 1.2. We observe that the above function u does not satisfy the standard

notion of solutions to problem (P), since the term λϕ(u+)|k(|u > u(x)|)u′∗(|u >

u(x)|)|q does not appear in the equation of problem (P), but is replaced by f̂ . This

is due to the fact that the nonlinearity is only known to be continuous on V . Under

some additional assumptions on g, we prove that |{x : u(x) > 0 and ∇u(x) = 0}| = 0

and thus u is a solution of problem (P) in the standard sense. More precisely, we

have

Theorem 1.2. Assume that g(x) > 0 a.e. in Ω. If the assumptions of Theo-

rem 1.1 hold, then there exists a solution u ∈ H1(Ω) ∩W 2,α(Ω) with u+ ∈ L∞(Ω)

to problem (P) in the standard sense.

R em a r k 1.3. Condition (1.3) is important to obtain the L∞ estimates on the

function uh+ (see Theorem 4.3) and then to get the existence of the solution u. If

ϕ ∈ L2/q[0,∞), then we can also obtain L∞ estimates on uh+ and prove the existence

of solutions to problem (P) without condition (1.3). Moreover, the assumption that

ϕ is monotone increasing is removed. This result is stated as follows.

Theorem 1.3. Let q be a positive constant with 1 6 q < 2 and 0 6 g ∈ Lr(Ω).

Assume that
∫
Ω
g(x) dx > I and ϕ : [0,∞] → [0,∞] is a continuous function with

ϕ ∈ L2/q[0,∞). Then problem (P) admits a solution u ∈ H1(Ω) ∩W 2,α(Ω) with

u+ ∈ L∞(Ω) in sense of Theorem 1.1. Moreover, if g(x) > 0 a.e. in Ω, then u is a

solution to problem (P) in the standard sense.

R em a r k 1.4. If ϕ ≡ c0 (a positive constant), then ϕ 6∈ L2/q[0,∞). However, we

can still get the existence of a solution u to problem (P) without condition (1.3).

This result is stated as follows.

Theorem 1.4. Assume that
∫
Ω
g(x) dx > I and ϕ(·) ≡ c0, then problem (P)

admits a solution u ∈ H1(Ω) ∩W 2,α(Ω) in the sense of Theorem 1.1. Moreover, if

g(x) > 0 a.e. in Ω, then u is a solution to problem (P) in the standard sense.

R em a r k 1.5. The operator ∆ can be extended to a more general operator of

the form div (a(x)∇u) with a ∈ C1,β(Ω). Furthermore, it is possible to adopt our

results to the more general problem





−div (a(x)∇u) = f(x, u, |u > u(x)|, u′∗(|u > u(x)|))χ{u>0} in Ω,

u = γ (a negative constant to be determined) on ∂Ω,

−
∫

∂Ω ∂u/∂n = I (a given positive constant),

under some appropriate assumptions on f .
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This paper is organized as follows: In Section 2, we first recall the notions of

the monotone and relative rearrangements of a function, as well as some of their

properties. In Section 3, we prove some results used in the Galerkin approximation.

In Section 4, we first introduce a family of truncation problems (Ph) and then prove

the existence of solutions to (Ph). Finally, we complete the proofs of the main

results.

2. Properties of the decreasing and relative rearrangement

Let Ω be a connected and bounded open measurable subset of R2 (here we consider

the two dimensional case, but the definitions and some of the results hold for any

dimension N > 2), we denote by |E| the Lebesgue measure of a measurable set E.

Given a measurable function u : Ω → R, we will say that u has a flat region at the

level t if |u = t| = |{x ∈ Ω: u(x) = t}| > 0. We recall that there exists an at most

countable family D of flat regions Pu(ti) = {u = ti} (see [7], [22]). The union of all

the flat regions of u is denoted by P (u) =
⋃

i∈D

Pu(ti).

We define the distribution function µu(t) of u as follows:

µu(t) = |{x ∈ Ω: u(x) > t}| = |u > t| ∀t ∈ R.

The decreasing rearrangement u∗ of u is defined as the generalized inverse function

of µu(t), i.e.

u∗(s) = inf{t ∈ R : µu(t) 6 s}, s ∈ Ω∗ = [0, |Ω|].

We shall use the following classical result about the decreasing rearrangement.

Lemma 2.1 (see [20] and the references therein). Let u and v be measurable

functions in Ω, then the following assertions are true.

(1) µu(u∗(s)) 6 s, ∀s ∈ Ω∗. Moreover, if u has no flat regions, then µu is continuous

and µu(u∗(s)) = s.

(2) u and u∗ are equimeasurable, i.e. |u > θ| = |u∗ > θ| ∀θ ∈ R.

(3) Let ϕ : R → R be a Borel function such that ϕ(u) ∈ L1(Ω). Then

(2.1)

∫

Ω

ϕ(u(x)) dx =

∫

Ω∗

ϕ(u∗(s)) ds.

(4) If u 6 v almost everywhere in Ω, then u∗(s) 6 v∗(s) ∀s ∈ Ω∗.

(5) The mapping u → u∗ sends L
p(Ω) into Lp(Ω∗) and it is a contraction, i.e.

‖u∗ − v∗‖Lp(Ω∗) 6 ‖u− v‖Lp(Ω).
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(6) Let E ⊂ Ω be a measurable subset. Then

∫

E

u(x) dx 6

∫ |E|

0

u∗(s) ds.

(7) Let ψ be a non-decreasing function. Then ψ(u∗) = (ψ(u))∗ a.e. in Ω.

Lemma 2.2 (see [24]). Let F ∈ L1
loc(Ω∗), F > 0 and u ∈ W 1,1(Ω) with u > 0.

Then for all s and s′ with s 6 s′ in Ω∗, we have

∫ u∗(s)

u∗(s′)

F (µu(θ))(−µ′
u(θ)) dθ 6

∫ s′

s

F (σ) dσ.

Now we recall another notion: the relative rearrangement.

Let now v ∈ Lp(Ω) with 1 6 p 6 ∞, we define a function w in Ω∗ by

w(s) =

{ ∫
{u>u∗(s)} v(x) dx if |u = u∗(s)| = 0,

∫
{u>u∗(s)} v(x) dx+

∫ s−|u>u∗(s)|

0 (v|Pu(u∗(s)))∗(t) dt otherwise,

where (v|Pu(u∗(s)))∗ is the decreasing rearrangement of the restriction of v to

Pu(u∗(s)).

Lemma 2.3 (see [22], [20], and [27]). Let u ∈ L1(Ω) and v ∈ Lp(Ω) with 1 6 p

6 ∞. Then w ∈ W 1,p(Ω∗) and
∥∥dw/ds

∥∥
Lp(Ω∗)

6 ‖v‖Lp(Ω).

Definition 2.1. The function dw/ds is called the relative rearrangement of v

with respect to u and is denoted by v∗u.

The relative rearrangement has several properties as follows (see also [8], [25], [22],

[27]).

Lemma 2.4. Assume that u, v1, v2 ∈ L1(Ω). Then the following assertions hold:

(i) If v1 6 v2 a.e. in Ω, then v1∗u 6 v2∗u a.e. in Ω∗.

(ii) If F is a Borel function such that F (u) ∈ L1(Ω), then (v1 + F (u))∗u = v1∗u +

F (u∗). In particular, (c + F (u))∗u = c + F (u∗), where c ∈ R. Moreover, if

b ∈ L∞(Ω) and |P (u)| = 0 , then (F (u)b)∗u = F (u∗)b∗u.

(iii) The mapping v → v∗u sends L
p(Ω) into Lp(Ω∗) for any 1 6 p 6 ∞ and it is a

contraction, i.e. ‖v1∗u − v2∗u‖Lp(Ω∗) 6 ‖v1 − v2‖Lp(Ω). In particular,

‖v∗u‖Lp(Ω∗) 6 ‖v‖Lp(Ω) ∀v ∈ Lp(Ω).

We also need the notion of a co-area regular function (see [1]):
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Definition 2.2. Let u ∈ W 1,1
loc (Ω). For θ ∈ R we set µu,0(θ) := |{x ∈ Ω:

u(x) > θ and ∇u(x) = 0}| and µu,1(θ) = µu(θ) − µu,0(θ). We will say that u is a

co-area regular function if the Radon measure (µu,0)
′ is singular with respect to the

Lebesgue measure on R.

Lemma 2.5 (see [8] and [28]). If u ∈ W 2,p
loc (Ω) for some p > 1, then u is a co-area

regular function.

Lemma 2.6 (see [8], [26], and [1]). Let v be a co-area regular function ofW 1,p(Ω),

1 6 p 6 ∞. If vn is a bounded sequence of W
1,p(Ω) such that vn converges to v

strongly in W 1,p(Ω), then

v′n∗(s) → v′∗(s) a.e. in Ω∗,

k(s)v′n∗(s) → k(s)v′∗(s) strongly in Lp(Ω∗),

where k is defined as in (1.1).

Now we recall the notion of the mean value operator introduced in [22] (see

also [26]).

Definition 2.3. Let u ∈ L1(Ω) and ϕ ∈ L1(Ω∗), we define the mean value

operatorMu(ϕ) by

Mu(ϕ)(x) =






ϕ(|u > u(x)|) if x ∈ Ω \ P (u),

1

|u = u(x)|

∫ |u>u(x)|

|u>u(x)|

ϕ(σ) dσ otherwise.

Definition 2.4. Let u, v ∈ L1(Ω) and ϕ ∈ L1(Ω∗). We define the second cate-

gory mean value operatorMu,v(ϕ) as the function

Mu,v(ϕ)(x) =

{
ϕ(|u > u(x)|) if x ∈ Ω \ P (u),

Mvi(hi)(x) if x ∈ Pu(θi),

where vi = v|Pu(θi) is the restriction of v to Pu(θi) and hi : (0, |Pu(θi)|) → R, hi(s) =

ϕ(s+ |u > θi|).

Lemma 2.7 (see [9] and [22]). Let u ∈ L1(Ω) and v ∈ Lp(Ω), 1 6 p 6 ∞. For

any ϕ ∈ Lp′

(Ω∗), we have

∫

Ω∗

v∗u(s)ϕ(s) ds =

∫

Ω

Mu,v(ϕ)(x)v(x) dx.
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If |P (u)| = 0 the last equality is reduced to

∫

Ω∗

v∗u(s)ϕ(s) ds =

∫

Ω

ϕ(|u > u(x)|)v(x) dx.

Lemma 2.8 (see [24] and [31]). Let u ∈W 1,p
0 (Ω) and v = |u|, where p > 1. Then

for a.e. θ ∈ [0, ess sup
Ω

v],

−
d

dθ

∫

{v>θ}

|∇v| dx > 2π1/2µ1/2
v (θ).

3. Some useful results

As mentioned in the introduction, the proof of Theorem 1.1 is based on the appli-

cation of the Galerkin method. We have devoted this section to proving some results

which are crucial for passing to the limit in the approximate problem.

Lemma 3.1. Set L1
+(Ω) = {w ∈ L1(Ω): w > 0}. Let u ∈ L1(Ω) and let F be a

Borel function such that F (u) ∈ L1
+(Ω), v ∈ L∞(Ω). Then

(3.1) (F (u)v)∗u(s) = F (u∗(s))v∗u(s) a.e. s ∈ Ω∗.

P r o o f. Step 1 : We prove that (3.1) holds for all v ∈ L∞(Ω) with |P (v)| = 0

(i.e. v has no flat region).

Using Lemma 2.7, we deduce that for all ̺ ∈ L∞(Ω∗),

∫

Ω∗

(F (u)v)∗u(s)̺(s) ds =

∫

Ω

Mu,F (u)v(̺)(x)F (u(x))v(x) dx.

By the definition of Mu,F (u)v (see Definition 2.4), we have

F (u(x))Mu,F (u)v(̺)(x) =






F (u(x))̺(|u > u(x)|) if x ∈ Ω \ P (u),

0 if F (u(x)) = 0,

F (u(x))̺(|u > u(x)| + ν(x)) otherwise,

where ν(x) = |{y : u(y) = u(x), F (u(x))v(y) > F (u(x))v(x)}|.

Since F (u(x)) > 0 in the third case, we have

(3.2) ν(x) = |{y : u(y) = u(x), v(y) > v(x)}|.
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In view of this, we obtain

F (u(x))Mu,F (u)v(̺)(x) = F (u(x))Mu,v(̺)(x),

which leads to

(3.3)

∫

Ω∗

(F (u)v)∗u(s)̺(s) ds =

∫

Ω

Mu,v(̺)(x)F (u(x))v(x) dx.

On the other hand, we have

(3.4)

∫

Ω∗

F (u∗)v∗u(s)̺(s) ds =

∫

Ω

Mu,v(F (u∗)̺)(x)v(x) dx.

By the definition of Mu,v, we have

Mu,v(F (u∗)̺)(x) =

{
F (u∗(|u > u(x)|))̺(|u > u(x)|) if x ∈ Ω \ P (u),

F (u∗(|u > u(x)| + ν(x)))̺(|u > u(x)| + ν(x)) otherwise,

where ν is defined as in (3.2).

If x ∈ P (u), then [|u > u(x)|, |u > u(x)|] ⊆ P (u∗) and u∗(s) = u(x) for all

s ∈ [|u > u(x)|, |u > u(x)|]. Hence, we have

u∗(|u > u(x)| + ν(x)) = u(x) for a.e. x ∈ P (u).

Moreover, by the definition of u∗, it is easy to see that

u∗(|u > u(x)|) = u(x) for a.e. x ∈ Ω \ P (u).

The above two relations show that

(3.5) Mu,v(F (u∗)̺)(x) = F (u)(x)Mu,v(̺)(x) for a.e. x ∈ Ω.

It follows from (3.3)–(3.5) that

(3.6)

∫

Ω∗

(F (u)v)∗u(s)̺(s) ds =

∫

Ω

Mu,v(̺)(x)F (u)(x)v(x) dx

=

∫

Ω∗

F (u∗)v∗u(s)̺(s) ds, ∀̺ ∈ L∞(Ω∗),

which implies that (F (u)v)∗u = F (u∗)v∗u.

Step 2 : We prove that (3.1) holds for all v ∈ L∞(Ω). Clearly, (3.1) holds if v ≡ 0.

Now we assume that v 6≡ 0.
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Let ϕn be an eigenfunction of the Laplacian operator corresponding to λn (see

Section 4 for detail). For all n, we know that ϕn is analytic in Ω (see [15] and [5]),

and so |P (ϕn)| = 0 (i.e. ϕn does not have flat regions). Moreover, {ϕn}∞n=1 is an

orthonormal basis of L2(Ω), and so there exist {an}∞n=1 ⊆ R such that v =
∞∑

i=1

aiϕi.

Let vn =
n∑

i=1

aiϕi. Then vn ∈ L∞(Ω) and

vn → v strongly in L2(Ω) and a.e. in Ω.

Furthermore, vn is analytic in Ω and |P (vn)| = 0 as soon as n is large enough (recall

that v 6≡ 0). By the proof of Step 1, we have for l > 0

(3.7)

∫

Ω∗

(Tl(F (u))vn)∗u(s)̺(s) ds =

∫

Ω∗

Tl(F (u∗))vn∗u(s)̺(s) ds, ∀̺ ∈ L∞(Ω∗).

By assertion (iii) of Lemma 2.4 and the Lebesgue dominated convergence theorem,

we conclude that

(Tl(F (u))vn)∗u → (Tl(F (u))v)∗u strongly in L2(Ω),

and

vn∗u → v∗u strongly in L1(Ω).

The above two convergence results together with (3.7) lead to

(3.8)

∫

Ω∗

(Tl(F (u))v)∗u(s)̺(s) ds =

∫

Ω∗

Tl(F (u∗))v∗u(s)̺(s) ds ∀̺ ∈ L∞(Ω∗).

Let l → ∞ in (3.8). We find that

∫

Ω∗

(F (u)v)∗u(s)̺(s) ds =

∫

Ω∗

F (u∗)v∗u(s)̺(s) ds ∀̺ ∈ L∞(Ω∗),

which implies that (F (u)v)∗u = F (u∗)v∗u.

Thus, the proof of Lemma 3.1 is completed. �

R em a r k 3.1. Since L∞(Ω) is dense in Lp(Ω) for 1 < p <∞, we deduce that (3.1)

holds for F (u) ∈ Lp′

+ (Ω), v ∈ Lp(Ω). In contrast to Lemma 2.4 (see also Lemma 11

in [9]), we do not need the condition |P (u)| = 0 but require that F (u) ∈ L1
+(Ω).

We also point out that the special case F (u) = u ∈ L1
+(Ω) has already been studied

in [12].
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Lemma 3.2. Let v ∈ W 2,p(Ω) and vn ∈ W 1,p(Ω) be such that

(3.9) vn → v strongly in W 1,p(Ω) with p > 1.

Then we have

k(|vn > vn(·)|)v′n∗(|vn > vn(·)|)χΩ\P (vn)χ{vn>0}

→ k(|v > v(·)|)v′∗(|v > v(·)|)χΩ\P (v)χ{v>0} strongly in Lp(Ω),

where χΩ\P (vn) and χΩ\P (v) are the characteristic functions of Ω\P (vn) and Ω\P (v),

respectively.

P r o o f. By the equimeasurability, we obtain that

(3.10)

∫

Ω

|k(|vn > vn(x)|)v′n∗(|vn > vn(x)|)χΩ\P (vn)χ{vn>0}|
p dx

=

∫

Ω\P (vn)

|k(|vn > vn(x)|)v′n∗(|vn > vn(x)|)χ{vn>0}|
p dx

=

∫

Ω∗\P (vn∗)

|k(s)v′n∗(s)χ{vn∗>0}|
p ds =

∫

Ω∗

|k(s)v′n∗(s)χ{vn∗>0}|
p ds

=

∫

Ω∗\P (v∗)

|k(s)v′n∗(s)χ{vn∗>0}|
p ds+

∫

P (v∗)

|k(s)v′n∗(s)χ{vn∗>0}|
p ds.

Similarly, we have

(3.11)

∫

Ω

|k(|v > v(x)|)v′∗(|v > v(x)|)χΩ\P (v)χ{v>0}|
p dx

=

∫

Ω∗

|k(s)v′∗(s)χ{v∗>0}|
p ds.

Since χ{vn∗>0} converges to χ{v∗>0} a.e. in Ω∗\P (v∗), using the Lebesgue dominated

convergence theorem, Lemma 2.5, Lemma 2.6, and (3.9), we conclude that

(3.12) lim
n→∞

∫

Ω∗\P (v∗)

|k(s)v′n∗(s)χ{vn∗>0}|
p ds =

∫

Ω∗\P (v∗)

|k(s)v′∗(s)χ{v∗>0}|
p ds

=

∫

Ω∗

|k(s)v′∗(s)χ{v∗>0}|
p ds

and

(3.13) lim
n→∞

∫

P (v∗)

|k(s)v′n∗(s)χ{vn∗>0}|
p ds = 0.
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Passing to the limit as n tends to ∞ in (3.9) and using (3.10)–(3.13), we have

(3.14) lim
n→∞

∫

Ω

|k(|vn > vn(x)|)v′n∗(|vn > vn(x)|)χΩ\P (vn)χ{vn>0}|
p dx

=

∫

Ω

|k(|v > v(x)|)v′∗(|v > v(x)|)χΩ\P (v)χ{v>0}|
p dx.

If x ∈ P (vn), then [|vn > vn(x)|, |vn > vn(x)|] ⊂ P (vn∗) and so k(s)v
′
n∗(s) = 0

for a.e. s ∈ [|vn > vn(x)|, |vn > vn(x)|], which implies that Mvn,w(kv′n∗)(x) = 0 for

a.e. x ∈ P (vn) and any w ∈ Lp′

(Ω). If x 6∈ P (vn), then Mvn,w(kv′n∗)(x) = k(|vn >

vn(x)|)v′n∗(|vn > vn(x)|) for any w ∈ Lp′

(Ω). Thus, we obtain that

(3.15) Mvn,w(kv′n∗)(x) = k(|vn > vn(x)|)v′n∗(|vn > vn(x)|)χΩ\P (vn).

Applying the same argument, we get

(3.16) Mv,w(kv′∗)(x) = k(|v > v(x)|)v′∗(|v > v(x)|)χΩ\P (v).

Let ψ = χP (v∗) be the characteristic function of P (v∗). We deduce from Lemma 2.7

and (3.15) that

(3.17)

∫

Ω

k(|vn > vn(x)|)v′n∗(|vn > vn(x)|)χΩ\P (vn)χ{vn>0}w(x) dx

=

∫

Ω

Mvn,w(kv′n∗)(x)χ{vn>0}w(x) dx

=

∫

Ω∗

k(s)v′n∗(s)(χ{vn>0}w)∗vn(s) ds

=

∫

Ω∗

k(s)v′n∗(s)(χ{vn>0}w)∗vn(s)(1 − ψ(s)) ds

+

∫

Ω∗

k(s)v′n∗(s)(χ{vn>0}w)∗vn(s)ψ(s) ds = In + Jn.

By Remark 3.1, we obtain

(3.18) (χ{vn>0}w)∗vn = χ{vn∗>0}w∗vn and (χ{v>0}w)∗v = χ{v∗>0}w∗v.

Arguing as in Lemma 3.2 of [30], we deduce that

(3.19) (1 − ψ)w∗vn ⇀ (1 − ψ)w∗v weakly in Lp′

(Ω∗).

On the other hand, we have

(3.20) χ{vn∗>0} → χ{v∗>0} a.e. in Ω∗ \ P (v∗).
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It follows from Lemma 2.5–Lemma 2.7, (3.16) and (3.18)–(3.20) that

(3.21) lim
n→∞

In = lim
n→∞

∫

Ω∗\P (v∗)

k(s)v′n∗(s)χ{vn∗>0}w∗vn(s)(1 − ψ(s)) ds

=

∫

Ω∗\P (v∗)

k(s)v′∗(s)χ{v∗>0}w∗v(s)(1 − ψ(s)) ds

=

∫

Ω∗

k(s)v′∗(s)χ{v∗>0}w∗v(s) ds

=

∫

Ω∗

k(s)v′∗(s)(χ{v>0}w)∗v(s) ds

=

∫

Ω

Mv,w(kv′∗)(x)χ{v>0}w(x) dx

=

∫

Ω

k(|v > v(x)|)v′∗(|v > v(x)|)χΩ\P (v)χ{v>0}w(x) dx.

We conclude from Lemma 2.5 and Lemma 2.6 that

(3.22) kv′n∗ψ → 0 strongly in Lp(Ω∗).

By the Hölder inequality, we get

(3.23) |Jn| 6

( ∫

Ω∗

|k(s)v′n∗(s)ψ(s)|p ds

)1/p( ∫

Ω∗

|(χ{vn>0}w)∗vn |
p′

ds

)1/p′

.

From Lemma 2.4 it is easy to see that the sequence {(χ{vn>0}w)∗vn} is bounded

uniformly in Lp′

(Ω∗) with respect to n. Thus from (3.22) and (3.23) we have

(3.24) lim
n→∞

Jn = 0.

By (3.17), (3.21) and (3.24), we obtain that

lim
n→∞

∫

Ω

k(|vn > vn(x)|)v′n∗(|vn > vn(x)|)χΩ\P (vn)χ{vn>0}w(x) dx

=

∫

Ω

k(|v > v(x)|)v′∗(|v > v(x)|)χΩ\P (v)χ{v>0}w(x) dx,

which implies that

k(|vn > vn(x)|)v′∗(|vn > vn(·)|)χΩ\P (vn)χ{vn>0}

⇀ k(|v > v(x)|)v′∗(|v > v(·)|)χΩ\P (v)χ{v>0}

weakly in Lp(Ω). Since Lp(Ω)(1 < p < ∞) is a uniformly convex space, the conclu-

sion of Lemma 3.2 follows immediately from the above relation and (3.14). �
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Lemma 3.3. Let k be the function defined by (1.1), ψ ∈ C+(R) and v ∈W 1,p(Ω)

with p > 1. Then for any θ ∈ R and h ∈ R
+,

(3.25)

∫

{θ<v∗6θ+h}

ψ(v∗)|k(s)v
′
∗(s)|

p ds 6
1

(2π1/2)p

∫

{θ<v6θ+h}

ψ(v)|∇v|p dx.

P r o o f. We introduce two functions ψ and ψ̂ defined as follows:

ψ(s) =

{
ψ(s), θ < s 6 θ + h,

0, s 6 θ or s > θ + h,

and

ψ̂(s) =

∫ s

0

(ψ(t))1/p dt.

Let w = ψ̂(v). Then it is easy to see that w ∈W 1,p(Ω). By Theorem 1.2 in [31], we

get

(3.26)

∫

Ω∗

|k(s)w′
∗(s)|

p ds 6
1

(2π1/2)p

∫

Ω

|∇w|p dx.

Since ψ̂ is a nondecreasing function, we get w∗(s) = (ψ̂(v))∗(s) = ψ̂(v∗(s)) for a.e.

s ∈ Ω∗. Thus, we have

(3.27) w′
∗(s) = v′∗(s)(ψ(v∗(s)))

1/p = v′∗(s)(ψ(v∗))
1/pχ{θ<v∗6θ+h} for a.e. s ∈ Ω∗.

Note that

∇w = ψ̂′(v)∇v = (ψ(v))1/p∇v = (ψ(v))1/p∇vχ{θ<v6θ+h},

thus the conclusion (3.25) follows immediately from (3.26) and (3.27). �

R em a r k 3.2. Lemma 3.3 is an extension of the Pólya-Szegö inequality for mono-

tone rearrangement. Using this lemma, we may obtain L∞ estimates on uh+ (The-

orem 4.3 and Lemma 4.4). Moreover, if we let h tend to infinity in (3.25), then

∫

{v∗>θ}

ψ(v∗)|k(s)v
′
∗(s)|

p ds 6
1

(2π1/2)p

∫

{v>θ}

ψ(v)|∇v|p dx.
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4. Proof of main results

Here and in what follows, we use the following notation. For any v ∈ H1
0 (Ω) and

h > 0, ε > 0,

Ghε(x, v, v
′
∗)(4.1)

=
[
λϕ(Th(v+))

|k(|v > v(x)|)v′∗(|v > v(x)|)|q

1 + ε|k(|v > v(x)|)v′∗(|v > v(x)|)|q
+

g(x)

1 + εg(x)

]
χ{v>0},

G̃hε(x, v, v
′
∗)(4.2)

=
[
λϕ(Th(v+))

|k(|v > v(x)|)v′∗(|v > v(x)|)|qχΩ\P (v)

1 + ε|k(|v > v(x)|)v′∗(|v > v(x)|)|q
+

g(x)

1 + εg(x)

]
χ{v>0},

Gh(x, v, v′∗)(4.3)

= [λϕ(Th(v+))|k(|v > v(x)|)v′∗(|v > v(x)|)|q + g(x)]χ{v>0},

G̃h(x, v, v′∗)(4.4)

= [λϕ(Th(v+))|k(|v > v(x)|)v′∗(|v > v(x)|)|qχΩ\P (v) + g(x)]χ{v>0},

where Th is the truncation function defined as Th(s) = min{h,max{s,−h}}.

In order to avoid the lack of regularity of the term λϕ(u+)|k(|u > u(x)|)u′∗(|u >

u(x)|)|q , rather than looking for solutions of (P) directly, we shall consider a trun-

cated problem (Ph) defined as

(Ph)





−∆uh = Gh(x, uh, u
′
h∗) in Ω,

uh = γh (a negative constant to be determined) on ∂Ω,

−
∫

∂Ω
∂uh/∂n = I (a given positive constant).

The existence result to problem (Ph) is stated as follows.

Theorem 4.1. Let h > 0 be fixed and let q be a positive constant with q < 2,

0 6 g ∈ Lr(Ω). Suppose that ϕ : [0,∞] → [0,∞] is a continuous function and∫
Ω g(x) dx > I. Then there exists at least one solution uh ∈ W 2,α(Ω) ∩ H1(Ω) to

problem (Ph) in the following sense:

(i) −∆uh = G̃h(x, uh, u
′
h∗) in Ω.

(ii) uh|∂Ω = γh (a negative constant).

(iii) −
∫
∂Ω
∂uh/∂n = I.

To prove Theorem 4.1, we shall first consider a family of approximate problems

(Phε):

(Phε)





−∆uhε = Ghε(x, uhε, u
′
hε∗) in Ω,

uhε = γε (a constant to be determined) on ∂Ω,

−
∫

∂Ω ∂uhε/∂n = I (a given positive constant).

623



The existence of solutions to problem (Phε) is stated as follows.

Theorem 4.2. Suppose that the assumption of Theorem 4.1 holds. Then there

exists at least one solution uhε ∈ H2(Ω) to problem (Phε) in the following sense:

(i) −∆uhε = G̃hε(x, uhε, u
′
hε∗) in Ω,

(ii) uhε|∂Ω = γhε (a constant),

(iii) −
∫
∂Ω ∂uhε/∂n = I.

4.1. Proof of Theorem 4.1 and Theorem 4.2. We shall first prove Theo-

rem 4.2 by the Galerkin method and topological degree theory. The idea of this

proof comes from [2], [8] and [10].

Let

V = {v ∈ H1(Ω): v ≡ constant on ∂Ω}

be endowed with the scalar product [u, v] =
∫
Ω ∇u · ∇v dx + u|∂Ω

v|∂Ω
for u, v ∈ V

and

Ṽ = {v ∈ V : |{x ∈ Ω: ∇v(x) = 0}| = 0}.

Let (λi, ϕi)i>1 be the eigenvalues and eigenfunctions associated to the problem





−∆ϕi = λiϕi in Ω,

ϕi = 0 on ∂Ω,
∫
Ω ϕ

2
i (x) dx = 1.

Let Vm = span {1, ϕ1, ϕ2, . . . , ϕm}. Since for v ∈ V we have

v = [v, 1] +

∞∑

j=1

[v, ϕj ]
ϕj

λj
,

and thus
∞⋃

i=1

Vi = V .

For all t ∈ [0, 1] and fixed h > 0, set

Gtε : v ∈ V 7→ tGhε(x, v, v
′
∗) + (1 − t)λ1v+,(4.5)

Etε = {v ∈ Ṽ , jtε(v) = 0, etε(v) = 0},(4.6)

where

etε(v) = −I +

∫

Ω

Gtε(v) dx, jtε(v) =

∫

Ω

|∇v|2 dx+ Iv|∂Ω
−

∫

Ω

Gtε(v)v+ dx.

Then we have the following result.
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Lemma 4.1. Let 0 6 g ∈ Lr(Ω) and let ϕ : [0,∞] → [0,∞] be a continuous

function. If
∫
Ω g(x) dx > I, then for fixed h > 0 there exists ε0 > 0 such that for any

ε with 0 < ε < ε0 and for all v ∈
⋃

t∈[0,1]

Etε the following assertions hold.

(i) There exists a positive constant C independent of t and v such that

‖v+‖Lp(Ω) 6 C(‖∇v‖L2(Ω) + 1) ∀p > 1.

(ii) For every δ > 0 there exists a constant Cδ > 0 independent of t and v such that

−v|∂Ω
6 δ‖∇v‖L2(Ω) + Cδ.

(iii) There exists a positive constant Chε independent of t and v such that

‖v‖H1(Ω) < Chε.

P r o o f of (i). Define gε(x) = g(x)/(1 + εg(x)). It is easy to see that

∫

Ω

gε(x) dx =

∫

Ω

g(x)

1 + εg(x)
dx→

∫

Ω

g dx.

Since
∫
Ω g(x) dx > I, we deduce from the above inequality that there exists ε0 > 0

such that for 0 < ε 6 ε0,

(4.7)

∫

Ω

gε(x) dx >

∫

Ω

gε0
(x) dx >

∫

Ω

g(x) dx−
1

2

( ∫

Ω

g(x) dx− I

)
> I.

Let η = 1/2 + I/2‖gε0
‖L1(Ω). By (4.7), it is easy to see that 0 < η < 1.

If v ∈
⋃

t∈[0,η]

Etε, then there exists t ∈ [0, η] such that v ∈ Etε and etε(v) = 0.

By the definition of Gtε we get Gtε(v) > (1 − η)λ1v+. Since etε(v) = 0, we get

I =
∫
ΩGtε(v) dx > (1 − η)λ1

∫
Ω v+ dx, i.e.

(4.8)

∫

Ω

v+dx 6
I

(1 − η)λ1
.

Thus, using (4.8) and the Poincaré inequality, we obtain

‖v+‖Lp(Ω) 6 C1(‖∇v‖L2(Ω) + 1),

where C1 is a positive constant independent of t and v.
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If v ∈
⋃

t∈[η,1]

Etε, then there exists t ∈ [η, 1] such that v ∈ Etε and etε(v) = 0. By

the definition of Gtε, we have Gtε(v) > ηgε(x)χ{v>0}. Since etε(v) = 0 and gε0
6 gε

for 0 < ε 6 ε0, we get

η

∫

Ω

gε0
(x)χ{v>0} dx 6 η

∫

Ω

gε(x)χ{v>0} dx 6 I.

In view of (4.7), we get η
∫
Ω
gε0

(x) dx > I. Thus using the same argument as in

Lemma 3.1 in [2], we deduce that there exists a positive constant C2 independent of

v, t, and ε such that

(4.9) ‖v+‖Lp(Ω) 6 C2(‖∇v‖L2(Ω) + 1) ∀p ∈ [1,∞) and ∀v ∈
⋃

t∈[η,1]

Etε.

Setting C = max{C1, C2}, the conclusion (i) follows immediately.

P r o o f of (ii) and (iii). Since the proofs of (ii) and (iii) are similar to the proofs

of Lemma 3.2 and Lemma 3.4 in [2] (see also [29] and [10]), we omit the details

here. �

As in [3], we introduce a Galerkin approximation method to problem (Phε).

Define a family of operators T t
m : Vm −→ Vm such that if v ∈ Vm then T

t
mv is the

unique solution of the problem

(4.10) a(T t
mv, w) = −Iw|∂Ω

+

∫

Ω

Gtε(v)(x)w(x) dx+

∫

Ω

v(x)w(x) dx ∀w ∈ Vm,

where

a(v, w) =

∫

Ω

∇v(x)∇w(x) dx+

∫

Ω

v(x)w(x) dx.

By the Lax-Milgram theorem, it is easy to see that T t
m is well defined.

Set

Et
m = {ut

m ∈ Vm : T t
mu

t
m = ut

m}, Em =
⋃

t∈[0,1]

Et
m,

and

cm = inf
v∈Em

‖v‖H1(Ω).

We have the following result.
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Lemma 4.2. There exists a constant mε > 0 such that for all m > mε we have

Em 6= ∅ and cm > 0.

In order to prove Lemma 4.2, we need the following result. Let L : L2(Ω) → V be

the operator defined by

Lω = u⇔





−∆u+ u = ω in Ω,

u ∈ V,

−
∫

∂Ω ∂u/∂n = 0,

where ω ∈ L2(Ω).

Let ξ0 be the solution of the problem





−∆ξ0 + ξ0 = 0 in Ω,

ξ0 ∈ V,

−
∫

∂Ω ∂ξ0/∂n = I.

For any r > 0, let Br be the ball of H
1(Ω) centered at the origin with radius r.

Define the operator ψ1 : V → V as

ψ1(v) = L(v + λ1v+) + ξ0.

Then by [2] (see also [29], [10]), we have the following result.

Proposition 4.1. The topological degree d(I − ψ1, BChε
, 0) = −1, where Chε is

the constant as in (iii) of Lemma 4.1 and I is the identity operator. Moreover, the

operator ψ1 has a unique fixed point w1 ∈ V , i.e. ψ1(w1) = w1 and w1 is also the

unique solution of the problem

(Q)





−∆w1 = λ1w1+ in Ω,

w1 = 0 on ∂Ω,

−
∫

∂Ω
∂w1/∂n = I.

P r o o f of Lemma 4.2. Step 1 : We prove that there exists a constant mε > 0

such that Em 6= ∅ for all m > mε.

By the result of [10] (see also [2]), we have

T 0
m(v) = P̂m[L(v + λ1v+) + ξ0] = P̂m[ψ1(v)],

where P̂m is the orthogonal projection of V onto Vm.
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Since P̂mψ1(·) is a uniform compact perturbation of the operator ψ1(·) on Bhε

(see [10]), by the above equality and Proposition 4.1 we conclude that there exists

mε > 0 such that

d(I − T 0
m, Vm ∩BChε

, 0) = d(I − P̂mψ1(v), Vm ∩BChε
, 0)

= d(I − ψ1(v), BChε
, 0) = −1.

Thus by the Kronecker existence theorem, we deduce that there exists a function

u0
m ∈ Vm such that T

0
mu

0
m = u0

m. Hence, Em 6= ∅ for all m > mε.

Step 2 : We prove that cm > 0 for all m > mε.

We argue by contradiction. Assume that there exists m > mε such that cm = 0.

Note that Em 6= ∅. By the definition of cm we conclude that for any 0 < σ < 1 there

exist tmσ ∈ [0, 1] and utmσ
m ∈ Etmσ

m such that

(4.11) 0 6 ‖utmσ
m ‖H1(Ω) 6 σ.

Since utmσ
m ∈ Etmσ

m , taking t = tmσ in (4.10), we get by definition

(4.12)

∫

Ω

∇utmσ
m (x)∇w(x) dx = −Iw|∂Ω +

∫

Ω

Gtmσε(x, u
tmσ
m , (utmσ

m∗ )′)w(x) dx.

Thus by (4.11) we deduce that there exist a subsequence of {tmσ} (still denoted by

{tmσ}) and tm ∈ [0, 1] such that tmσ → tm and

(4.13) utmσ
m → 0 strongly in H1(Ω) and a.e. in Ω, as σ → 0.

Since gε(x)χ{utmσ
m >0} is bounded uniformly in L

∞(Ω) with respect to σ, there exists

a function g̃mε ∈ L∞(Ω) such that

(4.14) gε(x)χ{utmσ
m >0} ⇀ g̃mε(x) weakly ∗ in L∞(Ω).

Let σ tend to zero in (4.12). By Lemma 3.2, (4.13) and (4.14), we can conclude

that

(4.15) tm

∫

Ω

g̃mε(x)w(x) dx = Iw|∂Ω ∀w ∈ Vm.

We distinguish the cases tm = 0 and tm 6= 0.

Case (i): tm = 0.

Choosing w ≡ 1 in (4.15), we get I = 0 which is a contradiction.

Case (ii): tm 6= 0.
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We have 0 < tm 6 1. Since gε(x)χ{utmσ
m >0} > 0 in Ω, by (4.14) we deduce that

g̃mε(x) > 0 in Ω. Choosing w ≡ 1 in (4.15), we obtain

(4.16)

∫

Ω

g̃mε(x) dx =
I

tm
> 0.

Choosing w = ϕ1 in (4.15), we get

(4.17)

∫

Ω

g̃mε(x)ϕ1 dx = 0 > 0.

Using the facts that ϕ1(x) > 0 and g̃mε(x) > 0 in Ω, we conclude that (4.16)

contradicts (4.17).

Hence, the proof of Lemma 4.2 is completed. �

Obviously, ‖w1‖H1(Ω) > 0 since w1 6≡ 0 is the unique solution of problem (Q). Set

c̃m = min
{cm

2
,
1

2
‖w1‖H1(Ω)

}
.

We conclude that c̃m < Chε, where Chε is the constant as in (iii) of Lemma 4.1. We

have the following lemma.

Lemma 4.3. The topological degree d(I−T t
m, Vm ∩BChε

\Bc̃m , 0) is well defined

and

d(I− T t
m, Vm ∩BChε

\Bc̃m , 0) = −1 for m > mε,

where T t
m is defined in (4.10) and mε is defined as in Lemma 4.2.

P r o o f. The proof is divided into four steps. In Step 1–Step 3, we will check

that d(I−T t
m, Vm ∩BChε

\Bc̃m , 0) is well defined. In Step 4, we complete the proof.

Step 1 : we prove that no fixed point ut
m ∈ Vm of T

t
m can be a constant. We argue

by contradiction. Suppose that ut
m ≡ c is a fixed point of T t

m, where c ∈ R. Choosing

w = 1 in (4.10), we have
∫
ΩGtε(c)(x) dx = I > 0, which implies that c > 0.

Taking ϕ1 as a test function in (4.10), we get

(4.18)

∫

Ω

Gtε(c)(x)ϕ1(x) dx =

∫

Ω

tgε(x)ϕ1(x) + (1 − t)λ1cϕ1 dx = 0.

Case 1.1. Let t ∈ (1/2, 1].

Since ϕ1 is positive in Ω, using the fact that gε > 0 and (4.7), we have

∫

Ω

tgε(x)ϕ1(x) + (1 − t)λ1cϕ1 dx >
1

2

∫

Ω

gε(x)ϕ1(x) > 0,

which is a contradiction with (4.18).
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Case 1.2. Let t ∈ [0, 1/2].

We also have

∫

Ω

tgε(x)ϕ1(x) + (1 − t)λ1cϕ1 dx >
cλ1

2

∫

Ω

ϕ1 dx > 0,

which is a contradiction with (4.18).

Step 2 : Setting Em = Vm ∩ BChε
\ Bc̃m , we prove that T

t
m is a continuous and

compact operator in Em.

Let {vn} ⊂ Em and let v ∈ Em be such that vn → v in Vm. By the definition

of Vm and the fact that ϕ1, ϕ2, . . . , ϕm are analytic functions, it is easy to see that

Vm ⊆ Ṽ ∪R. In order to prove the continuity of the operator T t
m, we distinguish the

case v ∈ Em ∩ Ṽ from the case v ∈ Em ∩R.

Case 2.1. Let v ∈ Em ∩ Ṽ .

In this case, we have

(4.19) χ{vn>0} → χ{v>0} a.e. in Ω.

Using the above relations and Lemma 3.2, we can conclude that

(4.20) Gtε(vn) → Gtε(v) strongly in L2/q(Ω).

Case 2.2. Let v ∈ Em ∩R.

In this case, we have v ≡ c, where c is a constant such that c̃m 6 |c| 6 Chε. Since

vn → v in Vm, there exists n0 > 0 such that for all n > n0,

vn >
c̃m
2
if c > 0

and

vn < −
c̃m
2
if c < 0.

For w ∈ V , define

Hε(w) = λϕ(Th(w+))
|k(|w > w(x)|)w′

∗(|w > w(x)|)|qχ{w>0}

1 + ε|k(|w > w(x)|)w′
∗(|w > w(x)|)|q

.

If c > 0, then {vn > 0} = Ω = {v > 0} for all n > n0, which implies that (4.19)

holds true for v ∈ Em ∩ R. On the other hand, by Lemma 2.1 and Remark 3.2 we

have Hε(vn) = 0 = Hε(c) for vn ∈ Em ∩R and

‖Hε(vn)‖L2/q(Ω) 6 ch‖∇vn‖
q/2
L2(Ω) for vn ∈ Em ∩ Ṽ ,
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where ch is a positive constant depending only on h. Hence, we have that Hε(vn)

converges strongly to Hε(c). In view of this and (4.19), we then conclude (4.20) also

holds for v = c > 0.

If c < 0 then χ{vn>0} = χ{v>0} = 0 for all n > n0. The conclusion (4.20) follows

immediately.

The continuity of T t
m follows from (4.20) immediately. Using the same argument,

we obtain the compactness of T t
m.

Step 3 : We prove that [I− T t
m](v) 6= 0 for all v ∈ ∂(BChε

\Bc̃m) ∩ Vm.

Indeed, if [I − T t
m](v) = 0, then using Lemma 4.1 and Lemma 4.2, we have c̃m <

‖v‖H1(Ω) < Chε. Hence, for all v ∈ ∂(BChε
\Bc̃m) ∩ Vm we have [I− T t

m](v) 6= 0.

By Step 1–Step 3, we obtain that the topological degree d(I − T t
m, Vm ∩ BChε

\

Bc̃m , 0) is well defined.

Step 4 : Since the rest of the proof is similar to Theorem 1.3 in [10] (see also [2]),

we only sketch it here.

By invariance under homotopy and Step 1 of the proof of Lemma 4.2, we obtain

(4.21) d(I− T t
m, Vm ∩BChε

\Bc̃m , 0) = d(I− T 0
m, Vm ∩BChε

\B c̃m , 0)

= d(I − ψ1(v), BChε
\Bc̃m , 0) = d(I − ψ1(v), BChε

, 0) = −1.

Hence, the proof is complete. �

P r o o f of Theorem 4.2. By Lemma 4.3, we know that for all t ∈ [0, 1] there

exists at least one sequence {ut
m} such that

T t
mu

t
m = ut

m, ut
m ∈ Vm ∩BChε

\Bc̃m .

Taking t = 1 in (4.10) and denoting um = u1
m, we get by definition

∫

Ω

∇um(x)∇w(x) dx(4.22)

= −Iw|∂Ω +

∫

Ω

Ghε(x, um, u
′
m∗)w(x) dx ∀w ∈ Vm ∀m ∈ N

and

(4.23) ‖um‖H1(Ω) 6 Chε ∀m ∈ N.

Setting Ṽm = span {ϕ1, ϕ2, . . . , ϕm}, from (4.22) we easily have

∫

Ω

[−∆um(x) − P̃mGhε(x, um, u
′
m∗)]w(x) dx = 0 ∀w ∈ Ṽm,

where P̃m is the orthogonal projection operator from L2(Ω) onto Ṽm.
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The above relation implies that −∆um(x) = P̃mGhε(x, um, u
′
m∗). By (4.23), we

get

(4.24) ‖ − ∆um‖L2(Ω) = ‖P̃mGhε(x, um, u
′
m∗)‖L2(Ω) 6 C̃hε ∀m ∈ N,

where C̃hε is a positive constant independent of m.

From (4.23) and (4.24), by standard regularity results, we deduce that {um} is

uniformly bounded in H2(Ω) with respect to m. Thus by using the Sobolev embed-

ding theorem, we deduce that there exists a subsequence of {um} (still denoted by

{um}) and a function uhε ∈ H2(Ω) such that

(4.25) um ⇀ uhε weakly in H2(Ω)

and

(4.26) um → uhε strongly in H1(Ω) and a.e. in Ω.

Since gε(x)χ{um>0} is bounded uniformly in L
2(Ω) with respect to m, there exist

a subsequence of {gε(x)χ{um>0}} (still denoted by {gε(x)χ{um>0}}) and a function

g̃ε ∈ L2(Ω) such that

(4.27) gε(x)χ{um>0} ⇀ g̃ε(x) weakly in L2(Ω).

By Lemma 3.2, (4.22), (4.26), and (4.27), we conclude that uhε satisfies

(4.28)

∫

Ω

∇uhε(x)∇w(x) dx =

∫

Ω

λϕ(Th(uhε+))

×
|k(|uhε > uhε(x)|)u′hε∗(|uhε > uhε(x)|)|qχΩ\P (uhε)χ{uhε>0}

1 + ε|k(|uhε > uhε(x)|)u′hε∗(|uhε > uhε(x)|)|q
w(x) dx

+

∫

Ω

g̃ε(x)w(x) dx− Iw|∂Ω ∀w ∈ V.

Now we analyze the term g̃ε of (4.27). Note that uhε ∈ H2(Ω) and it follows from

(4.28) that

(4.29) −∆uhε = λϕ(Th(uhε+))

×
|k(|uhε > uhε(x)|)u′hε∗(|uhε > uhε(x)|)|qχΩ\P (uhε)χ{uhε>0}

1 + ε|k(|uhε > uhε(x)|)u′hε∗(|uhε > uhε(x)|)|q

+ g̃ε(x) a.e. in Ω.

In view of (4.29), we have

(4.30) g̃ε(x) = 0 a.e. in P (uhε).
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On the other hand, it is easy to see that

{uhε > 0} ⊆ lim
m→∞

{um > 0} ⊆ {uhε > 0}.

Using the fact that limm→∞ χ{um>0} = χ
limm→∞{um>0}

and the above relation, we

obtain

(4.31) χ{uhε>0} 6 lim
m→∞

χ{um>0} 6 χ{uhε>0}.

Since gε > 0, (4.27) and (4.31) make it possible to conclude that

(4.32) gε(x)χ{uhε>0} 6 g̃ε(x) 6 gε(x)χ{uhε>0} a.e. in Ω.

Due to (4.30) and (4.32), we deduce that

(4.33) g̃ε(x) = gε(x)χ{uhε>0} a.e. in Ω.

Taking w = 1 in (4.28), recalling (4.2), (4.29), and (4.33) makes it possible to obtain

(4.34) −

∫

∂Ω

∂uhε

∂n
=

∫

Ω

G̃hε(x, uhε, u
′
hε∗) dx = I.

In view of (4.29), (4.33), and (4.34), the conclusion of Theorem 4.2 follows immedi-

ately. �

P r o o f of Theorem 4.1. Similarly to the proof of Lemma 4.1, we conclude that

there exists a positive constant Ch independent of ε such that

(4.35) ‖uhε‖H1(Ω) 6 Ch.

By standard regularity results, (4.29), and (4.35), we deduce that {uhε} is uniformly

bounded in W 2,α(Ω) ∩H1(Ω) with respect to ε. Thus there exists a subsequence of

{uhε} (still denoted by {uhε}) and a function uh ∈W 2,α(Ω) ∩H1(Ω) such that

(4.36) uhε ⇀ uh weakly in W 2,α(Ω) ∩H1(Ω)

and

(4.37) uhε → uh strongly in W 1,α(Ω) and a.e. in Ω.

Similarly to the proof of (4.27) and (4.33), we deduce that there exists a sequence of

{gε(x)χ{uhε>0}} (still denoted by {gε(x)χ{uhε>0}}) such that

(4.38) gε(x)χ{uhε>0} ⇀ g(x)χ{uh>0} weakly in Lr(Ω).
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By Lemma 3.1, (4.28), (4.36)–(4.38), we can conclude that uh satisfies

(4.39)

∫

Ω

∇uh(x)∇w(x) dx = −Iw|∂Ω +

∫

Ω

G̃h(x, uh, u
′
h∗)w(x) dx ∀w ∈ V,

where G̃h is defined as in (4.4). Note that uh ∈ W 2,α(Ω), and the conclusion of

Theorem 4.1 follows immediately from (4.39). �

4.2. Proof of the main results. In order to prove the main results, we shall

first look for some uniform estimates of the sequence {uh}, where uh is a solution of

(Ph) given in Theorem 4.1. We have the following results.

Theorem 4.3. Under the same assumptions as in Theorem 1.1, if uh is a solution

of (Ph) given in Theorem 4.1, then there exists a positive constant M independent

of h such that

‖uh+‖L∞(Ω) 6 M.

Before giving the proof of Theorem 4.3, we need the following lemma.

Lemma 4.4. Under the same assumptions as in Theorem 1.1, if uh is the solution

of problem (Ph) given in Theorem 4.1, then

(4.40) uh|∂Ω
= γh < 0

and

(4.41) Wh(uh+∗(0)) 6
1

4π

∫ |Ω|

0

1

θ

∫ θ

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds dθ,

where the function Wh is defined by

(4.42) Wh(s) =

∫ s

0

exp

(
−
q

8π

∫ s

θ

ϕ2/q(Th(τ)) dτ

)
dθ for s ∈ R.

P r o o f. First of all, we prove that uh|∂Ω
= γh < 0. We argue by contradiction.

If γh > 0, using the maximum principle it is easy to see that uh > 0 in Ω. Then we

have

I = −

∫

∂Ω

∂uh

∂n
=

∫

Ω

G̃h(x, uh, u
′
h∗) dx >

∫

Ω

g(x) dx > I,

which is a contradiction. Thus, uh|∂Ω
= γh < 0.
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Now we prove that (4.41) holds. Let Sθ,t be a real function defined for θ > 0,

t > 0 by

Sθ,t(r) =





1, r > θ + t,

r − θ

t
, θ 6 r 6 θ + t,

0, r 6 θ.

Since uh ∈ H1(Ω) ∩W 2,α(Ω) and uh|∂Ω
= γh 6 0, it is easy to see that Sθ,t(uh+) ∈

H1
0 (Ω) ∩ L∞(Ω). Multiplying the equation in problem (Ph) by Sθ,t(uh+) and inte-

grating by parts, we have

(4.43)
1

t

∫

{θ<uh+6θ+t}

|∇uh+|
2 dx =

∫

{uh+>θ}

G̃h(x, uh, u
′
h∗)Sθ,t(uh+) dx.

It is easy to see that

uh+∗(s) = uh∗(s) > 0 for s ∈ [0, |uh > 0|],

which implies that

|k(|uh > uh(x)|)u′h∗(|uh > uh(x)|)|qχΩ\P (uh)χ{uh>0}(4.44)

= |k(|uh+ > uh+(x)|)u′h+∗(|uh+ > uh+(x)|)|qχΩ\P (uh+)χ{uh+>0}

a.e. x ∈ Ω.

Let us define vh = uh+. From (4.43) and (4.44), we have

(4.45)
1

t

∫

{θ<vh6θ+t}

|∇vh|
2 dx =

∫

{vh>θ}

G̃h(x, vh, v
′
h∗)Sθ,t(vh) dx

6

∫

{vh>θ}

G̃h(x, vh, v
′
h∗) dx.

By the definition of G̃h, applying the Hölder inequality and Young’s inequality in

(4.45), we have

(4.46)
1

t

∫

{θ<vh6θ+t}

|∇vh|
2 dx

6
q

2

∫

{vh>θ}

(ϕ(Th(vh)))2/q |k(|vh > vh(x)|)v′h∗(|vh > vh(x)|)|2χΩ\P (vh) dx

+

∫

{vh>θ}

(
g(x) +

(2 − q)λ2/(2−q)

2

)
dx.
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Let t tend to zero in (4.46). By Lemma 2.1, we get

−
d

dθ

∫

{vh>θ}

|∇vh|
2 dx

6
q

2

∫

{vh>θ}

(ϕ(Th(vh)))2/q |k(|vh > vh(x)|)v′h∗(|vh > vh(x)|)|2χΩ\P (vh) dx

+

∫

{vh>θ}

(
g(x) +

(2 − q)λ2/(2−q)

2

)
dx

6
q

2

∫

{vh∗>θ}

(ϕ(Th(vh∗)))
2/q |k(s)v′h∗(s)|

2χΩ\P (vh∗) ds

+

∫ |vh>θ|

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds,

which implies that

(4.47) −
d

dθ

∫

{vh>θ}

|∇vh|
2 dx

6
q

2

∫ ∞

θ

(
−

d

dτ

∫

{vh∗>τ}

(ϕ(Th(vh∗)))
2/q |k(s)v′h∗(s)|

2 ds
)

dτ

+

∫ |vh>θ|

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds.

By Lemma 3.3 (here p = 2) we have

1

t

∫

{τ<vh∗6τ+t}

(ϕ(Th(vh∗)))
2/q |k(s)v′h∗(s)|

2 ds

6
1

t4π

∫

{τ<vh6τ+t}

(ϕ(Th(vh)))2/q |∇vh|
2 dx,

and thus

(4.48) −
d

dτ

∫

{vh∗>τ}

(ϕ(Th(vh∗)))
2/q |k(s)v′h∗(s)|

2 ds

6 −
1

4π

d

dτ

∫

{vh>τ}

(ϕ(Th(vh)))2/q |∇vh|
2 dx.

Inequality (4.47) and (4.48) show that

(4.49) −
d

dθ

∫

{vh>θ}

|∇vh|
2 dx 6

q

8π

∫ ∞

θ

(ϕ(Th(τ)))2/q
(
−

d

dτ

∫

{vh>τ}

|∇vh|
2 dx

)
dτ

+

∫ |vh>θ|

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds.
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Using Gronwall’s Lemma and Lemma 2.2, we then get

(4.50)

−
d

dθ

∫

{vh>θ}

|∇vh|
2 dx

6

∫ ∞

θ

exp

(
q

8π

∫ s

θ

(ϕ(Th(τ)))2/q dτ

)(
g∗(µvh

(s)) +
(2 − q)λ2/(2−q)

2

)
(− dµvh

(s))

6

∫ µvh
(θ)

0

exp

(
q

8π

∫ vh∗(s)

θ

(ϕ(Th(τ)))2/q dτ

)(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds,

which implies that

exp

(
q

8π

∫ θ

0

ϕ2/q(Th(τ)) dτ

)(
−

d

dθ

∫

{vh>θ}

|∇vh|
2 dx

)

6

∫ µvh
(θ)

0

exp

(
q

8π

∫ vh∗(s)

0

ϕ2/q(Th(τ)) dτ

)(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds.

The above inequality and the Hölder inequality imply that

(4.51)

exp

(
q

8π

∫ θ

0

ϕ2/q(Th(τ)) dτ

)(
−

d

dθ

∫

{vh>θ}

|∇vh| dx

)2

6 −µ′
vh

(θ)

∫ µvh
(θ)

0

exp

(
q

8π

∫ vh∗(s)

0

ϕ2/q(Th(τ)) dτ

)(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds.

We deduce from (4.51) and Lemma 2.8 that

4π exp

(
q

8π

∫ θ

0

ϕ2/q(Th(τ)) dτ

)

6
−µ′

vh
(θ)

µvh
(θ)

∫ µvh
(θ)

0

exp

(
q

8π

∫ vh∗(s)

0

ϕ2/q(Th(τ)) dτ

)(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds.

By Lemma 2.2 and integrating the above inequality between 0 = vh∗(|Ω|) and vh∗(r)

we find that

4π

∫ vh∗(r)

0

exp

(
q

8π

∫ θ

0

ϕ2/q(Th(τ)) dτ

)
dθ

6

∫ |Ω|

r

1

θ

∫ θ

0

exp

(
q

8π

∫ vh∗(s)

0

ϕ2/q(Th(τ)) dτ

)(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds dθ

6 exp

(
q

8π

∫ vh∗(0)

0

ϕ2/q(Th(τ)) dτ

) ∫ |Ω|

0

1

θ

∫ θ

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds dθ

for any r ∈ [0, |Ω|].
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By the above inequality, we obtain

4π

∫ vh∗(r)

0
exp

(
q(8π)−1

∫ θ

0
ϕ2/q(Th(τ)) dτ

)
dθ

exp
(
q(8π)−1

∫ vh∗(0)

0 ϕ2/q(Th(τ)) dτ
)

6

∫ |Ω|

0

1

θ

∫ θ

0

(
g∗(s) +

(2 − q)λ2/(2−q)

2

)
ds dθ.

Assertion (4.41) follows immediately from the above inequality. �

P r o o f of Theorem 4.3. Similarly to the proof of Proposition 3.4 in [36], using

Lemma 4.5 and condition (1.3) we deduce that there exists a positive constant M

independent of h such that ‖uh+‖L∞(Ω) 6 M . We omit the details here. �

P r o o f of Theorem 1.1. Fix h > M and denote u = uh, where uh is given in

Theorem 4.1 and M is defined as in Theorem 4.3. By Theorem 4.3, we find that

u = uh 6 h and

G̃h(x, u, u′∗) = [λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχΩ\P (u) + g(x)]χ{u>0}

a.e. x ∈ Ω.

Thus we deduce that u satisfies the equation

(4.52) −∆u = [λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχΩ\P (u) + g(x)]χ{u>0} in Ω.

It is easy to see that

λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχΩ\P (u) ∈ λϕ(u+)|k(β(u(x)))u′∗(β(u(x)))|q .

Moreover, we see that u satisfies (2) and (3) in Theorem 1.1. Thus we complete the

proof of Theorem 1.1. �

P r o o f of Theorem 1.2. Fix h > M and denote u = uh, where uh is given in

Theorem 4.1 and M is defined as in Theorem 4.3. As before, we see that u satisfies

equation (4.52). Now we prove that u is a solution to problem (P) in the standard

sense since g(x) > 0.

First of all, we claim that

(4.53) |Ω1| = |{x : u(x) > 0 and ∇u(x) = 0}| = 0.

We argue by contradiction. Supposing that |Ω1| 6= 0, by the fact that u belongs to

W 2,α(Ω) and using the classic result (see §6.18 and §6.19 in [16]), we deduce that

∆u = 0 in Ω1. Thus, by (4.52) we have

0 = −∆u(x) = g(x)χ{u>0} = g(x) > 0 in Ω1,

which is a contradiction. Thus, (4.53) holds.
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By (4.53), we get

(4.54) λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχΩ\P (u)χ{u>0}

= λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχ{u>0} in {u > 0}.

On the other hand, we have

(4.55) λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχΩ\P (u)χ{u>0}

= λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχ{u>0} = 0 in {u 6 0}.

It follows from (4.54) and (4.55) that

(4.56) λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχΩ\P (u)χ{u>0}

= λϕ(u+)|k(|u > u(x)|)u′∗(|u > u(x)|)|qχ{u>0} in Ω.

Since u = uh is a solution to problem (Ph), by Lemma 4.4 we have u|∂Ω
= γ < 0

and −
∫

∂Ω ∂u/∂n = I. Thus, from (4.52) and (4.56), we deduce that u is a solution

to problem (P) in the standard sense. �

P r o o f of Theorem 1.3. Clearly, under the assumptions of Theorem 1.3, problem

(Ph) admits a solution uh ∈W 2,α(Ω)∩H1(Ω) in the sense of Theorem 4.1. Moreover,

it is easy to see that (4.40) holds, i.e. uh|∂Ω = γh < 0. Now we prove that uh+ ∈

L∞(Ω). We use the ideas of [4].

Let ψl(s) = s−Tl(s) and ϕ(s) =
∫ s

0
ϕ2/q(s), where l > 0. Multiplying the equation

in problem (Ph) by eϕ(uh+)ψl(uh+) and integrating by parts, we have

(4.57)

∫

Ω

ϕ2/q(uh+)eϕ(uh+)ψl(uh+)|∇uh+|
2 dx+

∫

{uh+>l}

eϕ(uh+)|∇uh+|
2 dx

=

∫

{uh+>l}

G̃h(x, uh, u
′
h∗)e

ϕ(uh+)ψl(uh+) dx.

Let us define v = uh+. Proceeding as in (4.44), we deduce that G̃h(x, uh, u
′
h∗) =

G̃h(x, v, v′∗). Then equality (4.57) can be written as

∫

Ω

ϕ2/q(v)eϕ(v)ψl(v)|∇v|
2 dx+

∫

{v>l}

eϕ(v)|∇v|2 dx(4.58)

=

∫

{v>l}

G̃h(x, v, v′∗)e
ϕ(v)ψl(v) dx.

639



By Lemma 2.1, Remark 3.2 and Young’s inequality, we have

∫

{v>l}

G̃h(x, v, v′∗)e
ϕ(v)ψl(v) dx =

∫

{v∗>l}

λϕ(v∗)|k(s)v
′
∗(s)|

qeϕ(v∗)ψl(v∗) ds

+

∫

{v>l}

g(x)eϕ(v)ψl(v) dx 6
1

(2π1/2)q

∫

{v>l}

λϕ(v)|∇v|qeϕ(v)ψl(v) dx

+

∫

{v>l}

g(x)eϕ(v)ψl(v) dx 6

∫

{v>l}

ϕ2/q(v)|∇v|2eϕ(v)ψl(v) dx

+

∫

{v>l}

[g(x) + C4λ
2/(2−q)]eϕ(v)ψl(v) dx,

where C4 is a positive constant which depends only on q and π.

The above inequality together with (4.58) imply that

(4.59)

∫

{v>l}

eϕ(v)|∇v|2 dx 6

∫

{v>l}

[g(x) + C4λ
2/(2−q)]eϕ(v)ψl(v) dx.

Recalling that ϕ ∈ L2/q[0,∞), we obtain that eϕ(v) is bounded. Therefore, from

(4.59) we deduce that

(4.60)

∫

Ω

|∇ψl(v)|
2 dx =

∫

{v>l}

|∇v|2 dx 6 C5

∫

{v>l}

[g(x) + λ2/(2−q)]ψl(v) dx,

where C5 is a positive constant depending only on C4 and e
∫

∞

0
ϕ(s) ds.

Taking into account Stampacchia procedure (see [32]), we conclude that there

exists a positive constant C6 such that

‖v‖L∞(Ω) 6 C6.

Fixing h > C6 and denoting u = uh, we conclude that u+ ∈ L∞(Ω). Arguing

as in the proof of Theorem 1.1, we deduce that u ∈ W 2,α(Ω) ∩H1(Ω) is a solution

to problem (P) in the sense of Theorem 1.1. Moreover, using the same argument

as in Theorem 1.2, we find that the function u is a solution to problem (P) in the

standard sense. �

P r o o f of Theorem 1.4. Since ϕ ≡ c0, we have ϕ(Th(s)) = c0 = ϕ(s) for all

h > 0. Hence, Theorem 1.4 is a direct consequence of Theorem 4.1 and Theorem 1.2.

�
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