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NEW EXISTENCE RESULTS OF ANTI-PERIODIC SOLUTIONS OF

NONLINEAR IMPULSIVE FUNCTIONAL DIFFERENTIAL

EQUATIONS
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Abstract. This paper is a continuation of Y.Liu, Anti-periodic solutions of nonlinear first
order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By us-
ing Schaefer’s fixed point theorem, new existence results on anti-periodic solutions of a class
of nonlinear impulsive functional differential equations are established. The techniques to
get the priori estimates of the possible solutions of the mentioned equations are different
from those used in known papers. An example is given to illustrate the main theorems ob-
tained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained
in Liu’s paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3
are not satisfied.

Keywords: anti-periodic solution; impulsive functional differential equation; fixed-point
theorem; growth condition
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1. Introduction

Functional differential equations with periodic delays appear in a number of ecolog-

ical models. In particular, our equation can be interpreted as the standard Malthus

population model y′ = −a(t)y subject to a perturbation with periodical delay, this

is y′(t) = −a(t)y(t) + λh(t)f(y(t − τ(t)) (see [9]).

It is well known that a function x : R → R is called anti-periodic function with

anti-period T > 0 if x(t + T ) = −x(t) for all t ∈ R. Furthermore, x is a periodic

The research has been supported by Natural Science Foundation of Guangdong Province
(No. S2011010001900), Guangdong Higher Education Foundation for High-Level Talents,
Natural Science Foundation of Hunan Province (No. 12JJ6006) and Science Foundation
of Department of Science and Technology of Hunan Province (No. 2012FJ3107).
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function with period T if x is an anti-periodic function with anti-period T/2 > 0.

So we can get periodic solutions of a functional differential equation by obtaining

anti-periodic solutions of the corresponding functional differential equation.

Anti-periodic boundary value problems for ordinary differential equations with or

without impulses effects have been studied extensively in the last ten years since these

problems appear in a variety of applications. For example, for first order ordinary

differential equations without impulses effects, a Massera criterion is presented in [6],

quasilinearization methods are applied in [27] and in [10], [12], [13], [14], [15], [21],

[24], [26], [27] and [28] the validity of lower and upper solution methods coupled with

the monotone iterative technique is shown.

The anti-periodic boundary problems for partial differential equations, abstract

differential equations, evolution equations or higher order ordinary differential equa-

tions were considered in [1]–[8] and [25] and the references cited there.

We note that, in the above mentioned papers, the problems are discussed on a finite

interval. For example, it is easy to see that the anti-periodic BVP on finite interval

of the form
{

x′(t) = −1, t ∈ (0, 1),

x(0) = −x(1),

has a unique solution x(t) = −t + 1/2. But one sees that the equation

x′(t) = −1

has no solution x satisfying x(t) = −x(t + 1) for all t ∈ R what we call an anti-

periodic solution with anti-period 1. This shows us that the existence of solutions of

an anti-periodic boundary value problem for a first order differential equation does

not imply, in general, the existence of anti-periodic solutions of the corresponding

differential equation.

In fact, the study of anti-periodic solutions for nonlinear evolution equations is

closely related to the study of periodic solutions, and it was initiated by Okochi [23].

In the recent papers [11] and [17], the authors studied the existence of anti-periodic

solutions for a class of differential equations.

The theory of impulsive differential equations describes processes which experience

a sudden change of their state at certain moments. Processes with such a character

arise naturally and often, for example, phenomena studied in physics, chemical tech-

nology, population dynamics, biotechnology and economics. For an introduction to

the basic theory of impulsive differential equations, we refer the reader to [16].

One important question is whether the impulsive functional differential equation
{

y′(t) + a(t)y(t) = h(t)f(y(t − τ(t)), t ∈ R,

∆x(tk) = Ik(x(tk)), k ∈ Z,
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can support periodic solutions or anti-periodic solutions. This question has been

studied extensively by a number of authors, see for example [19], [20] and [18] and

the references therein.

In this paper, we study the nonlinear impulsive functional differential equation of

the form

(1.1)

{

x′(t) + a(t)x(t) = f(t, x(t), x(α1(t)), . . . , x(αn(t))), t ∈ R, t 6= tk, k ∈ Z,

∆x(tk) = Ik(x(tk)), k ∈ Z,

where Z,R denote the integer set and the real number set, respectively, T > 0 is

a constant, . . . < t−m < . . . < t0 < t1 < . . . < tm < . . . are constants, ∆x(tk) =

x(t+k )−x(t−k ), Ik : R → R is continuous, and a : R → R, f : R
n+2 → R and αi : R →

R (i = 1, . . . , n) are functions.

This paper is a continuation of [18]. The purpose is to establish new results on

the existence of anti-periodic solutions of the equation (1.1). This is the first time

that the Schaefer fixed point theorem [15] or [22] is used for studying the existence

of anti-periodic solutions of an impulsive functional differential equation.

The remainder of this paper is divided into two sections, the main results are

established in Section 2 and an example is given in Section 3 to illustrate the main

results.

2. Main results

Let X be defined by

X =



















x : R → R, x|(tk,tk+1) ∈ C0(tk, tk+1), k ∈ Z

there exist the limits lim
t→t−

k

x(t) = x(tk),

lim
t→t+

k

x(t), k ∈ Z and x(t) = −x(t + T ) for all t ∈ R



















.

Define the norm ‖u‖ = sup
t∈R

|u(t)| for all u ∈ X . It is easy to show that X is a real

Banach space.

A function f : R× R
n+1 → R is called an impulsive continuous function if

⊲ f(·, u0, u1, . . . , un) ∈ X for each u = (u0, . . . , un) ∈ R
n+1;

⊲ f(t, ·, . . . , ·) is continuous for all t ∈ R.

By a solution of the equation (1) we mean a function x : R → R satisfying the

following conditions:

⊲ x ∈ X is differentiable in (tk, tk+1) (k ∈ Z), there exist the limits lim
t→t−

k

x′(t) =

x′(tk) and lim
t→t+

k

x′(t) (k ∈ Z);
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⊲ x′ ∈ X ;

⊲ x(t) = −x(t + T ) for all t ∈ R;

⊲ the equations in (1) are satisfied.

Let us list some assumptions:

(A1) there exists a positive integer l such that tk + T = tk+l and Ik(x) = −Ik+l(−x)

for all k ∈ Z and x ∈ R; denote

l0 = min{l > 0: tk + T = tk+l and Ik(x) = −Ik+l(−x)

for all k ∈ Z, x ∈ R};

(A2) a|(tk,tk+1) ∈ C0(tk, tk+1) satisfies a(t + T ) = a(t) for all t ∈ R and there exist

the limits lim
t→t−

k

a(t) and lim
t→t−

k

a(t) for all k ∈ Z;

(A3) αk ∈ C1(R), the inverse function of αk is denoted by βk and there exists the

numbers

µk = max
t∈R

|αk(t + T ) − αk(t)|
T

, k = 1, . . . , n;

(A4) f is an impulsive continuous function satisfying

f(t + T,−x0,−x1, . . . ,−xn) = −f(t, x0, x1, . . . , xn)

for all t ∈ R and (x0, x1, . . . , xn)) ∈ R
n+1;

(A5) Ik (k ∈ Z) are continuous functions.

For x ∈ X , we define the nonlinear operator L by

(Lx)(t) = − 1

1 + exp(
∫ T

0
a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

]

, t ∈ R.

Lemma 2.1. Suppose that (A1)–(A5) hold and x ∈ X . Then Lx ∈ X .
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P r o o f. It is easy to see for t ∈ R that

(Lx)(t + T ) = − 1

1 + exp(
∫ T

0
a(u) du)

×
[

∫ t+2T

t+T

exp

(
∫ s

t+T

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t+T6tk<t+2T

exp

(
∫ tk

t+T

a(u) du

)

Ik(x(tk))

]

= − 1

1 + exp(
∫ T

0
a(u) du)

[
∫ t+T

t

exp

(
∫ T+v

t+T

a(u) du

)

× f(T + v, x(T + v), x(α1(T + v)), . . . , x(αn(T + v))) ds

+
∑

t6tk−T<t+T

exp

(
∫ tk

t+T

a(u) du

)

Ik(x(tk))

]

= − 1

1 + exp(
∫ T

0 a(u) du)

[
∫ t+T

t

exp

(
∫ T+v

t+T

a(u) du

)

× f(T + v,−x(v), x(T + α1(v)), . . . , x(T + αn(v))) dv

+
∑

t6tk−l0
<t+T

exp

(
∫ tk−l0

+T

t+T

a(u) du

)

Ik(x(tk−l0 + T ))

]

= − 1

1 + exp(
∫ T

0 a(u) du)

×
[

∫ t+T

t

exp

(
∫ v

t

a(u) du

)

[−f(v, x(v), x(α1(v)), . . . , x(αn(v)))] dv

+
∑

t6tk−l0
<t+T

exp

(
∫ tk−l0

t

a(u) du

)

Ik(−x(tk−l0 ))

]

=
1

1 + exp(
∫ T

0 a(u) du)

×
[

∫ t+T

t

exp

(
∫ v

t

a(u) du

)

f(v, x(v), x(α1(v)), . . . , x(αn(v))) dv

−
∑

t6ts<t+T

exp

(
∫ ts

t

a(u) du

)

Ik(x(ts))

]

= −(Lx)(t).

On the other hand, one can easily show that (Lx)|(tk,tk+1) ∈ C0(tk, tk+1), k ∈ Z, and

there exist the limits lim
t→t−

k

(Lx)(t) = (Lx)(tk) and lim
t→t+

k

(Lx)(t) for all k ∈ Z. This

completes the proof. �

Lemma 2.2. Suppose that (A1)–(A5) hold. Then x ∈ X is a anti-periodic

solution of the equation (1.1) if and only if x is a solution of the operator equation

x = Lx.
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P r o o f. Suppose that x ∈ X satisfies x = Lx. Then

x(t) = − 1

1 + exp(
∫ T

0
a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

]

, t ∈ R.

For t 6= tk, since f and x ∈ X are continuous at t, we know that x is differentiable

at t and

x′(t) = − 1

1 + exp(
∫ T

0
a(u) du)

×
[

exp

(
∫ t+T

t

a(u) du

)

f(t + T, x(t + T ), x(α1(T + t)), . . . , x(αn(t + T )))

− a(t)

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

− f(t, x(t), x(α1(t)), . . . , x(αn(t))) − a(t)
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

]

.

Then

x′(t) + a(t)x(t) = − 1

1 + exp(
∫ T

0 a(u) du)

×
[

exp

(
∫ t+T

t

a(u) du

)

f(t + T,−x(t),−x(α1(t)), . . . ,−x(αn(t)))

− f(t, x(t), x(α1(t)), . . . , x(αn(t)))

]

= − 1

1 + exp(
∫ T

0 a(u) du)

×
[

exp

(
∫ T

0

a(u) du

)

f(t + T,−x(t),−x(α1(t)), . . . ,−x(αn(t)))

− f(t, x(t), x(α1(t)), . . . , x(αn(t)))

]

= f(t, x(t), x(α1(t)), . . . , x(αn(t))), t ∈ R.

On the other hand, it is easy to show that x(t + T ) = −x(t) for all t ∈ R and

lim
t→t−

k

x(t) = x(tk) and ∆x(tk) = lim
t→t+

k

x(t) − x(tk) = Ik(x(tk)) for all k ∈ Z.
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Now suppose that x is an anti-periodic solution of the equation (1.1). We get that

{

x′(t) + a(t)x(t) = f(t, x(t), x(α1(t)), . . . , x(αn(t))), t ∈ R,

∆x(tk) = Ik(x(tk)), k ∈ Z.

Then

(2.1)
(

x(t) exp

(
∫ t

0

a(s) ds

))′

= f(t, x(t), x(α1(t)), . . . , x(αn(t))) exp

(
∫ t

0

a(s) ds

)

.

Integrating (2.1) from t to t + T , one gets that

x(t + T ) exp

(
∫ t+T

0

a(u) du

)

− x(t) exp

(
∫ t

0

a(u) du

)

=

∫ t+T

t

exp

(
∫ s

0

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

0

a(u) du

)

Ik(x(tk)).

Then x(t + T ) = −x(t) implies that

x(t) = − 1

1 + exp(
∫ T

0
a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

]

= (Lx)(t).

The proof is complete. �

Lemma 2.3. Assume that (A1)–(A5) hold. Then L is a completely continuous

operator.

P r o o f. Let n0 be the number of impulse points on [0, T ). It suffices to prove

that L is continuous and L is compact. We divide the proof into two steps:

Step 1. Let x0 ∈ X . Prove that L is continuous x0.

Suppose xn ∈ X and xn → x0 ∈ X . Then

sup
n=0,1,2,...

sup
t∈R

|xn(t)| = r < ∞.
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Since f(t, ·⊗, . . . , ·) and Ik are continuous, we get that f(t, ·⊗, . . . , ·) and Ik are

uniformly continuous on [−r, r]n+1 and [−r, r], respectively.

For any ε > 0, there exists δ > 0 such that

|f(t, u0, . . . , un) − f(t, v0, . . . , vn)| < ε, t ∈ R, |ui − vi| < δ, i = 0, 1, . . . , n

and

Ik(u) − Ik(v)| < ε, |u − v| < δ, k ∈ Z.

Since xn → x0 as n → ∞, there exists N > 0 such that

|xn(t) − x0(t)| < δ, t ∈ R, n > N.

Use

(Lxn)(t) = − 1

1 + exp(
∫ T

0
a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, xn(s), xn(α1(s)), . . . , xn(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(xn(tk))

]

, n = 0, 1, . . . .

It follows for n > N and t ∈ R that

|(Lxn)(t) − (Lx0)(t)| 6
1

1 + exp(
∫ T

0 a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

|f(s, xn(s), xn(α1(s)), . . . , xn(αn(s)))

− f(s, x0(s), x0(α1(s)), . . . , x0(αn(s)))| ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

|Ik(xn(tk)) − Ik(x0(tk))|
]

<
ε

1 + exp(
∫ T

0
a(u) du)

[
∫ t+T

t

exp

(
∫ s

t

a(u) du

)

ds +
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)]

6
ε

1 + exp(
∫ T

0
a(u) du)

[
∫ t+T

t

exp

(
∫ t+T

t

a(u) du

)

ds +
∑

t6tk<t+T

exp

(
∫ t+T

t

a(u) du

)]

=
ε

1 + exp(
∫ T

0 a(u) du)
[T + n0] exp

(
∫ T

0

a(u) du

)

.

So Lxn → Lx0 as n → ∞. Thus the continuity of L follows.
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Step 2. Prove that L is compact.

Let Ω ⊆ X be a bounded set. Suppose that Ω ⊆ {x ∈ X : ‖x‖ 6 M}. For x ∈ Ω,

we have

|(Lx)(t)| =
1

1 + exp(
∫ T

0
a(u) du)

×
∣

∣

∣

∣

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

∣

∣

∣

∣

6

max
t∈R, |xi|6M, i=0,1,...,n

|f(t, x0, x1, . . . , xn)|

1 + exp(
∫ T

0
a(u) du)

∣

∣

∣

∣

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

ds

+ max
|x|6M

|Ik(x)|
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)∣

∣

∣

∣

6

max
t∈R, |xi|6M, i=0,1,...,n

|f(s, x0, x1, . . . , xn)|

1 + exp(
∫ T

0
a(u) du)

T exp

(
∫ T

0

|a(u)| du

)

ds

+

max
|x|6M, k∈[0,n0]

|Ik(x)|

1 + exp(
∫ T

0
a(u) du)

∑

06tk<T

exp

(
∫ T

0

|a(u)| du

)

.

Hence L maps bounded sets into bounded sets.

Note that Lx is periodic with period 2T . For t1, t2 ∈ [0, 2T ] with t1 < t2, we have

|(Lx)(t1) − (Lx)(t2)| 6
1

1 + exp
( ∫ T

0
a(u) du

)

×
[

∣

∣

∣

∣

∫ t1+T

t1

exp

(
∫ s

t1

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

−
∫ t2+T

t2

exp

(
∫ s

t2

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

t16tk<t1+T

exp

(
∫ tk

t1

a(u) du

)

Ik(x(tk))

−
∑

t26tk<t2+T

exp

(
∫ tk

t2

a(u) du

)

Ik(x(tk))

∣

∣

∣

∣

]
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6

max
t∈R,|xi|6M,i=0,1,...,n

|f(t, x0, x1, . . . , xn)|

1 + exp(
∫ T

0 a(u) du)

×
[

∫ t1+T

t1

∣

∣

∣

∣

exp

(
∫ s

t1

a(u) du

)

− exp

(
∫ s

t2

a(u) du

)
∣

∣

∣

∣

ds

+

∫ t2

t1

exp

(
∫ s

t2

a(u) du

)

ds

]

+

max
|x|6M, k∈[0,n0]

|Ik(x)|

1 + exp(
∫ T

0 a(u) du)

×
∣

∣

∣

∣

∑

t16tk<t1+T

exp

(
∫ tk

t1

a(u) du

)

−
∑

t26tk<t2+T

exp

(
∫ tk

t2

a(u) du

)∣

∣

∣

∣

→ 0 as t1 → t2.

This shows that (Lx)(t) is equi-continuous on R. The Arzelà-Ascoli theorem guar-

antees that L(Ω) is relatively compact, which means that L is compact. Hence the

continuity and the compactness of L imply that L is completely continuous. �

The following abstract existence theorem will be used in the proof of the main

results of this paper. Its proof can be found in [22].

Lemma 2.4. Let X be a Banach space. Suppose L : X → X is a completely

continuous operator. If there exists an open bounded subset Ω such that 0 ∈ Ω ⊂ X

and x 6= λLx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1], then there is at least one x ∈ Ω

such that x = Lx.

Now, we establish existence results for at least one solution of the equation (1.1).

Theorem 2.1. Suppose that (A1)–(A5) hold and

(B1) Ik(x)(2x + Ik(x)) 6 0 and x(x + Ik(x)) > 0 for all x ∈ R and k ∈ Z;

(B2) there exist impulsive continuous functions h : R × R
n → R, g : R × R

n → R,

and α, β : R → [0,∞) such that

(i) f(t, x0, . . . , xn) = h(t, x0, . . . , xn)+g(t, x0, . . . , xn) holds for all (t, x0, . . . , xn) ∈
R× R

n+1;

(ii) h(t, x0, . . . , xn)x0 6 0 holds for all (t, x0, . . . , xn) ∈ [t0, t0 + T ] × R
n+1;

(iii) there exists t0 ∈ R such that |g(t, x0, . . . , xn)| 6 α(t)|x0| + β(t) holds for all

(t, x0, . . . , xn) ∈ [t0, t0 + T ] × R
n+1.

Then the equation (1.1) has at least one anti-periodic solution.
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P r o o f. Let λ ∈ [0, 1]. Consider the operator equation x = λLx. If x ∈ X is

a solution of x = λLx, we get that

x(t) = − λ
1

1 + exp(
∫ T

0 a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

]

= (Lx)(t).

Then
{

x′(t) + a(t)x(t) = λf(t, x(t), x(α1(t)), . . . , x(αn(t))), t ∈ R,

∆x(tk) = λIk(x(tk)), k ∈ Z.

It follows that

(

x(t) exp

(
∫ t

t0

a(s) ds

))′

= λf(t, x(t), x(α1(t)), . . . , x(αn(t))) exp

(
∫ t

t0

a(s) ds

)

.

Since (B1) implies that x(x + Ik(x)) > 0 for all x ∈ R and k ∈ Z, we get that

x(t+k )x(tk) > 0 for all k ∈ Z. Then x(t0) = −x(t0 + T ) implies that there exists

ξ ∈ [t0, t0 + T ] such that x(ξ) = 0. Hence for t ∈ [ξ, t0 + T ], integrating above the

equation from ξ to t, one sees that

1

2

(

x(t) exp

(
∫ t

t0

a(s) ds

))2

− 1

2

∑

ξ<tk6t

[(x(t+k ))2 − (x(tk))2] exp

(

2

∫ tk

t0

a(s) ds

)

= λ

∫ t

ξ

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds.

One sees from (B1) that

(x(t+k ))2 − (x(tk))2 = (x(t+k ) − x(tk))(x(t+k ) + x(tk))

= ∆x(tk)(2x(tk) + ∆x(tk))

= λIk(x(tk))(2x(tk) + λIk(x(tk)))

6 λIk(x(tk))(2x(tk) + Ik(x(tk))) 6 0.
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Then (B2) implies that

1

2
[x(t)]2 exp

(

2

∫ t

t0

a(s) ds

)

6 λ

∫ t

ξ

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

= λ

∫ t

ξ

g(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+ λ

∫ t

ξ

h(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

6 λ

∫ t

ξ

h(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds.

We get from (B2) that

1

2
[x(t)]2 6 λ

∫ t

ξ

h(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t

a(u) du

)

ds

6

∫ t

ξ

|h(s, x(s), x(α1(s)), . . . , x(αn(s)))| |x(s)| exp

(
∫ s

t

a(u) du

)

ds

6

∫ t

ξ

(α(s)|x(s)| + β(s))|x(s)| exp

(
∫ s

t

a(u) du

)

ds.

Let

v(t) =

∫ t

ξ

(α(s)|x(s)| + β(s))|x(s)| exp

(
∫ s

t

a(u) du

)

ds.

Then v(ξ) = 0, 1
2 [x(t)]2 6 v(t) and

v′(t) = α(t)|x(t)|2 + β(t)|x(t)| − a(t)v(t).

Hence

v′(t) 6 2α(t)v(t) + β(t)
√

2v(t) − a(t)v(t) = (2α(t) − a(t))v(t) + β(t)
√

2v(t).

It follows that

(

√

v(t) exp

(

−
∫ t

ξ

(

α(s) − a(s)

2

)

ds

))′

=
β(t)

2
exp

(

−
∫ t

ξ

(

2α(s) − a(s)

2

)

ds

)

.

Integrating from ξ to t, we get that

√

v(t) exp

(

−
∫ t

ξ

(

α(s) − a(s)

2

)

ds

)

6

∫ t

ξ

β(s)

2
exp

(

−
∫ s

ξ

(

2α(u) − a(u)

2

)

du

)

ds.
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Thus for t ∈ [ξ, t0 + T ], we have that

v(t) 6 exp

(

2

∫ t

ξ

(

α(s)− a(s)

2

)

ds

)(
∫ t

ξ

β(s)

2
exp

(

−
∫ s

ξ

(

2α(u)− a(u)

2

)

du

)

ds

)2

.

Hence there exists a constantM > 0 such that v(t) 6 M for all t ∈ [ξ, t0 +T ]. Hence

|x(t)| 6
√

2M for all t ∈ [ξ, t0 + T ]. Then we get that |x(t0)| = |x(t0 + T )| 6
√

2M .

Now, we consider t ∈ [t0, ξ]. Integrating the equation

(

x(t) exp

(
∫ t

t0

a(s) ds

))′

= λf(t, x(t), x(α1(t)), . . . , x(αn(t))) exp

(
∫ t

t0

a(s) ds

)

from t0 to t, one sees that

1

2
[x(t)]2 exp

(

2

∫ t

t0

a(s) ds

)

=
1

2
[x(t0)]

2 +
1

2

∑

ξ<tk6t

[(

x(t+k ) exp

(
∫ tk

t0

a(s) ds

))2

−
(

x(t−k ) exp

(
∫ tk

t0

a(s) ds

))2]

+ λ

∫ t

t0

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

6 M +
1

2

∑

t0<tk6t

[(

x(t+k ) exp

(
∫ tk

t0

a(s) ds

))2

−
(

x(t−k ) exp

(
∫ tk

t0

a(s) ds

))2]

+ λ

∫ t

t0

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds.

Similarly to the discussion above, we get that

1

2
[x(t)]2 6 M exp

(
∫ t0

t

a(u) du

)

+

∫ t

t0

(α(s)|x(s)|+β(s))|x(s)| exp

(
∫ s

t

a(u) du

)

ds.

Thus there exist constants A, B, C > 0 such that

[x(t)]2 6 A +

∫ t

t0

(B|x(s)|2 + C|x(s)|) ds.

Let w(t) =
∫ t

t0
(B|x(s)|2 + C|x(s)|) ds. Then

w′(t) = B[x(t)]2 + C|x(t)| 6 B(A + w(t)) + C
√

A + w(t).

It follows that

2(
√

A + w(t)e−Bt)′ 6 Ce−Bt.
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Integrating the last equation from t0 to t, we get that

2
√

A + w(t)e−Bt
6 2

√
Ae−Bt0 +

∫ t

t0

Ce−Bs ds.

Hence there exists a constant M ′ > 0 such that w(t) 6 M ′ for all t ∈ [t0, ξ]. Then

[x(t)]2 6 A + M ′ for all t ∈ [t0, ξ].

It follows from the above discussion that |x(t)| 6 max{
√

A + M ′,
√

2M} for all
t ∈ [t0, t0 + T ].

Since x is anti-periodic, we get that |x(t)| 6 max{
√

A + M ′,
√

2M} for all t ∈ R.

Thus ‖x‖ 6 max{
√

A + M ′,
√

2M} for all x ∈ Ω = {x ∈ X : x = λLx for some λ ∈
[0, 1]}.
Choose M1 = max{

√
A + M ′,

√
2M}. Let Ω0 = {x ∈ X : ‖x‖ < M1 + 1}. Then

x 6= λLx for all λ ∈ [0, 1] and all x ∈ ∂Ω0. Lemmas 2.1 and 2.3 imply that L : X → X

is completely continuous. It follows from Lemma 2.4 that there is x ∈ X such that

x = Lx. Then Lemma 2.2 implies that the equation (1.1) has at least one anti-

periodic solution x ∈ X . The proof is complete. �

Theorem 2.2. Suppose that
∫ T

0
a(u) du 6 0 and (A1)–(A5) hold and

(H1) xIk(x) > 0 for all x ∈ R and k ∈ Z;

(H2) there exist impulsive continuous functions h : R × R
n → R, gi : R × R → R

and r ∈ X such that

(i) f(t, x0, . . . , xn) = h(t, x0, . . . , xn) +
n
∑

i=0

gi(t, xi) + r(t) holds for all (t, x0, . . . ,

xn) ∈ R× R
n+1;

(ii) there exists t0 ∈ R and constants m > 0 and β > 0 such that

h(t, x0, . . . , xn)x0 exp

(
∫ t

t0

a(u) du

)

> β|x0|m+1

holds for all (t, x0, . . . , xn) ∈ [t0, t0 + T ] × R
n+1;

(iii) there exist the limits

lim
|x|→∞

sup
t∈[t0,t0+T ]

|gi(t, x)| exp(
∫ t

t0
a(u) du)

|x|m = ri ∈ [0,∞), i = 0, . . . , n.

Then the equation (1.1) has at least one anti-periodic solution if

(2.2) r0 +

n
∑

k=1

rk‖β′
k‖m/(m+1)([µk] + 1)m/(m+1) < β,

where [µk] denotes the maximum integer not greater than µk.
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P r o o f. Let λ ∈ [0, 1]. Consider the operator equation x = λLx. If x ∈ X is

a solution of x = λLx, we get that

x(t) = − λ
1

1 + exp(
∫ T

0 a(u) du)

×
[

∫ t+T

t

exp

(
∫ s

t

a(u) du

)

f(s, x(s), x(α1(s)), . . . , x(αn(s))) ds

+
∑

t6tk<t+T

exp

(
∫ tk

t

a(u) du

)

Ik(x(tk))

]

= (Lx)(t).

Then

(2.3)

{

x′(t) + a(t)x(t) = λf(t, x(t), x(α1(t)), . . . , x(αn(t))), t ∈ R,

∆x(tk) = λIk(x(tk)), k ∈ Z.

To complete the proof of the theorem, we do the following three steps.

Step 1. Prove that there is a constant M > 0 so that
∫ t0+T

t0
|x(s)|m+1 ds 6 M .

Transform the first equation in (2.3) into

(

x(t) exp

(
∫ t

t0

a(s) ds

))′

= λf(t, x(t), x(α1(t)), . . . , x(αn(t))) exp

(
∫ t

t0

a(s) ds

)

.

Multiplying both sides by x(t) exp(
∫ t

t0
a(s) ds) and integrating from t0 to t0 + T ,

we get using (H2) that

1

2

(

x(t0 + T ) exp

(
∫ t0+T

t0

a(s) ds

))2

− 1

2
(x(t0))

2

− 1

2

∑

t0<tk6t0+T

[(

x(t+k ) exp

(
∫ tk

t0

a(s) ds

))2

−
(

x(tk)

(
∫ tk

t0

a(s) ds

))2]

= λ

[
∫ t0+T

t0

h(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

∫ t0+T

t0

g0(s, x(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

n
∑

i=1

∫ t0+T

t0

gi(s, x(αi(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

∫ t0+T

t0

r(s)x(s) exp

(
∫ s

t0

a(u) du

)

ds

]

.
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It follows from (H1) that

(x(t+k ))2 − (x(tk))2 = (x(t+k ) − x(tk))(x(t+k ) + x(tk))

= ∆x(tk)(2x(tk) + ∆x(tk)) = λIk(x(tk))(2x(tk) + λIk(x(tk)))

> 2λx(tk)Ik(x(tk)) > 0.

Together with
∫ T

0 a(u) du 6 0 and x(t0 + T ) = −x(t0), we get

1

2

(

x(t0 + T ) exp

(
∫ t0+T

t0

a(s) ds

))2

− 1

2
(x(t0))

2 6 0

and
(

x(t+k ) exp

(
∫ tk

t0

a(s) ds

))2

−
(

x(tk) exp

(
∫ tk

t0

a(s) ds

))2

> 0.

Then

∫ t0+T

t0

h(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

∫ t0+T

t0

g0(s, x(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

n
∑

i=1

∫ t0+T

t0

gi(s, x(αi(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

∫ t0+T

t0

r(s)x(s) exp

(
∫ s

t0

a(u) du

)

ds 6 0.

It follows from (H2) that

β

∫ t0+T

t0

|x(s)|m+1 ds 6 −
∫ t0+T

t0

g0(s, x(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

−
n

∑

i=1

∫ t0+T

t0

gi(s, x(αi(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

−
∫ t0+T

t0

r(s)x(s) exp

(
∫ s

t0

a(u) du

)

ds

6

∫ t0+T

t0

|g0(s, x(s))| exp

(
∫ s

t0

a(u) du

)

|x(s)| ds

+

n
∑

i=1

∫ t0+T

t0

|gi(s, x(αi(s))| exp

(
∫ s

t0

a(u) du

)

|x(s)| ds

+

∫ t0+T

t0

|r(s)| exp

(
∫ s

t0

a(u) du

)

|x(s)| ds.
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From (2.2), choose ε > 0 so that

(2.4) (r0 + ε) +

n
∑

k=1

(rk + ε)‖β′
k‖m/(m+1)([µk] + 1)m/(m+1) < β.

For such ε > 0, together with (H2), there is δ > 0 such that

(2.5) exp

(
∫ t

t0

a(u) du

)

|gi(t, x)| < (ri + ε)|x|m

uniformly for t ∈ [0, T ] and |x| > δ, i = 0, 1, . . . , n.

Let, for i = 1, . . . , n,

∆1,i = {t : t ∈ [0, T ], |x(αi(t))| 6 δ}, i = 1, . . . , n,

∆2,i = {t : t ∈ [0, T ], |x(αi(t))| > δ}, i = 1, . . . , n,

gδ,i = max
t∈[0,T ], |x|6δ

|gi(t, x)|, i = 0, 1, . . . , n,

∆1 = {t ∈ [0, T ], |x(t)| 6 δ},

∆2 = {t ∈ [0, T ], |x(t)| > δ},

δ = max{gδ,i : i = 0, . . . , n}.

Then we get

β

∫ t0+T

t0

|x(s)|m+1 ds 6 (r0 + ε)

∫ t0+T

t0

|x(s)|m+1 ds

+
n

∑

k=1

(rk + ε)

∫ t0+T

t0

|x(αi(s))|m|x(s)| ds + ‖r‖ exp

(
∫ T

0

a+(u) du

)

×
∫ t0+T

t0

|x(s)| ds + δ

∫ t0+T

t0

|x(s)| ds + δ

n
∑

k=1

∫ t0+T

t0

|x(s)| ds

6 (r0 + ε)

∫ t0+T

t0

|x(s)|m+1 ds

+

n
∑

k=1

(rk + ε)

[
∫ t0+T

t0

|x(αi(s))|m+1 ds

]m/(m+1)[ ∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

+

[

(n + 1)δ + ‖r‖ exp

(
∫ T

0

a+(u) du

)]
∫ t0+T

t0

|x(s)| ds
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6 (r0 + ε)

∫ t0+T

t0

|x(s)|m+1 ds

+

n
∑

k=1

(rk + ε)

[
∫ αk(t0+T )

αk(t0)

|x(u)|m+1|β′
k(u)| du

]m/(m+1)[∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

+

[

(n + 1)δ + ‖r‖ exp

(
∫ T

0

a+(u) du

)]

T m/(m+1)

[
∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

6 (r0 + ε)

∫ t0+T

t0

|x(s)|m+1 ds +

n
∑

k=1

(rk + ε)‖β′
k‖m/(m+1)

×
[

∫ αk(t0+T )

αk(t0)

|x(u)|1+m du

]m/(m+1)[ ∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

+

[

(n + 1)δ + ‖r‖ exp

(
∫ T

0

a+(u) du

)]

T m/(m+1)

[
∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

.

Since (A3) implies that

µk = max
t∈R

|αk(t + T ) − αk(t)|
T

, k = 1, . . . , n,

we have

[µk]T 6 αk(t0 + T ) − αk(t0) 6 ([µk] + 1)T,

where [y] denotes the maximum integer not greater than y. The fact that |x(t)| is
T -periodic implies that

β

∫ t0+T

t0

|x(s)|m+1 ds 6 (r0 + ε)

∫ t0+T

t0

|x(s)|m+1 ds

+

n
∑

k=1

(rk + ε)‖β′
k‖m/(m+1)([µk] + 1)m/(m+1)

×
[

∫ t0+T

t0

|x(u)|1+m du

]m/(m+1)[ ∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

+

[

(n + 1)δ + ‖r‖ exp

(
∫ T

0

a+(u) du

)]

T m/(m+1)

[
∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

=

[

(r0 + ε) +

n
∑

k=1

(rk + ε)‖β′
k‖m/(m+1)([µk] + 1)m/(m+1)

]
∫ t0+T

t0

|x(s)|m+1 ds

+

[

(n + 1)δ + ‖r‖ exp

(
∫ T

0

a+(u) du

)]

T m/(m+1)

[
∫ t0+T

t0

|x(s)|m+1 ds

]1/(m+1)

.

It follows from (2.4) that there is a constantM > 0 so that
∫ t0+T

t0
|x(s)|m+1 ds 6 M .
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Step 2. Prove that there is a constant M1 > 0 so that ‖x‖∞ 6 M1.

It follows from Step 1 that there is ξ ∈ [t0, t0 + T ] so that |x(ξ)| 6 (M/T )1/(m+1).

Case 1. If t0 6 t < ξ, multiplying both sides of the equation (4) by x(t)×
exp(

∫ t

0
a(s) ds) and integrating it from t to ξ, we get, using (B1) and (B2), that

1

2

[

x(t) exp

(
∫ t

t0

a(s) ds

)]2

=
1

2

[

x(ξ) exp

(
∫ ξ

t0

a(s) ds

)]2

− 1

2

∑

t<tk6ξ

[(

x(t+k ) exp

(
∫ tk

t0

a(u) du

))2

−
(

x(t−k ) exp

(
∫ tk

t0

a(u) du

))2]

− λ

∫ ξ

t

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds.

It follows that

1

2
|x(t)|2 =

1

2

[

x(ξ) exp

(
∫ ξ

t

a(s) ds

)]2

− 1

2

∑

t<tk6ξ

[(

x(t+k ) exp

(
∫ tk

t

a(s) ds

))2

−
(

x(t−k ) exp

(
∫ tk

t

a(s) ds

))2]

− λ

∫ ξ

t

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t

a(u) du

)

ds

6
1

2

(M

T

)2/(m+1)

exp

(
∫ T

0

|a(s)| ds

)

+

[(

(r0 + ε) +
n

∑

k=1

(rk + ε)‖βk‖m/(1+m)([µk] + 1)m/(m+1)

)

M

+

(
∫ t0+T

t0

|r(s)| exp

(
∫ s

t0

a(u) du

)

ds

)m/(m+1)

M1/(m+1)

]

exp

(

2

∫ T

0

|a(u)| du

)

+ (n + 1)T m/(m+1)M1/(m+1) exp

(

2

∫ T

0

|a(u)| du

)

=: M2.

Hence one sees that

x2(t) 6 2M2 =: M3 for t ∈ [t0, ξ].

This implies x2(0) 6 M3. So x2(T ) = x2(0) 6 M3.
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Case 2. For t ∈ [ξ, t0 + T ], we have

1

2

[

x(t) exp

(
∫ t

t0

a(s) ds

)]2

=
1

2

[

x(t0 + T ) exp

(
∫ t0+T

t0

a(s) ds

)]2

− 1

2

∑

t<tk<t0+T

[(

x(t+k ) exp

(
∫ tk

T

a(s) ds

))2

−
(

x(t−k ) exp

(
∫ tk

T

a(s) ds

))2]

− λ

∫ t0+T

t

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

T

a(u) du

)

ds.

Similarly to the above discussion, we get that there is M4 > 0 so that x2(t) 6 M4

for t ∈ [ξ, t0 + T ]. All the above discussion implies that there is M1 > 0 so that

|x(t)| 6 M1 for all t ∈ [t0, t0 + T ].

Since x is anti-periodic, we get that |x(t)| 6 M1 for all t ∈ R. Thus ‖x‖ 6 M1 for

all x ∈ Ω = {x ∈ X : x = λLx for some λ ∈ [0, 1]}.
Step 3. Apply Lemma 2.4 to get a solution of the equation (1.1).

Let Ω0 = {x ∈ X : ‖x‖ < M1 + 1}. Then x 6= λLx for all λ ∈ [0, 1] and all

x ∈ ∂Ω0. Lemmas 2.1 and 2.3 imply that L : X → X is completely continuous. It

follows from Lemma 2.4 that there is x ∈ X such that x = Lx. Then Lemma 2.2

implies that the equation (1.1) has at least one anti-periodic solution x ∈ X . The

proof is complete. �

Theorem 2.3. Suppose that
∫ T

0
a(u) du > 0 and (A1)–(A5) hold and

(H3) Ik(x)(2x + Ik(x)) 6 0 for all x ∈ R and k ∈ Z;

(H4) there exist impulsive continuous functions h : R × R
n → R, gi : R × R → R

and r ∈ X such that (H2)(i) and (H2)(iii) hold and

(ii) there exist t0 ∈ R and constants m > 0 and β > 0 such that

h(t, x0, . . . , xn)x0 exp

(
∫ t

t0

a(u) du

)

6 −β|x0|m+1

holds for all (t, x0, . . . , xn) ∈ [t0, t0 + T ] × R
n+1.

Then the equation (1.1) has at least one anti-periodic solution if

(2.6) r0 +
n

∑

k=1

rk‖βk‖m/(m+1)([µk] + 1)m/(m+1) < β,

where [µk] denotes the maximum integer not greater than µk.

P r o o f. The proof is similar to that of Theorem 2.2. We get (2.3). (A2) implies

that
∫ t+T

t
a(s) ds =

∫ T

0
a(u) du > 0.
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Multiplying both sides of the equation (2.3) by x(t) exp(
∫ t

t0
a(s) ds) and integrating

it from t0 to t0 + T , we get using (H4) that

1

2

[

x(t0 + T ) exp

(
∫ t0+T

t0

a(s) ds

)]2

− 1

2

[

x(t0) exp

(
∫ t0

t0

a(s) ds

)]2

− 1

2

∑

t0<tk6t0+T

[(

x(t+k ) exp

(
∫ tk

t0

a(s) ds

))2

−
(

x(t−k ) exp

(
∫ tk

t0

a(s) ds

))2]

= λ

∫ t0+T

t0

f(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds.

From the assumption (H3), we get that

(x(t+k ))2 − (x(t−k ))2 = (x(t+k ) − x(t−k ))(x(t+k ) + x(t−k ))

= ∆x(t−k )(2x(t−k ) + ∆x(t−k )) = λIk(x(t−k ))(2x(t−k ) + λIk(x(t−k )))

6 2λIk(x(t−k ))x(t−k ) + λ[Ik(x(t−k ))]2 = λIk(x(t−k ))(2x(t−k ) + Ik(x(t−k ))) 6 0.

It follows that

∫ t0+T

t0

h(s, x(s), x(α1(s)), . . . , x(αn(s)))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

∫ t0+T

t0

g0(s, x(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

n
∑

i=1

∫ t0+T

t0

gi(s, x(αi(s))x(s) exp

(
∫ s

t0

a(u) du

)

ds

+

∫ t0+T

t0

r(s)x(s) exp

(
∫ s

t0

a(u) du

)

ds > 0.

The remainder of the proof is similar to that of the proof of Theorem 2.1 and is

omitted. �

R em a r k 2.1. One can easily see that the assumptions imposed on αk, Ik (k =

1, 2, . . . , n) and f are weaker than those in [18], see (B1), (B2), (H1)–(H4) in this

paper and (G1)–(G6) in [18]. So the results in this paper are new.
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3. An example

Now, we present an example, whose solutions can not be obtained by theorems in

other known papers, to illustrate the main results.

E x am p l e 3.1. Consider the following equation

(3.1)















x′(t) + (1 + sin 2t)x(t)

= a[x(t)]2q+1 +
n
∑

k=1

bi[x(t − i−2)]2q+1 + sin t, t ∈ R,

∆x(tk) = ck[x(tk)]3, k ∈ Z,

where q > 0 is an integer, tk = kπ + π/2, k ∈ Z, a, bk (k = 1, . . . , n) are constants.

The question is, under what conditions the equation (8) has at least one anti-periodic

solution with anti-period π.

Corresponding to the equation (1.1), we find that

a(t) = 1 + sin 2t, Ik(x) = ckx3 (k ∈ Z),

f(t, x0, x1, . . . , xn) = ax2q+1
0 +

n
∑

k=1

bix
2q+1
i + sin t and αk(t) = t − k−2 (k ∈ Z).

It is easy to check that (A1)–(A5) hold.

It is easy to see that xIk(x) > 0 if ck > 0 for all k ∈ Z.

Choose h(t, x0, x1, . . . , xn) = ax2q+1
0 , gi(t, xi) = bix

2q+1
i , r(t) = sin t. Then

f(t, x0, x1, . . . , xn) = h(t, x0, x1, . . . , xn) +

n
∑

i=1

gi(t, xi) + r(t).

It is easy to check that (H2) holds if a > 0 with t0 = 0, β = a and m = 2q + 1 and

ri = |bi|(2 + π) (i = 1, . . . , n). Since αk(t) = t − k−2, we get that βk(t) = t + k−2

and µk = 1. Then Theorem 2.2 implies that the equation (3.1) has at least one

anti-periodic solution if

(3.2)
n

∑

k=1

|bk|2(2q+1)/(2q+2) < a.

R em a r k 3.1. This paper is a continuation of [18]. But the techniques used to

get the a priori estimates of solutions in this paper are different from those used

in [18]. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3

obtained in [18] since (G2) in Theorem 2.1 [18], (G4) in Theorem 2.2 [18] and (G6)

in Theorem 2.3 [18] are not satisfied.
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