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MONOTONICITY PROPERTIES OF OSCILLATORY

SOLUTIONS OF DIFFERENTIAL EQUATION

(a(t)|y′|p−1y′)′ + f(t, y, y′) = 0

Miroslav Bartušek and Chrysi G. Kokologiannaki

Abstract. We obtain monotonicity results concerning the oscillatory solu-
tions of the differential equation (a(t)|y′|p−1y′)′+f(t, y, y′) = 0. The obtained
results generalize the results given by the first author in [1] (1976). We also
give some results concerning a special case of the above differential equation.

1. Introduction

In this paper, we consider the differential equation

(1.1)
(
a(t)|y′|p−1y′

)′ + f(t, y, y′) = 0

where p > 0, a is positive continuous function on J = [ā,∞) ⊂ R+ = [0,∞), the
function f is continuous on D = {(t, u, v) : t ∈ J,−∞ < u, v <∞} and

f(t, u, v)u > 0 for u 6= 0 .

A function y : [ay, by) → R = (−∞,∞) is called a solution of (1.1) if I =
[ay, by) ⊂ J , y ∈ C1(I), a|y′|p−1y′ ∈ C1(I) and (1.1) is valid on I. A solution
y is oscillatory if there exists an increasing sequence {tk}∞k=1 of zeros of y such
that ay ≤ tk < by, k = 1, 2, . . . , lim

k→∞
tk = by and y is nontrivial in any left

neighbourhood of by.
Note that solutions of (1.1) will be sometimes studied on subintervals of their

maximal definition intervals.
We study solutions of (1.1) also on finite intervals since (1.1) may have solutions

defined on such intervals that cannot be defined on J (so called noncontinuable
solutions, singular solutions of the 2-nd kind, see e.g. [5], [7], [10], [12] and the
references therein).

The structure of zeros of a solution of (1.1) can be complicated, see [4].
Let z : [az, bz) ⊂ J → R be a continuous function. According to [1] a point

C ∈ [az, bz) is called an H-point of z if there exist sequences {τk}∞k=1 and {τ̄k}∞k=1
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of numbers of [az, bz) tending to C such that
z(τk) = 0 , z(τ̄k) 6= 0 , (τk − C)(τ̄k − C) > 0 , k = 1, 2, . . . .

Clearly, if C is an H-point of z, then z(C) = z′(C) = 0.
Denote by O the set of oscillatory solutions of (1.1) defined on [ay, by) ⊂ J that

have no H-points in [ay, by).
The aim of the paper is to study monotonicity properties of oscillatory solutions

in the set O.
Note, that H-points do not exist if there exists ε > 0 such that∣∣f(t, u, v)

∣∣ ≤ r(t)(|u|+ |v|) for t ∈ J, |u| ≤ ε, |v| ≤ ε
where r ∈ C0(J), see [10]. On the other hand there exists an equation of the form
(1.1) that has a solution y with infinitely many H-points tending to ∞, see [3].
Thus, this solution defined in a neighbourhood of ∞ does not belong to O; but the
restriction of y to a suitable bounded definition interval belongs to O.

Lemma 1.1. Let y ∈ O be defined on [ay, by). Then there are sequences {tk}∞k=1
and {τk}∞k=1 such that ay ≤ tk < τk < tk+1 < by, y(tk) = 0, y′(τk) = 0, y(t) 6= 0 if
t 6= tk, y′(t) 6= 0 if t ≥ t1 and t 6= τk, k = 1, 2, . . . . Moreover,

f
(
t, y(t), y′(t)

)
y′(t) > 0 for t ∈ (tk, τk) ,

f
(
t, y(t), y′(t)

)
y′(t) < 0 for t ∈ (τk, tk+1) .

Proof. See [4, Theorem 2] and its proof. �

Note, that according to (1.1), {tk}∞k=1 ({τk}∞k=1) is the sequence of all extremants
of a|y′|p−1 y′ on [t1, by) (of y on [t1, by)); zeros tk and τk are simple and isolated.

A special case of (1.1) is the differential equation with p-Laplacian

(1.2)
(
a(t)|y′|p−1y′

)′ + r(t)f(y) = 0
where r(t) is a positive continuous on R+, f is continuous on R and f(x)x > 0
for x 6= 0. The study of oscillatory solutions of the differential equation (1.2) is an
interest subject of many papers also in our days, see e.g. [4, 5, 6, 9, 12, 13, 14].

In [1] and [2] (see also references therein), some monotonicity results concerning
the oscillatory solutions of the differential equation
(1.3) y′′ + f(t, y, y′) = 0
have been proved. Sufficient conditions for the monotonicity of the sequences{
|y(τk)|

}∞
k=1 and

{
|y′(tk)|

}∞
k=1 for a solution y of (1.3) are derived. This problem

has a long history which was initiated by P. Hartman, L. Lorch and M. Muldon for
Bessel functions and higher monotonicity problem for second order linear equation,
see [8, 11].

In [14], the existence of an oscillatory solution with decreasing amplitudes for
(1.2) with p = 1 is proved.

In Section 2 we give analogous monotonicity properties of oscillatory solutions
belonging to O. Our results generalize the ones e.g. of [1] (see also references
therein) and [8, 11] for (1.3). The obtained results coincide with the known results
of [1] for p = 1 and a(t) ≡ 1. The same problem is solved for (1.2) in Section 3.
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Notation. Let D1 =
{

(t, u, v) : (t, u, v) ∈ D, v ≥ 0
}

, D2 =
{

(t, u, v) : (t, u, v) ∈
D,u ≥ 0

}
. For a solution y of (1.1), we introduce the quasiderivation of y by

y[1](t) = a(t)|y′(t)|p−1y′(t) .

2. Main results

Theorem 2.2. Let f(t, u, v) = f(t, u,−v) in D,
∣∣f(t, u, v)

∣∣ be non-increasing with
respect to t in D and non-increasing with respect to v in D1, and a be non-increasing
on J . Let y ∈ O be defined on [ay, by) and let {tk}∞k=1 ({τk}∞k=1) be the sequence
of all zeros of y (of y′) given by Lemma 1.1. Let k ∈ N, z ∈

[
0, |y(τk)|

]
and let

s1 ∈ [tk, τk] and s2 ∈
[
τk, tk+1

]
be such that∣∣y(s1)

∣∣ =
∣∣y(s2)

∣∣ = z .

Then

(2.1) |y[1](s1)| ≥ |y[1](s2)| .

Hence, the sequence {|y[1](tk)|}∞k=1 is non-increasing. If, moreover, a ≡ 1, then

(2.2) τk − tk ≤ tk+1 − τk .

Proof. First, we multiply equation (1.1) by −p+1
p (a(t)|y′|p)1/p, so we obtain

−p+ 1
p

(
a(t)|y′|p

)1/p(
a(t)|y′|p−1y′

)′ = p+ 1
p

(
a(t)|y′|p

)1/p
f(t, y, y′)

and hence

−
(
(a(t)|y′|p)(p+1)/p)′ = p+ 1

p

(
a(t)|y′|p

)1/p
f(t, y, y′) sgn y′ .(2.3)

Let k ∈ N. Then we integrate (2.3) from t to τk and obtain

(2.4)
(
a(t)|y′(t)|p

)(p+1)/p = p+ 1
p

∫ τk

t

a1/p(s)y′(s)f(s, y(s), y′(s)) ds

for t ∈ [tk, tk+1]. Let y(t) be positive on (tk, tk+1). In the case that y(t) is negative,
the proof is similar. Then, the function f(t, y, y′) will be positive on the same
interval. Also the derivative of y will be positive for t ∈ [tk, τk) and negative for
t ∈ (τk, tk+1], see Lemma 1.1. Since y′(t) 6= 0 for t 6= τk and t ∈ [tk, tk+1] there
exists the inverse function of y(t) in each subintervals of [tk, tk+1], so we denote by
s1(y) the inverse function to y(t) for t ∈ [tk, τk] and s2(y) the inverse function to
y(t) for t ∈ [τk, tk+1].

The equation (2.4) can be rewritten into the form(
a(si)|y′(si)|p

)(p+1)/p = p+ 1
p

∫ y(τk)

y

a1/p(si(z))f(si(z), y(z), y′(si(z)))dz

for y ∈ [0, y(τk)], i = 1, 2. From this
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(2.5)

d

dy

{(
a(s1)|y′(s1)|p

)(p+1)/p −
(
a(s2)|y′(s2)|p

)(p+1)/p}
= −p+ 1

p

{
a1/p(s1)f(s1, y, y

′(s1))− a1/p(s2)f(s2, y, y
′(s2))

}
= −p+ 1

p

{
a1/p(s1)[f(s1, y, y

′(s1))− f(s2, y, y
′(s1))]

+ [a1/p(s1)− a1/p(s2)]f(s2, y, y
′(s1))

+ a1/p(s2)[f(s2, y, y
′(s1))− f(s2, y, y

′(s2))]
}

≤ −p+ 1
p

a1/p(s2)
{
f(s2, y, |y′(s1)|)− f(s2, y, |y′(s2)|)

}
.

As a(s1)
∣∣y′(s1)

∣∣p ≤ a(s2)
∣∣y′(s2)

∣∣p implies
∣∣y′(s1)

∣∣ ≤ ∣∣y′(s2)
∣∣ it follows from (2.5)

(2.6) a(s1)
∣∣y′(s1)

∣∣p − a(s2)
∣∣y′(s2)

∣∣p ≤ 0

⇒ d

dy

{
a(s1)

∣∣y′(s1)
∣∣p − a(s2)

∣∣y′(s2)
∣∣p} ≤ 0 .

We assume, contrarily, that there exists a number y1 ∈
[
0, y(τk)

]
such that for

y = y1

a(s1)
∣∣y′(s1)

∣∣p < a(s2)
∣∣y′(s2)

∣∣p .
From this and from (2.6) we have

a(s1)
∣∣y′(s1)

∣∣p < a(s2)
∣∣y′(s2)

∣∣p
for y ≥ y1. But it is a contradiction because for y = y(τk) we have

a(s1(y))
∣∣y′(s1(y))

∣∣p − a(s2(y))
∣∣y′(s2(y))

∣∣p = 0 .

So, finally, the inequality

a(s1)|y′(s1)|p ≥ a(s2)|y′(s2)|p , y ∈ [0, y(τk)]

holds and the desired result (2.1) is obtained.
Let a ≡ 1, f1(y) = τk − s1(y) ≥ 0 and f2(y) = s2(y)− τk ≥ 0 for y ∈

[
0, y(τk)

]
.

Then it follows from the proved part (2.1) of the theorem that

d

dy

[
f1(y)− f2(y)

]
= − 1

y′(s1(y)) −
1

y′(s2(y)) ≥ 0

for y ∈
[
0, y(τk)

]
. Hence f1 − f2 is nondecreasing and with regard to f1(y) =

f2(y) = 0 for y = y(τk) we can conclude f1 ≤ f2, i.e.

τk − s1(y) ≤ s2(y)− τk , y ∈
[
0, y(τk)

]
.

The statement (2.2) now follows from the last formula where we substitute y =
y(τk). �
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Theorem 2.3. Let f(t, u, v) = f(t, u,−v) in D,
∣∣f(t, u, v)

∣∣ be non-decreasing with
respect to t in D and non-decreasing with respect to v in D1, and a be non-decreasing
on J . Let y ∈ O be defined on [ay, by) and let {tk}∞k=1 ({τk}∞k=1) be the sequence
of all zeros of y (of y′) given by Lemma 1.1. Let k ∈ N, z ∈

[
0, |y(τk)|

]
and let

s1 ∈ [tk, τk] and s2 ∈
[
τk, tk+1

]
be such that∣∣y(s1)

∣∣ =
∣∣y(s2)

∣∣ = z .

Then
|y[1](s1)| ≤ |y[1](s2)| .

Hence, the sequence
{
|y[1](tk)|

}∞
k=1 is nondecreasing. If, moreover, a ≡ 1, then
τk − tk ≥ tk+1 − τk .

Proof. The proof is analogous as in Theorem 2.2. �

Theorem 2.4. Let f(t, u, v) = −f(t,−u, v) in D, f(t, u, v) be non-increasing with
respect to t in D2, f(t, u, v) be non-decreasing (non-increasing) with respect to v
in D2, v ≥ 0 (in D2, v ≤ 0), and a be non-increasing on J . Let y ∈ O be defined
on [ay, by) and let {tk}∞k=1 ({τk}∞k=1) be the sequence of all zeros of y (of y′) given
by Lemma 1.1. Let k ∈ N, z ∈

[
0, |y(τk)|

]
, s1 ∈ [τk, tk+1], and s2 ∈

[
tk+1, τk+1

]
be

such that ∣∣y(s1)
∣∣ =

∣∣y(s2)
∣∣ = z .

Then the inequality
|y[1](s1)| ≤ |y[1](s2)|

holds, and the sequence {|y(τk)|}∞k=1 is non-decreasing.

Proof. We integrate (2.3) from t to tk+1 and we obtain

(2.7)
(
a(t)|y′(t)|p

)(p+1)/p −
(
a(tk+1)|y′(tk+1)|p

)(p+1)/p

= p+ 1
p

∫ tk+1

t

a1/p(s)y′(s)f(s, y(s), y′(s)) ds ,

for t ∈ [τk, τk+1]. Let s1(y) be the inverse function to y(t) for t ∈ [τk, tk+1] and let
s2(y) be the inverse function to y(t) for t ∈ [tk+1, τk+1]. The equation (2.7) can be
rewritten by

(2.8)
(
a(si)|y′(si)|p

)(p+1)/p −
(
a(tk+1)|y′(tk+1)|p

)(p+1)/p

= −p+ 1
p

∫ y

0
a1/p(si(z))f(si(z), z, y′(si(z))) dz

for i = 1, 2 and |y| ∈
[
0,min

(
|y(τk)|, |y(τk+1)|

)]
= I. Differentiating equation (2.8)

we can obtain for |y| ∈ I

(2.9) d

d|y|
{(
a(s1)|y′(s1)|p

)(p+1)/p −
(
a(s2)|y′(s2)|p

)(p+1)/p}
= −p+ 1

p

{
a1/p(s1)f(s1, |y|, y′(s1))− a1/p(s2)f(s2, |y|, y′(s2))

}
.
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Following the same procedure as in the proof of Theorem 2.2, we obtain

(2.10) d

d|y|
{(
a(s1)|y′(s1)|p

)(p+1)/p −
(
a(s2)|y′(s2)|p

)(p+1)/p}
multline

≤ −p+ 1
p

a1/p(s2)
{
f(s2, |y|, y′(s1))− f(s2, |y|, y′(s2))

}
.

For y = 0 equation (2.8) gives

(2.11) a(s1)|y′(s1)|p = a(s2)|y′(s2)|p = a(tk+1)|y′(tk+1)|p .

Assume that there exists y1 ∈ I, y1 6= 0, such that

(2.12) a(s1)|y′(s1)|p > a(s2)|y′(s2)|p

for |y| = y1. Then according to (2.9) and (2.11) there exists an interval I1 = (z̄, y1],
z̄ ≥ 0, such that the inequality (2.12) holds on I1 and for |y| = z̄

a(s1)|y′(s1)|p = a(s2)|y′(s2)|p.

This means that there exists a number ξ ∈ I1 such that

d

d|y|
{(
a(s1)|y′(s1)|p

)(p+1)/p −
(
a(s2)|y′(s2)|p

)(p+1)/p}
|y|=ξ > 0

which is not correct because of (2.10) and (2.12). Thus

(2.13) a(s1)|y′(s1)|p ≤ a(s2)|y′(s2)|p, |y| ∈ I .

Suppose that |y(τk)| > |y(τk+1)|. Then I = [0, |y(τk+1)|] and for |y| = |y(τk+1)| we
have |y′(s1)| > 0 and |y′(s2)| = 0, so for |y| = |y(τk+1)| we obtain a(s1)|y′(s1)|p >
a(s2)|y′(s2)|p which is not valid because of (2.13). So it is proved that |y(τk)| ≤
|y(τk+1)| for k = 1, 2, . . . . �

Theorem 2.5. Let f(t, u, v) = −f(t,−u, v) in D, f(t, u, v) be non-decreasing with
respect to t in D2, f(t, u, v) be non-increasing (non-decreasing) with respect to v in
D2, v ≥ 0 (in D2, v ≤ 0), and a be non-decreasing on J . Let y ∈ O be defined on
[ay, by) and let {tk}∞k=1 ({τk}∞k=1) be the sequence of all zeros of y (of y′) given by
Lemma 1.1. Let k ∈ N, z ∈

[
0, |y(τk+1)|

]
, s1 ∈ [τk, tk+1], and s2 ∈

[
tk+1, τk+1

]
be

such that ∣∣y(s1)
∣∣ =

∣∣y(s2)
∣∣ = z .

Then the inequality

|y[1](s1)| ≥ |y[1](s2)|

holds and the sequence {|y(τk)|}∞k=1 is non-increasing.

Proof. The proof is analogous as that of Theorem 2.4. �
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3. Special case

Concerning equation (1.2), the results of Section 2 can be proved under weaker
assumptions on a(t) and r(t). We define an auxiliary function

R(t) = a1/p(t)r(t) , t ∈ J .

Theorem 3.6. Let R ∈ C1(J), y be an oscillatory solution of (1.2) on J and
f(y) a continuous odd function on R. Then y ∈ O. If, moreover, the function
R is non-decreasing (non-increasing) and {τk}∞k=1 is the sequence of all extre-
mants of y given by Lemma 1.1, then the sequence {|y(τk)|}∞k=1 is non-increasing
(non-decreasing).

Proof. Since R ∈ C1(J), according to [5, Theorems 2 and 3], every solutions y of
(1.2) can be defined on R+ and it has no H-points, so y ∈ O. Let y be a solution
of (1.2) on J and consider

Y (t) = a(t)|y′(t)|p = |y[1](t)|(3.1)

and

Z(t) = Y (p+1)/p(t)
R(t) + p+ 1

p

∫ y(t)

0
f(s) ds .(3.2)

Then

(3.3) Z ′(t) = −R
′(t)

R2(t)Y
(p+1)/p(t) .

For the zeros τk, k = 1, 2, . . . of y′ we get from (3.1) Y (τk) = 0, thus according to
(3.2) and the fact that f is odd

(3.4) Z(τk) = p+ 1
p

∫ y(τk)

0
f(s)ds = p+ 1

p

∫ |y(τk)|

0
f(s) ds

and so

(3.5) Z(τk+1) = p+ 1
p

∫ |y(τk+1)|

0
f(s) ds .

Since R(t) is non-decreasing (non-increasing), it follows from (3.3) Z ′(t) ≤ 0
(Z ′(t) ≥ 0), so the function Z(t) is non-increasing (non-decreasing), thus combining
(3.4) and (3.5) we obtain the desired result. �

Theorem 3.7. Let R ∈ C1(J), y be an oscillatory solution of (1.2) on J and
f(y) be a continuous function on R. Then y ∈ O. If, moreover, the function R(t)
is non-decreasing (non-increasing) and {tk}∞k=1 is the sequence of all extremants
of y[1] given by Lemma 1.1, then the sequence {|y[1](tk)|}∞k=1 is non-decreasing
(non-increasing).

Proof. Let y be a solution of (1.2) on R+. Similarly to the proof of Theorem 3.6,
y ∈ O.



206 M. BARTUŠEK AND CH. G. KOKOLOGIANNAKI

Now we consider the function Y (t) given by (3.1) and the function

(3.6) Z1(t) = Y (p+1)/p(t) + p+ 1
p

R(t)
∫ y(t)

0
f(s) ds .

It is obvious that

Z ′1(t) = p+ 1
p

R′(t)
∫ y(t)

0
f(s) ds

and according to f(x)x > 0 for x 6= 0 the functions R(t) and Z1(t) have the same
kind of monotonicity. From (3.6) for t = tk and t = tk+1 and taking in account the
assumptions of the theorem, we obtain the desired result. �

Remark 3.8. Functions (3.2) and (3.6) are defined and investigated in [5].

4. Application

We apply our results to the quasilinear equation

(4.1)
(
|y′|p−1y′

)′ + r(t)|y|λ−1y = 0

where p > 0, λ > 0, r > 0 and r is a positive continuous function on R+.

Corollary 4.9. Let y be an oscillatory solution of (4.1) defined on I = [ay,∞) ⊂
R+ that has no H-points in I. Denote by {tk}∞k=1 ({τk}∞k=1) all extremants of y′
(of y) on I (on [t1,∞)).

(i) If r is non-increasing on I, then
{
|y(τk)|

}∞
k=1 is non-decreasing

and
{
|y′(tk)|

}∞
k=1 is non-increasing.

(ii) If r is non-decreasing on I, then
{
|y(τk)|

}∞
k=1 is non-increasing

and
{
|y′(tk)|

}∞
k=1 is non-decreasing.

(iii) If r ∈ C1(R+), then y is defined on R+ and it has no H-points.

Proof. Case (i)
(
(ii)
)

follows from Theorems 2.2 and 2.4 (from Theorems 2.3 and
2.5). Case (iii) follows from [5, Theorems 2 and 3]. �

Remark 4.10. Let r ∈ C1(R+). Then all solutions of (4.1) are oscillatory if and
only if ∫ ∞

0
tλr(t) dt =∞ in case λ < p

and ∫ ∞
0

(∫ ∞
t

r(s) ds
) 1
p

dt =∞ in case λ > p ,

see [5, Theorem 2] and [12, Theorems 6.1, 11.3 and 11.4].

Example. Consider (4.1) with p = 1, λ = 1 and r(t) ≡ C > 0 on R+. Then the
sequences {|y(τk)|}∞k=1 and {|y′(tk)|}∞k=1 are constant. This result was proved in
[11, Lemma 1].
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