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ON THE KOLÁŘ CONNECTION

Włodzimierz M. Mikulski

To the memory of my father Jan Mikulski on his 100th birthday

Abstract. Let Y → M be a fibred manifold with m-dimensional base
and n-dimensional fibres and E → M be a vector bundle with the same
base M and with n-dimensional fibres (the same n). If m ≥ 2 and n ≥ 3, we
classify all canonical constructions of a classical linear connection A(Γ,Λ,Φ,∆)
on Y from a system (Γ,Λ,Φ,∆) consisting of a general connection Γ on
Y →M , a torsion free classical linear connection Λ onM , a vertical parallelism
Φ: Y ×M E → V Y on Y and a linear connection ∆ on E →M . An example
of such A(Γ,Λ,Φ,∆) is the connection (Γ,Λ,Φ,∆) by I. Kolář.

0. Introduction

A general connection on a fibred manifold Y → M is a section Γ: Y → J1Y
of the first jet prolongation J1Y of Y → M . Equivalently, Γ: Y ×M TM → TY
is a lifting map or a projection tensor field Γ: TY → TY or it is a decomposition
TY = V Y ⊕ HΓY , e.t.c. If Y is a vector bundle and Γ: Y → J1Y is a vector
bundle map (over idM ), then Γ is called a linear connection on Y →M . A linear
connection on Y = TM → M (the tangent bundle of M) is called a classical
linear connection on M . There are several equivalent definitions of classical linear
connection on M (a differentiation X (M) × X (M) → X (M), a right invariant
connection PM → J1PM on the linear frame bundle PM of M , a system of
Christoffel symbols, e.t.c.). A classical linear connection ∇ is torsion free if its
torsion tensor T (X1, X2) = ∇X1X2 −∇X2X1 − [X1, X2] is equal to 0.

If N is a manifold and V is a vector bundle, dim(N) = dim(V ), a parallelism on
N , is a fibred diffeomorphism P : N × V → TN over idN such that for any z ∈ N
the map Pz : V → TzN , Pz(v) = P (z, v), is linear.

If Y → M is a fibred manifold and E → M is a vector bundle such that
dimYx = dimEx, x ∈ M , a vertical parallelism on Y → M is a vector bundle
isomorphism Φ: Y ×ME → V Y , i.e. it is a system of parallelism Φx : Yx×Ex → TYx
on Yx for any x ∈M .
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In [4], I. Kolář constructed a classical linear connection Ψ = (Γ,Λ,Φ,∆): TY →
J1(TY → Y ) from a system consisting of a general connection Γ: Y → J1Y on
Y →M , a classical linear connection Λ: TM → J1(TM →M) on M , a vertical
parallelism Φ: Y ×M E → V Y on Y and a linear connection ∆: E → J1(E →M)
on E →M as follows. “We decompose Z ∈ TyY into the horizontal part h(Z) =
Γ(y, Zo), Zo ∈ TxM , x = p(y) and the vertical part vZ = Φ(y, Z1), Z1 ∈ Ex.
We take a vector field X on M such that j1

xX = Λ(Zo) and construct its Γ-lift
ΓX : Y → TY . Further, we consider a section s of E such that j1

xs = ∆(Z1). For
every Z ∈ TyY we define

ψ(Z) = j1
y

(
ΓX + ϕ(s)

)
. ′′

Here ϕ(s) : Y → V Y is defined by ϕ(s)(y) = Φ(y, s(p(y))).

The above construction is a generalization of the construction H of a classical
linear connection H(D,Λ) on E from a linear connection D in a vector bundle E →
M by means of a classical linear connection Λ on M presented by J. Gancarzewicz
[2]. It is also a generalization of a construction N of a classical linear connection
N(Γ,Λ) on P from a principal (right invariant) connection on a principal bundle
P →M by means of a classical linear connection Λ considered in [5, p. 415].

In the present paper we study the problem how to construct a classical linear
connection A(Γ,Λ,∆,Φ) on Y from a system (Γ,Λ,Φ,∆) consisting of a general
connection Γ on Y → M , a torsion free classical linear connection Λ on M , a
vertical parallelism Φ: Y ×M E → V Y and a linear connection ∆ on E →M .

In Section 2, modifying the torsion tensor field T or(Γ,Λ,Φ,∆) of the Kolář
connection (Γ,Λ,Φ,∆), the torsion field τΦ: Y →

∧2
V ∗Y ⊗ V Y of Φ and the

covariant differential D(Γ,∆)Φ: Y ×M E → V Y ⊗ T ∗M , we construct tensor fields
τi(Γ,Λ,Φ,∆) of type T ∗ ⊗ T ∗ ⊗ T on Y canonically depending on (Γ,Λ,Φ,∆),
i = 1, . . . , 12.

The main result of the present paper can be written in the form of the following
theorem.

Theorem A. If m ≥ 2 and n ≥ 3, any canonical construction A in question is of
the form

A(Γ,Λ,Φ,∆) = (Γ,Λ,Φ,∆) +
12∑
i=1

λiτi(Γ,Λ,Φ,∆)

for some (uniquely determined by A) real numbers λ1, . . . , λ12.

Classifications of constructions on connections has been studied in many papers,
e.g. [3], [1], e.t.c.

All manifolds considered in the paper are assumed to be Hausdorff, second
countable, without boundary, finite dimensional and smooth (of class C∞). Maps
between manifolds are assumed to be smooth (infinitely differentiable).
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1. Natural operators

Let FMm,n be the category of fibred manifolds with m-dimensional bases and
n-dimensional fibres and their fibred (local) diffeomorphisms. Let VBm,n be the
category of vector bundles with m-dimensional bases and n-dimensional fibres and
their (local) vector bundle isomorphisms.

Definition 1. A (gauge) FMm,n × VBm,n-natural operator A sending systems
(Γ,Λ,Φ,∆) consisting of general connections on fibred manifolds Y →M , torsion
free classical linear connections Λ on M , vertical parallelisms Φ: Y ×M E → V Y
on Y and linear connections ∆ on vector bundles E → M into classical linear
connections AY,E(Γ,Λ,Φ,∆) on Y is an FMm,n × VBm,n-invariant system of
regular operators

AY,E : Con(Y )× Conoclas(M)× Par(Y ×M E)× Conlin(E)→ Conclas(Y )

for any pair (Y,E) consisting of a FMm,n-object Y = (pY : Y → M) and a
VBm,n-object E = (pE : E → M) (the same base M), where Con(Y ) is the
set of general connections Γ on pY : Y → M , Conoclas(M) is the set of torsion
free classical linear connections Λ on M , Par(Y ×M E) is the set of vertical
parallelisms Φ: Y ×M E → V Y on Y , Conlin(E) is the set of linear connections ∆
on pE : E →M and Conclas(Y ) is the set of classical linear connections on Y .

Remark 1. The invariance ofAmeans that if (Γ,Λ,Φ,∆) ∈ Con(Y )×Conoclas(M)×
Par(Y ×M E) × Conlin(E) is (f, g)-related to (Γ1,Λ1,Φ1,∆1) ∈ Con(Y1)
×Conoclas(M1)×Par(Y1×M1E1)×Conlin(E1), where f : Y → Y1 is a FMm,n-map
covering f : M →M1 and g : E → E1 is a VBm,n-map covering also f : M →M1,
then AY,E(Γ,Λ,Φ,∆) and AY1,E1(Γ1,Λ1,Φ1,∆1) are f -related. A tuple (Γ,Λ,Φ,∆)
is (f, g)-related to (Γ1,Λ1,Φ1,∆1) if Γ is f -related to Γ1, Λ is f -related to Λ1, Φ is
(f, g)-related to Φ1 and ∆ is g-related to ∆1. In particular, Φ is (f, g)-related to
Φ1 if V f ◦ Φ = Φ1 ◦ (f ×f g).

Remark 2. The regularity of A means that AY,E transforms smoothly parametri-
zed families into smoothly parametrized families.

For simplicity, we will omit the indexes Y and E on AY,E .

Remark 3. One can show standardly, that if germy(Γ1) = germy(Γ),
germx(Λ1) = germx(Λ), germy(Φ1) = germy(Φ), germx(∆1) = germx(∆), y ∈ Yx,
x ∈ M , then A(Γ1,Λ1,Φ1,∆1)(y) = A(Γ,Λ,Φ,∆)(y). That is why, A is in fact
defined for locally defined (Γ,Λ,Φ,∆), too.

One can verify that the Kolář connection (Γ,Λ,Φ,∆) (mentioned in Introduction)
defines a natural operator A in the sense of Definition 1, where A(Γ,Λ,Φ,∆)
:= (Γ,Λ,Φ,∆).

So, to classify all natural operators in the sense of Definition 1 it suffices to
classify all natural operators in the sense of the following definition.
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Definition 2. A (gauge) FMm,n × VBm,n-natural operator A sending systems
(Γ,Λ,Φ,∆) consisting of general connections Γ on fibred manifolds Y →M , torsion
free classical linear connections Λ on M , vertical parallelisms Φ : Y ×E → V Y on Y
and linear connections ∆ on vector bundles E →M into tensor fields A(Γ,Λ,Φ,∆)
of type T ∗ ⊗ T ∗ ⊗ T on Y is an FMm,n × VBm,n-invariant system of regular
operators

A : Con(Y )× Conoclas(M)× Par(Y ×M E)× Conlin(E)→ T en(1,2)(Y
for any FMm,n-object Y → M and any VBm,n-object E → M (the same M),
where T en(1,2)(Y ) is the space of tensor fields of type ⊗2T ∗ ⊗ T on Y .

A simple example of a natural operator A in the sense of Definition 2 is given
by the torsion of the Kolář connection (Γ,Λ,Φ,∆) (mentioned above).

Any natural operator A in the sense of Definition 1 is of the form
A(Γ,Λ,Φ,∆) = (Γ,Λ,Φ,∆) +A1(Γ,Λ,Φ,∆) ,

where A1 is a (uniquely determined) natural operator in the sense of Definition 2.
That is why, from now on we study natural operators in the sense of Definition 2,
only. Several examples of natural operators in the sense of Definition 2 are presented
in the next section.

From now on, we can understand any natural operator A in the extended version
as in Remark 3.

2. The main examples of natural operators

Let pY : Y →M be a fibred manifold and pE : E →M be a vector bundle. Let
(Γ,Λ,Φ,∆) be a 4-tuple consisting of a general connection Γ on pY : Y → M , a
classical linear connection Λ on M , a vertical parallelism Φ: Y ×M E → V Y and
of a linear general connection ∆ on pE : E →M .

According to the usual Γ-decomposition TY = V Y ⊕Y HΓY we have the
decomposition

T ∗Y ⊗ TY = (V ∗Y ⊗ V Y )⊕Y (V ∗Y ⊗HΓY )
⊕Y

(
(HΓ)∗ ⊗ V Y

)
⊕Y

(
(HΓ)∗ ⊗HΓ) .

Let idHY be the tensor field of type T ∗⊗T on Y being the (HΓY )∗⊗HΓY -component
of the identity tensor field idTY on Y (the other 3 component of idHY are zero).
Let idV Y be the tensor field of type T ∗ ⊗ T on Y being the V ∗Y ⊗ V Y -component
of idTY (the other 3 components of idV Y are zero).

Quite similarly, we have the decomposition
T ∗Y ⊗ T ∗Y ⊗ TY = (V ∗Y ⊗ V ∗Y ⊗ V Y )⊕Y (V ∗Y ⊗ V ∗Y ⊗HΓY )

⊕Y (V ∗Y ⊗ (HΓY )∗ ⊗ V Y )⊕Y (V ∗Y ⊗ (HΓY )∗ ⊗HΓY )

⊕Y
(
(HΓY )∗ ⊗ V ∗Y ⊗ V Y

)
⊕Y

(
(HΓY )∗ ⊗ V ∗Y ⊗HΓY

)
⊕Y

(
(HΓY )∗ ⊗HΓY

)∗ ⊗ V Y )⊕Y
(
(HΓY )∗ ⊗ (HΓY )∗ ⊗HΓY

)
.
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Let T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆) be the (HΓY )∗ ⊗ V ∗Y ⊗ V Y -component of the
torsion tensor field T or(Γ,Λ,Φ,∆) of the Kolář connection (Γ,Λ,Φ,∆) (men-
tioned in Introduction). This components can be treated as the tensor field
of type T ∗ ⊗ T ∗ ⊗ T on Y (the other 7 components of it are zero). Taking
contraction C1

2 we produce tensor field C1
2T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆) of type T ∗

on Y . Let T orH∗⊗H∗⊗V )(Γ,Λ,Φ,∆) be the (HΓY )∗ ⊗ (HΓY )∗ ⊗ V Y -component
of T or(Γ,Λ,Φ,∆). Thus we have the following tensor fields of type T ∗ ⊗ T ∗ ⊗ T
on Y canonically depending on (Γ,Λ,Φ,∆) (i.e. we have the corresponding natural
operators in the sense of Definition 2).

Example 1. τ1(Γ,Λ,Φ,∆) := T orH∗⊗H∗⊗V (Γ,Λ,Φ,∆).

Example 2. τ2(Γ,Λ,Φ,∆) := T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆).

Example 3. τ3(Γ,Λ,Φ,∆) := idHY ⊗C1
2T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆).

Example 4. τ4(Γ,Λ,Φ,∆) := C1
2T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆)⊗ idHY .

Example 5. τ5(Γ,Λ,Φ,∆) := C1
2T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆)⊗ idV Y .

Example 6. τ6(Γ,Λ,Φ,∆) := idV Y ⊗C1
2T orH∗⊗V ∗⊗V (Γ,Λ,Φ,∆).

In the above examples (and from now on) we identify tensor fields τ of type
T ∗ ⊗ T ⊗ T ∗ with tensor fields τ̃ of type T ∗ ⊗ T ∗ ⊗ T and with tensor fields τ
of type T ⊗ T ∗ ⊗ T ∗ by τ(ω,X1, X2) = τ̃(X1, X2, ω) = τ(X1, ω,X2). Moreover,
tensor fields of types T ⊗ T ∗ ⊗ T ∗ or T ∗ ⊗ T ⊗ T ∗, we will always understand as
the equivalent ones of type T ∗ ⊗ T ∗ ⊗ T . That is why, the contraction C1

2 is clear.

In general, if P : N × V → TN is a parallelism on a manifold N and v ∈ N ,
the vector field ṽ : N → TN , ṽ(z) = P (z, v) is called the constant vector field
corresponding to v. One can show easily that there is a unique classical linear
connection ∇ = ∇P on N such that ∇ṽw̃ = 0 for any constant vector fields on N .
The torsion tensor of ∇ will be denoted by τ(P ) and called the torsion tensor field
of P (thus τ(P )(X1, X2) = ∇X1X2 −∇X2X1 − [X1, X2]). If Φ: Y ×M E → V Y is
a vertical parallelism, we have the torsion tensor field τΦ of Φ given by

τΦ =
⋃
x∈M

τ(Φx) : Y →
2∧
V ∗Y ⊗ V Y .

(The concept of a vertical parallelism and its torsion was introduced by I. Kolář
in [K].) We can treat τΦ as the tensor field of type T ∗ ⊗ T ∗ ⊗ T on Y (the other
components of it in the decomposition we define to be 0). Thus we have the following
tensor fields of type T ∗ ⊗ T ∗ ⊗ T on Y canonically depending on (Γ,Λ,Φ,∆).

Example 7. τ7(Γ,Λ,Φ,∆) = τΦ.

Example 8. τ8(Γ,Λ,Φ,∆) := idHY ⊗C1
2τΦ.

Example 9. τ9(Γ,Λ,Φ,∆) := C1
2τΦ⊗ idHY .

Example 10. τ10(Γ,Λ,Φ,∆) := idV Y ⊗C1
2τΦ.
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Example 11. τ11(Γ,Λ,Φ,∆) := C1
2τΦ⊗ idV Y .

By Section 3 (Corollary 1), if Λ is torsion free, then (eventually modulo si-
gnum) τΦ = T orV ∗⊗V ∗⊗V (Γ,Λ,Φ,∆), the V ∗Y ⊗ V ∗Y ⊗ V Y -component of
T or(Γ,Λ,Φ,∆) in the Γ-decomposition.

In general, a Lie derivative of an arbitrary map g : N → N1 with respect to
vector fields ξ : N → TN and η : N1 → TN1 is the map

L(ξ,η)g = Tg ◦ ξ − η ◦ g : N → TN1 .

If we have another fibred manifold Z → M with general connection Ω and a
base preserving morphism f : Y → Z, then the covariant derivative DΓ,Ωf : Y →
V Z ⊗ T ∗M is defined by

(DΓ,Ωf)(ξ) := L(Γξ,Ωξ)f .

Consider Φ: Y ×M E → V Y . According to [5, p.55], Γ induces a general connection
VΓ on V Y → M . Further we construct the product connection Γ×∆ on Y ×M
E. Then DΓ×∆,VΓΦ: Y ×M E → V V Y ⊗ T ∗M . The values lie in a sub-bundle
characterized by V π = 0, where π : V Y → Y is the bundle projection. This
sub-bundle coincides with V Y ×Y V Y . The covariant differential D(Γ,∆)Φ: Y ×M
E → V Y ⊗ T ∗M is the second component of DΓ×∆,VΓΦ. (This construction of the
covariant differential was proposed by I. Kolář in [4].)

We can consider the covariant differential as the corresponding map D(Γ,∆)Φ:
(Y ×M E) ×M TM → V Y . Then we define the modified covariant differential
D̃(Γ,∆)Φ: Y → V ∗Y ⊗ T ∗Y ⊗ V Y by

(D̃(Γ,∆)Φ)(y)(X1, X2) := D(Γ,∆)Φ(Φ−1(X1), TpY (X2)) ∈ VyY ,

X1 ∈ VyY , X2 ∈ TyY . We can treat it as the tensor field of type T ∗ ⊗ T ∗ ⊗ T on
Y (the other parts of it in the decomposition we define to be 0). Thus we have the
following tensor field of type T ∗⊗T ∗⊗T on Y canonically induced by (Γ,Λ,Φ,∆).

Example 12. τ12(Γ,Λ,Φ,∆) := D̃(Γ,∆)Φ.

By Section 3 (Corollary 2), if Λ is torsion free, then (eventually modulo si-
gnum) τ12(Γ,Λ,Φ,∆) = T orV ∗⊗H∗⊗V (Γ,Λ,Φ,∆), the V ∗Y ⊗ (HΓY )∗ ⊗ V Y -part
of T or(Γ,Λ,Φ,∆) in the Γ-decomposition.

3. Estimation of dimension of the vector space of natural operators

Let x1, . . . , xm be the usual coordinates on Rm. Let Rm,n be the trivial bundle
over Rm with the standard fiber Rn and x1, . . . , xm, y1, . . . , yn be the usual fiber
coordinates on Rm,n. Let Rm,n be also the trivial vector bundle over Rm and
x1, . . . , xm, v1, . . . , vn be the usual vector bundle coordinates on Rm,n.

Let

(1) Γo =
m∑
i=1

dxi ⊗ ∂

∂xi
, Λo = (0) , Φo =

n∑
p=1

vp
∂

∂yp
, ∆o =

m∑
i=1

dxi ⊗ ∂

∂xi
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be the trivial general connection on Rm,n, the torsion free flat classical linear connec-
tion on Rm, the canonical parallelism on Rm,n and the trivial linear connection on
Rm,n, respectively.

In this section we study a natural operator A in the sense of Definition 2.

From Corollary 19.8 in [5], we get immediately the following proposition.

Proposition 1. Let pY : Y → M be an FMm,n-object and pE : E → M be
a VBm,n-object, y ∈ Yx, x ∈ M . Let (Γ,Λ,Φ,∆) ∈ Con(Y ) × Conoclas(M) ×
Par(Y ×M E)× Conlin(E). There exists a finite number r = r(Γ,Λ,Φ,∆, y) such
that for any (Γ1,Λ1,Φ1,∆1) ∈ Con(Y )×Conoclas(M)×Par(Y ×M E)×Conlin(E)
we have the following implication

(jryΓ1 =jryΓ , jrxΛ1 = jrxΛ , jryΦ1 = jryΦ , jrx∆1 = jrx∆)
⇒ A(Γ1,Λ1,Φ1,∆1)(y) = A(Γ,Λ,Φ,∆)(y) .

It is clear that A is determined by the values

A(Γ,Λ,Φ,∆)(y) ∈ T ∗y Y ⊗ T ∗y Y ⊗ TyY

for fibred manifolds pY : Y → M with m-dimensional bases and n-dimensional
fibres, vector bundles pE : E →M with n-dimensional fibres, general connections
Γ on pY : Y → M , torsion free classical linear connections Λ on M , vertical
parallelisms Φ: Y ×M E → V Y , linear connections ∆ on pE : E →M and y ∈ Yx,
x ∈M .

Using the invariance of A with respect to (respective) fibred manifold charts and
vector bundle charts and Proposition 1, we can assume E = Y = Rm,n, y = (0, 0),

(2) Γ = Γo +
∑

F pj;αβx
αyβdxj ⊗ ∂

∂yp
,

where the sum is over all m-tuples α and all n-tuples β of non-negative integers
and j = 1, . . . ,m and p = 1, . . . , n with 1 ≤ |α| + |β| ≤ K (i.e. we can assume
F pj;(0)(0) = 0),

(3) Λ = (
∑

Λijk;γx
γ)i,j,k=1,...,m , Λijk;γ = Λikj;γ ,

where the sums are over all m-tuples γ of non-negative integers with 1 ≤ |γ| ≤ K
(i.e. we can assume Λijk;(0) = 0),

(4) Φ = Φo +
∑

asq;δσx
δyσvq

∂

∂ys
,

where the sum is over all m-tuples δ and all n-tuples σ of non-negative integers
and s, q = 1, . . . , n with 1 ≤ |δ| + |σ| ≤ K (i.e. we can assume asq;(0)(0) = 0) (we
remark that such Φ can not be defined globally (it may not be a diffeomorphism
Rm,n ×Rm Rm,n=̃V Rm,n but it is defined locally on some neighborhood of (0, 0)
(it is a diffeomorphism U ×U Rm,n|U =̃V U)),

(5) ∆ = ∆o +
∑

∆p
jq;ρx

ρvqdxj ⊗ ∂

∂vp
,
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where the sum is over all m-tuples ρ of non-negative integers and j = 1, . . . ,m and
p, q = 1, . . . , n with 0 ≤ |ρ| ≤ K, where K is an arbitrary positive integer.

Given a positive integerK we define a smooth (asA is regular) mapAK : Rn(K) →
Rq = T ∗(0,0)R

m,n ⊗ T ∗(0,0)R
m,n ⊗ T(0,0)Rm,n by

(6) AK((F pj;αβ), (Λijk;γ), (asq;δσ), (∆i
jq;ρ)) := A(Γ,Λ,Φ,∆)(0, 0) ,

where Γ, Λ, Φ, ∆ are as in (2)–(5).

Clearly, A is determined by the collection of all AK , K = 1, 2, . . . .

Using the invariance of A with respect to (ϕt × φt, ϕt × φt), ϕt = t idRm ,
φt = t idRn , t > 0, we get the homogeneous condition

tAK((F pj;αβ), (Λijk;γ), (asq;δσ), (∆p
jq;ρ))

= AK((t|α|+|β|F pj;αβ), (t|γ|+1Λijk;γ), (t|δ|+|σ|asq;δσ), (t|ρ|+1∆p
jq;ρ)) .

By the homogeneous function theorem, from this homogeneity condition we obtain.

Lemma 1. AK is independent of F pj;αβ with |α|+|β| ≥ 2, A is independent of Λijk;γ
with |γ| ≥ 1, AK is independent of asq;δσ with |δ|+ |σ| ≥ 2 and AK is independent
of ∆p

jq;ρ with |ρ| ≥ 1. Even, AK is a linear combination with real coefficients
of ∆i

jk;(0)(0) and F pj;αβ, asq;δσ with |α| + |β| = 1, |δ| + |σ| = 1, i, j, k = 1, . . . ,m,
p, q, s = 1, . . . , n.

In particular, AK(Γo,Λo,Φo,∆o)(0, 0) = 0.

Even, we have proved the following fact.

Proposition 2. Any natural operator A in the sense of Definition 2 is of order
not more than 1.

Using these facts, we prove the following lemma.

Lemma 2. Let m ≥ 2 and n ≥ 2. A natural operator A in the sense of Definition 2
is fully determined by the collection of values

A1 := A(Γo + x2dx1 ⊗ ∂

∂y1 ,Λ
o,Φo,∆o)(0, 0) ,(7)

A2 := A(Γo + y1dx1 ⊗ ∂

∂y1 ,Λ
o,Φo,∆o)(0, 0) ,(8)

A3 := A(Γo,Λo,Φo + v2y1 ∂

∂y1 ,∆
o)(0, 0) ,(9)

where Γo, Λo, Φo, ∆o are defined in (1).

Proof. (a) We are going to observe that the value
A(Γo + xjodxio ⊗ ∂

∂ypo ,Λ
o,Φo,∆o)(0, 0) is determined by A1.

If io = jo, by the invariance of A with respect to(
(x1, . . . , xm, y1, . . . , ypo + 1

2(xio)2, . . . , yn), (x1, . . . , xm, v1, . . . , vn)
)
,
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from A(Γo,Λo,Φo,∆o)(0, 0) = 0 we get A(Γo+xiodxio⊗ ∂
∂ypo ,Λ

o,Φo,∆o)(0, 0) = 0.

If io 6= jo, there exists a respective permutation of coordinates sending Γo +
x2dx1 ⊗ ∂

∂y1 into Γo + xjodxio ⊗ ∂
∂ypo and preserving Λo, Φo, ∆o. Then using the

invariance of A with respect to this permutation, we end the observation.

(b) We are going to observe that A2 determines the value
A(Γo + yqodxio ⊗ ∂

∂ypo ,Λ
o,Φo,∆o)(0, 0).

By the invariance of A with respect to

(f, g) =
(
(x1, . . . , xm, y1 + y2, y2, . . . , ym), (x1, . . . , xm, v1 + v2, v2, . . . , vn)

)
we see A(Γo + (y1 − y2)dx1 ⊗ ∂

∂y1 ,Λo,Φo,∆o)(0, 0) is the image of A2 by (f, g),
and then it is determined by A2. Therefore A(Γo + y2dx1⊗ ∂

∂y1 ,Λo,Φo,∆o)(0, 0) =
A2 −A(Γo + (y1 − y2)dx1 ⊗ ∂

∂y1 ,Λo,Φo,∆o)(0, 0) is determined by A2.
Now, using the invariance of A with a respective permutation of coordinates, we

end the observation in this case.

(c) We are going to observe that A3 determines the value
A(Γo,Λo,Φo + vqoyso ∂

∂ypo ,∆
o)(0, 0).

If p 6= 1, then(
(x1, . . . , xm, y1 + yp, y2, . . . , yn), (x1, . . . , xm, v1 + vp, v2, . . . , vn)

)
preserves Γo,Λo,∆o and sends Φo+v2y1 ∂

∂y1 into Φo+v2(y1−yp) ∂
∂y1 . Then (similarly

as in the case (b) of the proof) A(Γo,Λo,Φo+v2yp ∂
∂y1 ,∆o)(0, 0) is determined by A3.

In particular A(Γo,Λo,Φo+v2y2 ∂
∂y1 ,∆o)(0, 0) and A(Γo,Λo,Φo+v2y3 ∂

∂y1 ,∆o)(0, 0)
are determined by A3.

By the invariance of A with respect to(
(x1, . . . , xm, y1 + y1y2, y3, . . . , yn), (x1, . . . , xm, v1, . . . , vn)

)
from A(Γo,Λo,Φo,∆o)(0, 0) = 0 we get A(Γo,Λo,Φo+v2y1 ∂

∂y1 +v1y2 ∂
∂y1 ,∆o)(0, 0)

= 0 (because Φo is mapped into Φo + v2y1 ∂
∂y1 + v1y2 ∂

∂y1 + . . . , where the dots
have the 1-jet equal to 0, and Γo, Λo, ∆o and A are preserved, and A is of order
not more than 1), i.e. A(Γo,Λo,Φo + v1y2 ∂

∂y1 ,∆o)(0, 0) is determined by A3 (it is
−A3). By the invariance of A with respect to(

(x1, . . . , xm, y1 + 1
2(y1)2, y2, . . . , yn), (x1, . . . , xm, v1, . . . , vn)

)
,

from A(Γo,Λo,Φo,∆o) = 0 we get A(Γo,Λo,Φo + v1y1 ∂
∂y1 ,∆o)(0, 0) = 0.

Now, using the invariance of A with respect to a respective permutation of
coordinates, we end the observation.

(d) Let us denote

(10) A4 := A(Γo,Λo,Φo,∆o + v1dx1 ⊗ ∂

∂v1 )(0, 0) .



232 W. M. MIKULSKI

We are going to observe that A(Γo,Λo,Φo,∆o + vqodxio ⊗ ∂
∂vpo )(0, 0) is determined

by A4.
Using the invariance of A with respect to

(f, g) =
(
(x1, . . . , xm, y1 + y2, y2, . . . , yn), (x1, . . . , xm, v1 + v2, v2, . . . , vn)

)
we deduce that A′ = A(Γo,Λo,Φo,∆o + (v1 − v2)dx1 ⊗ ∂

∂v1 )(0, 0) is determined by
A4 (it is image of A4 by (f, g)). So, A(Γo,Λo,Φo,∆o+v2dx1 ∂

∂v1 )(0, 0) is determined
by A4 (it is A4 −A′).

Now, using the invariance of A with respect to a respective permutation of
coordinates, we end the observation.

(e) We are going to observe that A4 determines the value
A(Γo,Λo,Φo + xiovqo ∂

∂vpo ,∆
o)(0, 0).

Using the invariance of A with respect to(
(x1, . . . , xm, y1, . . . , yn), (x1, . . . , xm, v1, . . . , vpo + xiovqo , . . . , vn)

)
,

since (x1, . . . , xm, v1, . . . , vpo+xiovqo , . . . , vn)−1 = (x1, . . . , xm, v1, . . . , vpo−xiovqo+
ϕ̃(xio)vqo , . . . , vn) with j1

0 ϕ̃ = 0 (if po 6= qo, ϕ̃ = 0), from A(Γo,Λo,Φo,∆o)(0, 0) = 0
we get

A
(

Γo,Λo,Φo − xiovqo ∂

∂ypo
,∆o + vqodxio ⊗ ∂

∂vpo

)
(0, 0) = 0 ,

i.e. A(Γo,Λo,Φo + xiovqo ∂
∂ypo ,∆

o)(0, 0) = A(Γo,Λo,Φo,∆o + vqodxio ⊗ ∂
∂vqo )(0, 0)

is determined by A4 because of the part (d) of the proof. In particular (for
io = 1 , po = 1 , qo = 1), we proved

(11) A4 = A
(

Γo,Λo,Φo + x1v1 ∂

∂y1 ,∆
o
)

(0, 0) .

(g) We are going to prove that A4 is determined by A2.
Using the invariance of A with respect to(

(x1, . . . , xm, y1 + x1y1, y2, . . . , yn), (x1, x2, . . . , xm, v1, . . . , vn)
)

from A(Γo,Λo,Φo,∆o) = 0 we get

A
(

Γo + y1dx1 ⊗ ∂

∂y1 ,Λ
o,Φo + x1v1 ∂

∂y1 ,∆
o
)

(0, 0) = 0 .

Hence A4 = −A2 because of (11).

The proof of Lemma 2 is complete. �

Now, we prove the following lemma.

Lemma 3. Let m ≥ 2 and n ≥ 3. Let A1, A2, A3 be the values (7)–(9) from
Lemma 2. There are real numbers a1, . . . , a12 such that

(12) A1 = a1

(
d(0,0)x

2 ⊗ d(0,0)x
1 ⊗ ∂

∂y1
|(0,0)

− d(0,0)x
1 ⊗ d(0,0)x

2 ⊗ ∂

∂y1
|(0,0)

)
,
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A2 = a2

n∑
p=1

d(0,0)x
1 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)

+ a3

n∑
p=1

d(0,0)y
p ⊗ d(0,0)x

1 ⊗ ∂

∂yp |(0,0)

+ a4d(0,0)x
1 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

+ a5d(0,0)y
1 ⊗ d(0,0)x

1 ⊗ ∂

∂y1
|(0,0)

+ a6

m∑
i=1

d(0,0)x
1 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)

+ a7

m∑
i=1

d(0,0)x
i ⊗ d(0,0)x

1 ⊗ ∂

∂xi |(0,0)
,(13)

A3 = a8

n∑
p=1

d(0,0)y
p ⊗ d(0,0)y

2 ⊗ ∂

∂yp |(0,0)

+ a9

n∑
p=1

d(0,0)y
2 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)

+ a10

m∑
i=1

d(0,0)x
i ⊗ d(0,0)y

2 ⊗ ∂

∂xi |(0,0)

+ a11

m∑
i=1

d(0,0)y
2 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)

+ a12

(
d(0,0)y

2 ⊗ d(0,0)y
1 ⊗ ∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

)
.(14)

Proof. a. By the invariance of A with respect to

(15)
(
(t1x1, . . . , tmxm, τ1y1, . . . , τnyn), (t1x1, . . . , tmxm, τ1v1, . . . , τnvn)

)
for t1 > 0, . . . , tm > 0, τ1 > 0, . . . , τn > 0 we get immediately

A1 = b1d(0,0)x
2 ⊗ d(0,0)x

1 ∂

∂y1
|(0,0)

+ b2d(0,0)x
1 ⊗ d(0,0)x

2 ∂

∂y1
|(0,0)
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for some real numbers b1, b2. But by the invariance of A with respect to(
(x1, . . . , xm, y1 + x1x2, y3, . . . , yn), (x1, . . . , xm, v1, . . . , vn)

)
from A(Γo,Λo,Φo,∆o)(0, 0) = 0 we get

A
(

Γo + x2dx1 ⊗ ∂

∂y1 + x1dx2 ⊗ ∂

∂y1 ,Λ
o,Φo,∆o

)
(0, 0) = 0 .

Therefore b1 = −b2. We define a1 := b1 = −b2. That is why, formula (12) holds.

b. By the invariance of A with respect to (15) we get immediately

A2 =
n∑
p=1

bpd(0,0)y
p ⊗ d(0,0)x

1 ⊗ ∂

∂yp |(0,0)

+
n∑
p=1

cpd(0,0)x
1 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)

+
m∑
i=1

did(0,0)x
1 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)

+
m∑
i=1

eid(0,0)x
i ⊗ d(0,0)x

1 ⊗ ∂

∂xi |(0,0)
.

Next, by the invariance of A with respect to respective permutation of coor-
dinates, we deduce b2 = · · · = bn, c2 = · · · = cn, d2 = · · · = dm, e2 = · · · = em.
Then

A2 = a2

n∑
p=1

d(0,0)x
1 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)

+ a3

n∑
p=1

d(0,0)y
p ⊗ d(0,0)x

1 ⊗ ∂

∂yp |(0,0)

+ a4d(0,0)x
1 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

+ a5d(0,0)y
1 ⊗ d(0,0)x

1 ⊗ ∂

∂y1
|(0,0)

+ a6

m∑
i=1

d(0,0)x
1 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)

+ a7

m∑
i=1

d(0,0)x
i ⊗ d(0,0)x

1 ⊗ ∂

∂xi |(0,0)

+ bd(0,0)x
1 ⊗ d(0,0)x

1 ⊗ ∂

∂x1 |(0,0)
.

Then by the invariance of A with respect to(
(x1, x2 + x1, x3, . . . , xm, y1, . . . , yn), (x1, x2 + x1, x3, . . . , xm, v1, . . . , vn)

)
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from the last equality we get b = 0. That is why, formula (13) is true.

c. By the invariance of A with respect to (15) we get immediately

A3 =
n∑
p=1

bpd(0,0)y
2 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)

+
n∑
p=1

cpd(0,0)y
p ⊗ d(0,0)y

2 ⊗ ∂

∂yp |(0,0)

+
m∑
i=1

did(0,0)y
2 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)

+
m∑
i=1

eid(0,0)x
i ⊗ d(0,0)y

2 ⊗ ∂

∂xi |(0,0)
.

Then by the invariance of A with respect to respective permutation of coordinates,
we deduce b3 = · · · = bn, c3 = · · · = cn, d1 = · · · = dm and e1 = · · · = em. Then

A3 = λ1d(0,0)y
2 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

+ λ2d(0,0)y
1 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

+ λ3d(0,0)y
2 ⊗ d(0,0)y

2 ⊗ ∂

∂y2
|(0,0)

+ λ4

n∑
p=3

d(0,0)y
p ⊗ d(0,0)y

2 ⊗ ∂

∂yp |(0,0)

+ λ5

n∑
p=3

d(0,0)y
2 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)

+ λ6

m∑
i=1

d(0,0)x
i ⊗ d(0,0)y

2 ⊗ ∂

∂xi |(0,0)

+ λ7

m∑
i=1

d(0,0)y
2 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)
.(16)

Then by the invariance of A with respect to(
(x1, . . . , xm, y1 − y2, . . . , yn), (x1, . . . , xm, v1 − v2, . . . , vn)

)
from (16), we deduce
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A3 +A(ΓoΛo,Φo + v2y2 ∂

∂y1 ,∆
o)(0, 0)

= A3 + λ1d(0,0)y
2 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

+ λ2d(0,0)y
2 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

− λ3d(0,0)y
2 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

.

On the other hand, by the invariance of A with respect to(
(x1, . . . , xm, y1 + 1

2(y2)2, y2, . . . , yn), (x1, . . . , xm, v1, . . . , vn)
)

from A(Γo,Λo,Φo,∆o)(0, 0) = 0, we obtain

A
(

Γo,Λo,Φo + v2y2 ∂

∂y1 ,∆
o
)

(0, 0) = 0 .

So, λ1 + λ2 − λ3 = 0.

From the invariance of A with respect to(
(x1, . . . , xm, y1 − y3, y2, . . . , yn), (x1, . . . , xm, v1 − v3, v2, . . . , vn)

)
(we assume n ≥ 3) from (16) we get (after cancelling A3)

A
(

Γo,Λo,Φo + v2y3 ∂

∂y1 ,∆
o
)

(0, 0) = (λ1 − λ5)d(0,0)y
2 ⊗ d(0,0)y

3 ⊗ ∂

∂y1
|(0,0)

+ (λ2 − λ4)d(0,0)y
3 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

.

Then by the invariance of A with respect to the switching (y2 and y3) and (v2 and
v3) we get

A
(

Γo,Λo,Φo + v3y2 ∂

∂y1

)
(0, 0) = (λ1 − λ5)d(0,0)y

3 ⊗ d(0,0)y
2 ⊗ ∂

∂y1
|(0,0)

+ (λ2 − λ4)d(0,0)y
2 ⊗ d(0,0)y

3 ⊗ ∂

∂y1
|(0,0)

.

On the other hand by the invariance of A with respect to(
(x1, . . . , xm, y1 + y2y3, y2, . . . , yn), (x1, . . . , xm, v1, . . . , vn)

)
from A(Γo,Λo,Φo,∆o)(0, 0) = 0 we get

A
(

Γo,Λo,Φo + y3v2 ∂

∂y1 + y2v3 ∂

∂y1 ,∆
o
)

(0, 0) = 0 .
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So, λ1 − λ5 = −(λ2 − λ4).

That is why, formula (14) holds.
The proof of the lemma is complete. �

From Lemma 3 it follows immediately the following proposition.

Proposition 3. If m ≥ 2 and n ≥ 3, the dimension of the vector space of all
natural operators in the sense of Definition 2 is of the dimension not more than 12.

4. Linear independence of natural operators from Examples 1–12

We prove the following proposition.

Proposition 4. Let m ≥ 2 and n ≥ 2. The natural operators τi (i = 1, . . . , 12) in
the sense of Definition 2 from Examples 1–12 are linearly independent.

Proof. By Lemma 2, it is sufficient to study the values (7)–(9) for A = τi,
i = 1, . . . , 12. To compute these values, we use Proposition 1 in [4].

a. The case Ψ = (Γo + x2dx1 ⊗ ∂
∂y1 ,Λo,Φo,∆o).

In this case, we have (in the notation of Proposition 1 in [4]) F 1
1 (x, y) = x2 and

other F pi (x, y) = 0, Λkij = 0, ∂a
p
s

∂xj = 0, ∂a
p
s

∂yq = 0, ∆r
sj = 0. Then (by Proposition 1 in

[4]) dη1 = ξ1dx2 and other dηp = 0, and dξi = 0. Then (modulo signum)

T or(Ψ)(0, 0) = d(0,0)x
1 ⊗ d(0,0)x

2 ⊗ ∂

∂y1
|(0,0)

− d(0,0)x
2 ⊗ d(0,0)x

1 ⊗ ∂

∂y1
|(0,0)

.

Hence (modulo signum)

τ1(Ψ)(0, 0) = d(0,0)x
1 ⊗ d(0,0)x

2 ⊗ ∂

∂y1
|(0,0
− d(0,0)x

2 ⊗ d(0,0)x
1 ⊗ ∂

∂y1
|(0,0)

and τi(Ψ)(0, 0) = 0 for i = 2, . . . , 6.
By the coordinate expression of the torsion tensor of vertical parallelism in

Section 3 of [4], τΦo(0, 0) = 0. Then τi(Ψ)(0, 0) = 0 for i = 7, . . . , 11.
By the coordinate expression of the covariant differential in Section 4 in [4], we

have τ12(0, 0)(Ψ) = 0.

b. The case Ψ = (Γo + y1dx1 ⊗ ∂
∂y1 ,Λo,Φ0,∆o).

Now, by Proposition 1 in [4], dη1 = ξ1dy1 and other dηp = 0, and dξi = 0. Then
(modulo signum)

T or(Ψ)(0, 0) = d(0,0)x
1 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)x

1 ⊗ ∂

∂y1
|(0,0)

.
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Then τ1(Ψ)(0, 0) = 0 and (modulo signum)

τ2(Ψ)(0, 0) = d(0,0)x
1 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

,

τ3(Ψ)(0, 0) =
m∑
i=1

d(0,0)x
i ⊗ d(0,0)x

1 ⊗ ∂

∂xi |(0,0)
,

τ4(Ψ)(0, 0) =
m∑
i=1

d(0,0)x
1 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)
,

τ5(Ψ)(0, 0) =
n∑
p=1

d(0,0)x
1 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)
,

τ6(Ψ)(0, 0) =
n∑
p=1

d(0,0)y
p ⊗ d(0,0)x

1 ⊗ ∂

∂yp |(0,0)
.

Since τΦo(0, 0) = 0 (see the case a of the proof), τi(Ψ)(0, 0) = 0 for i = 7, . . . , 11.

By the coordinate expression of the covariant differential,

τ12(Ψ)(0, 0) = −d(0,0)y
1 ⊗ d(0,0)x

1 ⊗ ∂

∂y1
|(0,0)

.

c. The case Ψ = (Γo,Λo,Φo + v2y1 ∂
∂y1 ,∆o).

By Proposition 1 in [4], dη1 = η2dy1 and dηp = 0 for other p, and dξi = 0. Then
(modulo signum)

T or(Ψ)(0, 0) = d(0,0)y
2 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

.

Then τi(Ψ)(0, 0) = 0 for i = 1, . . . , 6.

By Section 3 of [4], one can compute

τ
(

Φo + v2y1 ∂

∂y1

)
(0, 0) = d(0,0)y

2 ⊗ d(0,0)y
1 ⊗ ∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

.

Then

τ7(Ψ)(0, 0) = d(0,0)y
2 ⊗ d(0,0)y

1 ⊗ ∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)y

2 ⊗ ∂

∂y1
|(0,0)

,

τ8(Ψ)(0, 0) =
m∑
i=1

d(0,0)x
i ⊗ d(0,0)y

2 ⊗ ∂

∂xi |(0,0)
,
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τ9(Ψ)(0, 0) =
m∑
i=1

d(0,0)y
2 ⊗ d(0,0)x

i ⊗ ∂

∂xi |(0,0)
,

τ10(Ψ)(0, 0) =
n∑
p=1

d(0,0)y
p ⊗ d(0,0)y

2 ⊗ ∂

∂yp |(0,0)
,

τ11(Ψ)(0, 0) =
n∑
p=1

d(0,0)y
2 ⊗ d(0,0)y

p ⊗ ∂

∂yp |(0,0)
.

By the coordinate expression of the covariant differential, τ12(Ψ)(0, 0) = 0.

Now, it is easily seen that the natural operators τ1, . . . , τ12 are linearly inde-
pendent. The proof of Proposition 4 is complete. �

Else, using Lemma 2, from the proof of Proposition 3 we have the following
facts.

Corollary 1. If Λ is torsion free, then (eventually modulo signum)
τΦ = T orV

∗⊗V ∗⊗V (Γ,Λ,Φ,∆) ,
where T orV ∗⊗V ∗⊗V (Γ,Λ,Φ,∆) is the V ∗Y ⊗ V ∗Y ⊗ V Y -part of T or(Γ,Λ,Φ,∆)
in the Γ-decomposition of Section 2.

Corollary 2. If Λ is torsion free, then (eventually modulo signum)
τ12(Γ,Λ,Φ,∆) = T orV

∗⊗H∗⊗V (Γ,Λ,Φ,∆) ,
where T orV ∗⊗H∗⊗V (Γ,Λ,Φ,∆) is the V ∗Y ⊗(HΓY )∗⊗V Y -part of T or(Γ,Λ,Φ,∆)
in the Γ-decomposition of Section 2.

5. The main result

From Propositions 3 and 4 it follows the main theorem of the paper.

Theorem 1. Let m ≥ 2 and n ≥ 3. Any natural operator A in the sense of
Definition 1 is of the form

AY,E(Γ,Λ,Φ,∆) = (Γ,Λ,Φ,∆) +
12∑
i=1

λiτi(Γ,Λ,Φ,∆)

for some (uniquely determined by A) real numbers λi, where τi are the operators
described in Examples 1–12 and (Γ,Λ,Φ,∆) is the connection constructed by
I. Kolář in [4].
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