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ON SOME ALGEBRAIC IDENTITIES

AND THE EXTERIOR PRODUCT OF DOUBLE FORMS

Mohammed Larbi Labbi

Abstract. We use the exterior product of double forms to free from co-
ordinates celebrated classical results of linear algebra about matrices and
bilinear forms namely Cayley-Hamilton theorem, Laplace expansion of the
determinant, Newton identities and Jacobi’s formula for the determinant. This
coordinate free formalism is then used to easily generalize the previous results
to higher multilinear forms namely to double forms.
In particular, we show that the Cayley-Hamilton theorem once applied to
the second fundamental form of a hypersurface is equivalent to a linearized
version of the Gauss-Bonnet theorem, and once its generalization is applied to
the Riemann curvature tensor (seen as a (2, 2) double form) is an infinitisimal
version of the general Gauss-Bonnet-Chern theorem. In addition to that, we
show that the general Cayley-Hamilton theorems generate several universal
curvature identities. The generalization of the classical Laplace expansion of
the determinant to double forms is shown to lead to new general Avez type
formulas for all Gauss-Bonnet curvatures.
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1. Preliminaries: The Algebra of Double Forms

1.1. Definitions and basic properties. For the convenience of the reader, we
start by recalling some basic facts about the exterior product of double forms. For
further study and for the proofs, the reader is invited to consult [7, 9].
Let (V, g) be an Euclidean real vector space of dimension n. In the following we
shall identify whenever convenient (via their Euclidean structures), the vector
spaces with their duals. Let ΛV ∗ =

⊕
p≥0 ΛpV ∗ (resp. ΛV =

⊕
p≥0 ΛpV ) denotes

the exterior algebra of V ∗ (resp. V ). Considering tensor products, we define the
space of double forms as

D = ΛV ∗ ⊗ ΛV ∗ =
⊕
p,q≥0

Dp,q ,

where Dp,q = ΛpV ∗ ⊗ ΛqV ∗. The space D is naturally a bi-graded associative
algebra, where for ω1 = θ1 ⊗ θ2 ∈ Dp,q and ω2 = θ3 ⊗ θ4 ∈ Dr,s, the multiplication
is given by
(1) ω1ω2 = (θ1 ⊗ θ2)(θ3 ⊗ θ4) = (θ1 ∧ θ3)⊗ (θ2 ∧ θ4) ∈ Dp+r,q+s .

Where ∧ denotes the standard exterior product on the associative exterior al-
gebra ΛV ∗. It results directly from the definition that the exterior product is
(anti)-commutative in the following sense

(2) ω1ω2 = (−1)pr+qsω2 · ω1 .
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A (p, q) double form is by definition an element of the tensor product Dp,q =
ΛpV ∗⊗ΛqV ∗. It can be identified canonically with a bilinear form ΛpV ×ΛqV → R,
which in turn can be seen as a multilinear form which is skew symmetric in the
first p-arguments and also in the last q-arguments.
The above multiplication in D is called the exterior product of double forms. It
turns out that the exterior product of two ordinary bilinear forms on V coincides
with the celebrated Kulkarni-Nomizu product of bilinear forms. Furthermore, the
k-th exterior power of a bilinear form h on V is a double form of degree (k, k) that
is given by the determinant as follows

(3) hk(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk) = k! det[h(xi, yj)] .

In particular, for h = g and for each 1 ≤ k ≤ n, gk

k! coincides with the canonical
inner product on ΛkV . The former canonical inner product extends to an inner
product on the exterior algebra of V , which in turn can be extended in a natural way
to an inner product on the algebra of double forms over V . The so obtained inner
product of double forms shall be denoted by 〈, 〉. Explicitely, for ω1 = θ1⊗θ2 ∈ Dp,q
and ω2 = θ3 ⊗ θ4 ∈ Dr,s, we have

(4) 〈ω1, ω2〉 = 〈θ1, θ3〉〈θ2, θ4〉 = gk

k! (θ]1, θ
]
3)g

k

k! (θ]2, θ
]
4) .

Where θ]i denotes the p-vector dual to the p-form θi.
Recall that the (Ricci) contraction map, denoted by c, maps Dp,q into Dp−1,q−1.
For a double form ω ∈ Dp,q with p ≥ 1 and q ≥ 1, we have

cω(x1 ∧ · · · ∧ xp−1, y1 ∧ · · · ∧ yq−1) =
n∑
j=1

ω(ej ∧ x1 ∧ . . . xp−1, ej ∧ y1 ∧ · · · ∧ yq−1)

where {e1, . . . , en} is an arbitrary orthonormal basis of V and ω is considered as a
bilinear form as explained above.
It turns out that the contraction map c on D is the adjoint of the multiplication
map by the metric g of V , precisely we have for ω1, ω2 ∈ D the following [9]

(5) 〈gω1, ω2〉 = 〈ω1, cω2〉 .

Suppose now that we have fixed an orientation on the vector space V . The classical
Hodge star operator ∗ : ΛpV → Λn−pV can be extended naturally to operate on
double forms as follows. For a (p, q)-double form ω (seen as a bilinear form), ∗ω is
the (n− p, n− q)-double form given by

(6) ∗ ω(·, ·) = (−1)(p+q)(n−p−q)ω(∗·, ∗·) .

Note that ∗ω does not depend on the chosen orientation as the usual Hodge star
operator is applied twice. The so-obtained operator is still called the Hodge star
operator operating on double forms or the double Hodge star operator. This new
operator provides another simple relation between the contraction map c of double
forms and the multiplication map by the metric as follows [9]

(7) gω = ∗c ∗ ω and cω = ∗g ∗ ω .
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Furthermore, the double Hodge star operator generates the inner product of double
forms as follows. For any two double forms ω, θ ∈ Dp,q we have

(8) 〈ω, θ〉 = ∗
(
ω(∗θ)

)
= (−1)(p+q)(n−p−q) ∗

(
(∗ω)θ

)
.

Finally, let us recall that a double form ω ∈ Dp,q is said to satisfy the first Bianchi
if

p+1∑
j=1

(−1)jω(x1 ∧ · · · ∧ x̂j ∧ . . . xp+1, xj ∧ y1 ∧ · · · ∧ yq−1) = 0 .

For all vectors x1, . . . , xp+1, y1, . . . , yp in V and whereˆdenotes omission.
It turns out that the exterior product of two double forms satisfying the first
Bianchi iidentity is a double form that satisfies the first Bianchi identity as well
[7]. For a double form ω of degree (p, p) that satisfies the first Bianchi identity, we
have the following useful relations [9]

(9) 1
(k − p)! ∗ (gk−pω) =

p∑
r=max{0,p−n+k}

(−1)r+p

r!
gn−k−p+r

(n− k − p+ r)! c
rω

where 1 ≤ p ≤ k ≤ n. In particular for k = n and k = n− 1 respectively, we have

(10) ∗ ( g
n−pω

(n− p)! ) = 1
p! c

pω and ∗ ( gn−p−1ω

(n− p− 1)! ) = cpω
p! g −

cp−1

(p− 1)!ω .

1.2. The algebra of double forms vs. Mixed exterior algebra. The algebra
of double forms was considered and studied since the sixties of the last century
exclusively by geometers. However, as was pointed out recently by Jammes in his
habilitation thesis [6], it seems that geometers ignore that many algebraic aspects
of this algebra was indirectly and independently studied by Greub in the sixties
and later by Greub and Vanstone, under the name of Mixed exterior algebra, see
for instance [5, 16]. The first edition of Greub’s book [5] appeared in 1967. The
author just came to know about Greub and Vanstone’s contributions and only after
he finishes the first version of this paper. Let us recall here the basic definition of
this “dual” algebra, a report on Greub and Vanstone contributions will appear in a
forthcoming paper.
Let V and V ∗ be two dual vector spaces, denote by ΛpV and ΛqV ∗ their exterior
powers respectively. Consider the tensor product

Λpq(V, V ∗) = ΛpV ⊗ ΛqV ∗ ,

An element in Λpq(V, V ∗) is called a (p, q)-vector (the analogous of a (p, q)-double
form). Next define the mixed exterior algebra as the tensor product

Λ(V, V ∗) = ΛV ⊗ ΛV ∗ =
⊕
p,q≥0

Λpq(V, V ∗) .

Where the multiplication is denoted by a wedge and given by

(u⊗ u∗) ∧ (v ⊗ v∗) = (u ∧ v)⊗ (u∗ ∧ v∗) .
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The space Λ(V, V ∗) is isomorphic to the space of linear endomorphisms of Λ(V ).
Greub and Vanstone introduced then a second product, which they call the composi-
tion product, in the algebra Λ(V, V ∗) by just pulling back the standard composition
operation on endomorphisms. They proved useful identities between the two pro-
ducts on Λ(V, V ∗). These identities were then used to obtain several matrix-free
proofs of classical theorems about linear transformations similar to the ones that
we prove here in this paper in Section 2. However, let us emphasize here that the
results of the remaining sections of our paper are original and the corresponding
cases were not discussed by Greub and Vanstone.

1.3. The composition product of double forms. Following Greub [5], we
define a second multiplication in the space of double forms D which will be denoted
by ◦ and will be called the composition product or Greub’s product of double forms.
Given ω1 = θ1 ⊗ θ2 ∈ Dp,q and ω2 = θ3 ⊗ θ4 ∈ Dr,s, set

(11) ω1 ◦ ω2 = (θ1 ⊗ θ2) ◦ (θ3 ⊗ θ4) = 〈θ1, θ4〉θ3 ⊗ θ2 ∈ Dr,q .

It is clear that ω1 ◦ ω2 = 0 unless p = s.
This product can be interpreted in the following way: Denote by ω̄1 : ΛpV → ΛqV
the linear map corresponding to the bilinear map ω1 ∈ Dp,q, and by ω̄2 : ΛrV →
ΛpV the linear map corresponding to the double form ω2 ∈ Dr,p. Then it turns
out that the composition map ω̄1 ◦ ω̄2 : ΛrV → ΛqV is nothing but the linear
map corresponding to the double form ω1 ◦ ω2 ∈ Dr,q. The space of double forms
endowed with the composition product ◦ is then an associative algebra.
We are going now to write an explicit useful formula for this new product. Let
u1 ∈ Λr be an r-vector and u2 ∈ Λq a q-vector in V then

ω1 ◦ ω2(u1, u2) = 〈ω̄1 ◦ ω̄2(u1), u2〉
= 〈ω̄1(ω̄2(u1)), u2〉
= ω1(ω̄2(u1), u2)

=
∑

i1<i2<···<ip

ω2(u1, ei1 ∧ · · · ∧ eip)ω1(ei1 ∧ · · · ∧ eip , u2) .

Where {e1, . . . , en} is an arbitrary orthonormal basis of (V, g). For a double form
ω ∈ Dp,q, we denote by ωt ∈ Dq,p the transpose of ω, that is

(12) ωt(u1, u2) = ω(u2, u1) .

In particular, ω is a symmetric double form if and only if ωt = ω. The previous
calculation shows that

(13) ω1 ◦ ω2(u1, u2) =
∑

i1<i2<···<ip

ωt2(ei1 ∧ · · · ∧ eip , u1)ω1(ei1 ∧ · · · ∧ eip , u2) .

Consequently, we obtain another useful formula for the inner product of double
forms as follows
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Proposition 1.1. The inner product of two double forms ω1, ω2 ∈ Dp,q is the full
contraction of the product ωt1 ◦ ω2 or ωt2 ◦ ω1, precisely we have

(14) 〈ω1, ω2〉 = 1
p! c

p(ωt2 ◦ ω1) = 1
p! c

p(ωt1 ◦ ω2) .

Proof. It is straightforward as follows:

cp(ωt2 ◦ ω1) =
∑

i1,i2,...,ip

ωt2 ◦ ω1(ei1 ∧ · · · ∧ eip ; ei1 ∧ · · · ∧ eip)

= p!
∑

i1<i2<···<ip

ωt2 ◦ ω1(ei1 ∧ · · · ∧ eip ; ei1 ∧ · · · ∧ eip)

= p!
∑

i1<i2<···<ip
j1<j2<···<jp

ωt1(ej1 ∧ · · · ∧ ejp ; ei1 ∧ · · · ∧ eip)

× ωt2(ej1 ∧ · · · ∧ ejp ; ei1 ∧ · · · ∧ eip)

= p!
∑

i1<i2<···<ip
j1<j2<···<jp

ω1(ei1 ∧ · · · ∧ eip ; ej1 ∧ · · · ∧ ejp)

× ω2(ei1 ∧ · · · ∧ eip ; ej1 ∧ · · · ∧ ejp)
= p!〈ω1, ω2〉 .

�

Remark. The inner product used by Greub in his mixed exterior algebra is the
pairing product which is always non-degenerate but not positive definite in general,
hence it is different from the above inner product. The two inner products coincide
only for symmetric double forms. For two general double forms ω1, ω2 ∈ Dp,q, their
pairing product is the full contraction of the product double form ω1 ◦ ω2.

Following Greub [5], in what follows we shall denote the k-th power of a double
form ω in the composition algebra by ω r©, that is

ω r© = ω ◦ · · · ◦ ω︸ ︷︷ ︸
r-times

.

2. Euclidean invariants for bilinear forms

2.1. Characteristic coefficients of bilinear forms. Let A be a square matrix
with real entries of size n. Recall that the characteristic polynomial χA(λ) of A is
given by

χA(λ) = det(A− λI) = (−1)nλn + (−1)n−1s1(A)λn−1

+ · · ·+ sn(A) =
n∑
i=0

(−1)n−isi(A)λn−i .(15)

Where s1(A) is the trace of A, sn(A) is the determinant of A and the other
characteristic coefficients sk(A) are intermediate invariants of the matrix A that
interpolate between the trace and the detreminant, we shall call them here for
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simplicity the sk invariants of the matrix A.
Since similar matrices have the same characteristic polynomial, therefore they have
as well the same sk invariants. In particular, one can define these invariants in an
invariant way for endomorphisms.
Let (V, g) be an Euclidean vector space of finite dimension n and h be a bilinear
form on V . We denote by h̄ the linear operator on V that coresponds to h via the
inner product g.
We define the sk invariants of the bilinear form h to be those of the linear operator h̄.
In particular, the determinant of the bilinear form h is by definition the determinant
of the linear operator h̄. Note that in contrast with sk(h̄), the invariants sk(h)
depend on the inner product g. In order to make this dependence explicit we shall
use the exterior product of double forms .
Recall that for 1 ≤ k ≤ n, the exterior k-th power hk = h...h of the bilinear form
h (seen here as a (1, 1)-double form) is a (k, k) double form determined by the
determinant as follows:
(16) hk(x1, . . . , xk; y1, . . . , yk) = k! det[h(xi, yj)] .
In particular, if {e1, . . . , en} is an orthonormal basis of (V, g) then then we have

hn(e1, . . . , en; e1, . . . , en) = n! deth .
Alternatively, this can be written as

(17) hn(∗1, ∗1) = n! deth , or deth = ∗h
n

n! .

Where ∗ denotes the (double) Hodge star operator as in the previous section.
Consequently, using the binomial formula, the characteristic polynomial of h takes
the form

χh(λ) = det(h− λg) = ∗ (h− λg)n

n!

= ∗ 1
n!

n∑
i=0

(
n

i

)
hi(−1)n−iλn−ign−i

= 1
n!

n∑
i=0

n!(−1)n−i
(
∗ gn−ihi

(n− i)!i!

)
λn−i

=
n∑
i=0

(−1)n−isi(h)λn−i .(18)

We have therefore proved the following simple formula for all the sk invariants of h:

Proposition 2.1. For each 1 ≤ k ≤ n, the sk invariant of h is given by

(19) sk(h) = 1
k!(n− k)! ∗ (gn−khk) .

Where ∗ denotes the (double) Hodge star operator operating on double forms, and
the products gn−k, hk, gn−khk are exterior products of double forms, where g and
h are considered as (1, 1)-double forms.
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In particular, the trace and determinant of h are given by

s1(h) = ∗
{ gn−1h

(n− 1)!

}
and sn(h) = ∗h

n

n! .

Let us note here that for any orthonormal basis (ei) of (V, g), sk(h) coincides by
definition with the sk invariant of the matrix (h(ei, ej)). In particular, sn(h) is the
determinant of the matrix (h(ei, ej)). More generally, we have the following lemma:

Lemma 2.2. Let (ei), i = 1, 2, . . . , n, be an orthonormal basis of (V, g), h a
bilinear form on V and k+ r ≤ n. Then for any subset {i1, i2, . . . , ik+r} with k+ r
elements of {1, 2, . . . , n} we have

(20) gkhr
(
ei1 , ei2 , . . . , eik+r , ei1 , ei2 , . . . , eik+r

)
= k!r!sr

(
h(eia , eib)

)
.

Where sr (h(eia , eib)) is the sr invariant of the (k+ r)× (k+ r) matrix (h(eia , eib)),
for 1 ≤ a, b ≤ k + r, g is the inner product on V . The product gkhr is the exterior
product of double forms as above.

The proof of the previous lemma is a direct consequence of Proposition 2.1. The
lemma shows that the “sectionnal curvatures” of the tensors gkhr are precisely the
sr invariants of h once restricted to lower subspaces of V .
In what follows in this section we shall use this formalism of the sk invariants to
reformulate and then generalize celebrated classical identities for matrices namely
Laplace expansion of the determinant, Cayley-Hamilton theorem, Jacobi’s formula
for the determinant and Newton identities.

2.2. Cofactor transformation of a bilinear form vs. cofactor matrix. Re-
call that the cofactor matrix of a square matrix of size n is a new matrix formed
by all the cofactors of the original matrix. Where the (ij)-cofactor of a matrix is
(−1)i+j times the determinant of the (n− 1× n− 1) sub-matrix that is obtained
by eliminating the i-th row and j-th column of the original matrix.
We are going to do here the same transformation but on a bilinear form instead of a
matrix. Precisely, let (ei) be an orthonormal basis of (V, g), for each pair of indexes
(i, j), we define, the (ij)-cofactor of the bilinear form h, denoted tn−1(h)(ei, ej), to
be (−1)i+j multiplied by the determinant of the (n− 1× n− 1) sub-matrix that is
obtained after removing the i-th row and j-th column from the matrix (h(ei, ej)).
Then we can use bilinearity to extend tn−1(h) into a bilinear form defined on V . It
is then natural to call the so obtained bilinear form the cofactor transformation of
h.
The next proposition shows in particular that the bilinear form tn−1(h) is well
defined (that is it does not depend on choice of the orthonormal basis).

Proposition 2.3. If ∗ denotes the Hodge star operator operating on double forms
then

(21) tn−1(h) = 1
(n− 1)! ∗ (hn−1) .
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Proof. From the definition of the Hodge star operator once it is acting on double
forms we have

(22) 1
(n− 1)! ∗ (hn−1)(ei, ej) = 1

(n− 1)! (h
n−1)(∗ei, ∗ej) .

The last expression is by formula (16) exactly equal to (−1)i+j multiplied by the
determinant of the (n− 1)× (n− 1) sub-matrix that is obtained from (h(ei, ej))
by removing the i-th row and j-th column. This completes the proof of the
proposition. �

We define now higher cofactor transformations of h as follows

Definition 2.1. For 0 ≤ k ≤ n − 1 we define the k-th cofactor of h (called also
the k-th Newton transformation of h) to be the bilinear form given by

(23) tk(h) = 1
k!(n− 1− k)! ∗ (gn−1−khk) .

Note that t0(h) = g is the metric, tn−1(h) coincides with the above defined
cofactor transformation of h. The terminology “higher cofactor" is motivated by
the following fact

tk(h)(ei, ej) = 1
k!(n− 1− k)! (g

n−1−khk)(∗ei, ∗ej) .

The value 1
k!(n−1−k)! (g

n−1−khk)(∗ei, ∗ej) can be seen, like in the case k = n − 1
above, as (−1)i+j multiplied by a kind of higher determinant of the (n−1)× (n−1)
sub-matrix that is obtained from (h(ei, ej)) by removing the i-th row and j-th
column.

Remark. In view of formula (20) it is tempting to think that the “higher de-
terminants” 1

k!(n−1−k)! (g
n−1−khk)(∗ei, ∗ej) coincide with the sk invariant of the

corresponding matrix. However it turns out that this not the case in general even
when h is symmetric.

Recall that the sk invariants of a bilinear form coincide with the coefficients of
the characteristic polynomial of h. A similar property holds for the tk invariants as
follows

Proposition 2.4. For each 1 ≤ i ≤ n−1, the higher cofactor transformations ti(h)
coincide with the coefficients of the cofactor characteristic polynomial tn−1(h−λg),
precisely we have

(24) tn−1(h− λg) =
n−1∑
i=0

(−1)n−1−iti(h)λn−1−i .
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Proof. The binomial formula shows that

tn−1(h− λg) = ∗ (h− λg)n−1

(n− 1)!

= ∗ 1
(n− 1)!

n−1∑
i=0

(
n− 1
i

)
hi(−1)n−1−iλn−1−ign−1−i

= 1
(n− 1)!

n−1∑
i=0

(n− 1)!(−1)n−1−i
(
∗ gn−1−ihi

(n− 1− i)!i!

)
λn−1−i

=
n−1∑
i=0

(−1)n−1−iti(h)λn−1−i .

Where t0 = g. �

2.3. Laplace expansions of the determinant and generalizations. The fol-
lowing proposition provides a Laplace type expansion for all the sk invariants of
an arbitrary bilinear form.

Proposition 2.5. For each k, 0 ≤ k ≤ n− 1, we have

(25) (k + 1)sk+1(h) = 〈tk(h), h〉 .

Where 〈·, ·〉 denotes the standard inner product of bilinear forms.

Proof. Using basic properties of the exterior product of double forms and the
generalized Hodge star operator, see Section 1, it is straightforward that

〈tk(h), h〉 = ∗({∗tk(h)}h) = ∗
{ gn−k−1

(n− k − 1)!
hk+1

k!

}
= (k + 1)sk+1(h) .

�

Let us now clarify its relation to the classical Laplace expansion (called also
cofactor expansion) of the determinant. Remark that for k = n− 1 we have

nsn = 〈tn−1(h), h〉 =
n∑

i,j=1
tn−1(h)(ei, ej)h(ei, ej) .

Where (ei) is an arbitrary orthonormal basis of V . Recall that by definition
the factor tn−1(h)(ei, ej) is the usual (ij)-cofactor of the matrix (h(ei, ej)) and
sn is its determinant. We therefore recover the classical Laplace expansion of
the determinant. Actually, Laplace expansion of the determinant is more refined.
Precisely, it asserts that for any 1 ≤ i ≤ n we have

sn(h) =
n∑
j=1

tn−1(h)(ei, ej)h(ei, ej) .

In view of formula (13), the later expansion can be written in the following form

(26)
(
tn−1(h)

)t ◦ h = sn(h)g ,
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or equivalently,
ht ◦ tn−1(h) = sn(h)g .

In other words the inverse of h with respect to the composition product ◦ is
1

sn(h)
(
tn−1(h)

)t. For a different proof of the last formula (26) see Corollary I to
Proposition 7.4.1 in [5].
Following Greub [5], we use formula (26) to get a useful formula for all the higher
cofactor transformations tk(h) in terms of the composition product. Precisely we
prove the following

Proposition 2.6. Let 1 ≤ i ≤ n− 1 then we have the induction formula
(27) ti(h) = si(h)g − ht ◦ ti−1(h) .
In particular, for 1 ≤ k ≤ n− 1 we have

(28) tk(h) =
k∑
r=0

(−1)rsk−r(h)(ht) r©

= sk(h)g − sk−1(h)ht + sk−2(h)ht ◦ ht − . . .

Proof. Formula (26) asserts that
(h− λg)t ◦ tn−1(h− λg) = sn(h− λg)g .

Using the expansions (24), (17) we get

(ht − λg) ◦
n−1∑
i=0

(−1)n−1−iti(h)λn−1−i =
n∑
i=0

(−1)n−isi(h)λn−ig .

A straightforward manipulation shows that
n−1∑
i=1

(
ht ◦ ti−1(h) + ti(h)− si(h)g

)
(−1)n−iλn−i = 0 .

This completes the proof. �

2.3.1. Further Laplace expansions. Recall that the determinant of h is determined
by hn. As the later expression can be written in several ways as a product hn−rhr
for each r, we therefore get different expansions for the determinant by blocks as
follows:

deth = ∗h
n

n! = ∗h
n−rhr

n! = (n− r)!r!
n!

〈
∗ hn−r

(n− r)! ,
hr

r!

〉
= 1(

n
r

) ∑
i1<i2<···<ir
j1<j2<···<jr

ε(ρ)ε(σ)h
r

r! (ei1 , . . . , eir , ej1 , . . . , ejr )

× hn−r

(n− r)! (eip+1 , . . . , ein , ejp+1 , . . . , ejn) .

Where {e1, e2, . . . , en} is an orthonormal basis of V , ε(ρ) and ε(σ) are the signs
of the permutations ρ = (i1, . . . , in) and σ = (j1, . . . , jn) of (1, 2, . . . , n). Recall
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that hr

r! (ei1 , . . . , eir , ej1 , . . . , ejr) (resp. hn−r

(n−r)! (eip+1 , . . . , ein , ejp+1 , . . . , ejn) equals
the determinant of the r × r sub-matrix (h(eik , ejl)) for 1 ≤ k, l ≤ r (resp the
determinant of the n− r×n− r sub-matrix (h(eik , ejl)) for p+ 1 ≤ k, l ≤ n). Note
that the second sub-matrix is just the co-matrix of the first sub-matrix, that is the
sub-matrix obtained from the ambient matrix (h(ei, ej)) of size n after removing
the rows i1, . . . , in and the columns j1, . . . , jn. Let us mention here also that the
original Laplace expansion is finer than the previous expansion, precisely it says
that for any choice of j1, . . . , jr we have

deth =
∑

i1<i2<···<ir

ε(ρ)ε(σ)h
r

r! (ei1 , . . . , eir ; ej1 , . . . , ejr )

× hn−r

(n− r)!
(
eip+1 , . . . , ein ; ejp+1 , . . . , ejn

)
.

In view of formula (13), the later expansion can be written in the following compact
form

(29) (deth)g
r

r! =
(
∗ hn−r

(n− r)!

)t
◦ h

r

r! .

This was first noticed in [5], see Corollary to Proposition 7.2.1.

Remark. One can write easily similar expansions for all the lower sk invariants of
h. In fact, the product gn−khk can be written in different ways as gphqgn−k−phk−q
for 0 ≤ q ≤ k and 0 ≤ p ≤ n− k. Precisely we have, for 1 ≤ k ≤ n and for every
0 ≤ q ≤ k and 0 ≤ p ≤ n− k, the following expansion

k!(n− k)!sk(h) = ∗gn−khk = ∗
(
gphqgn−k−phk−q

)
=
〈
gphq, ∗gn−k−phk−q

〉
=

∑
i1<i2<···<ip+q
j1<j2<···<jp+q

ε(ρ)ε(σ)gphqei1 , . . . , eip+q , ej1 , . . . , ejp+q )

× gn−k−phk−q(eip+q+1 , . . . , ein , ejp+q+1 , . . . , ejn) .
Where as above {e1, e2, . . . , en} is an orthonormal basis of V , ε(ρ) and ε(σ) are the
signs of the permutations ρ = (i1, . . . , in) and σ = (j1, . . . , jn) of (1, 2, . . . , n).

2.4. Girard-Newton identities.

Proposition 2.7 (Girard-Newton identities). For 0 ≤ k ≤ n− 1, the trace of tk
is given by
(30) c tk(h) = (n− k)sk(h) .
Where c denotes the contraction map.

Proof. Using basic properties of the exterior product of double forms and the the
generalized Hodge star operator, see Section 1, we immediately get

c tk(h) = ∗g ∗ tk(h) = ∗
{ gn−k

(n− k − 1)!
hk

k!

}
= (n− k)sk(h) .

�
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In order to explain why the previous formula coincides with the classical
Girard-Newton identities, we shall use proposition 2.6. Let for 1 ≤ i ≤ n − 1,
pi = ch i©. Proposition 2.6 shows that

c tr(h) =
r∑
i=0

(−1)isr−i(h)pi .

Therefore we can reformulate the identity (30) as
r∑
i=0

(−1)isr−i(h)pi = (n− r)sr(h) ,

or

rsr(h) =
r∑
i=1

(−1)i+1sr−i(h)pi .

That are the celebrated classical Girard-Newton identities.

Remark (Terminology). The transformations tr are famous in the literature as
Newton’s transformations. Up to the author’s knowledge, it was Reilly [15] the
first to call them as such (he treated only the case of diagonalizable matrices). He
motivated this by the fact that they generate the classical Newton identities as above.
With reference to the above discussion, the terminology cofactor transformation or
characteristic transformation is in the author’s opinion more appropriate.

2.5. Higher cofactor transformations and Laplace expansions. Let h be
a bilinear form on the n-dimensional Euclidean vector space (V, g). We define
, for 0 ≤ q ≤ n and 0 ≤ r ≤ n − q, the (r, q) cofactor (or the (r, q) Newton
transformation) of h denoted s(r,q)(h) by

(31) s(r,q)(h) = 1
q!(n− q − r)! ∗ (gn−q−rhq) .

Note that s(1,q)(h) = tq(h) is the cofactor of order q of h as defined in Subsection
2.2 and s(0,q)(h) = sq(h) is the sq invariant of h.
The higher cofactors s(r,q)(h) of h satisfy similar properties like the usual cofactor
transformation of h which was discussed above. We list some of them in the
following theorem

Theorem 2.8. For any integers r and q such that 0 ≤ q ≤ n and 1 ≤ r ≤ n− q
we have
• The (r, q) cofactors s(r,q)(h) coincide with the coefficients of the characteristic

polynomial ∗ (h−λg)n−r
(n−r)! , precisely we have

∗ (h− λg)n−r

(n− r)! =
n−r∑
q=0

(−1)n−q−rs(r,q)(h)λn−q−r .

• General Laplace’s expansion:
(q + r)!
q! sq+r(h) = 〈s(r,q)(h), hr〉 .
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• General Newton’s identity:

c
(
s(r,q)(h)

)
= (n− q − r + 1)s(r−1,q) .

Proof. The first statement is a direct consequence of the binomial formula. To
prove the general Laplace’s expansion we again use the properties of the exterior
product of double forms to get a one line proof as follows

〈s(r,q)(h), hr〉 = ∗
( gn−q−rhq

q!(n− q − r)!h
r
)

= ∗
( gn−q−rhq+r

(q + r)!(n− q − r)!

) (q + r)!
q! = (q + r)!

q! sq+r(h) .

In the same way we prove the general Newton’s identity as follows

c
(
s(r,q)(h)

)
= c ∗

( gn−q−rhq

q!(n− q − r)!

)
= ∗g

( gn−q−rhq

q!(n− q − r)!

)
= ∗
( gn−q−r+1hq

q!(n− q − r + 1) !
)

(n− q − r + 1) = (n− q − r + 1)s(r−1,q) .

�

Remark.
(1) If the bilinear form h is diagonalizable, that is if there exists an orthonormal

basis (ei) of V such that h(ei, ej) = λig(ei, ej) for all i, j. We call the real
numbers λi the eigenvalues of h. Without loss of generality we assume that
λ1 ≤ λ2 ≤ ... ≤ λn.
It is not difficult to show that all the double forms s(r,q)(h) with r ≥ 1 are
then also diagonalizable in the sense that

s(r,q)(h)(ei1 , . . . , eir , ej1 , . . . , ejr ) = λi1i2...ir
gr

r! (ei1 , . . . , eir , ej1 , . . . , ejr ) .

Where i1 < i2 < · · · < ir, j1 < j2 < · · · < jr and the eigenvalues of s(r,q)(h)
are given by

λi1i2...ir =
∑

j1<j2<···<jq
{j1,j2,...,jq}∩{i1,i2,...,ir}=φ

λj1λj2 . . . λjq .

(2) In some applications it is useful to find the determinant of the sum of two
matrices or more generally the sk invariant of the sum. Using double forms
formalism as above one can prove easily in one line the following identity
for arbitrary bilinear forms A and B once seen as (1, 1) double forms and
for 1 ≤ k ≤ n

sk(A+B) =
k∑
i=0

1
(k − i)! 〈s(k−i,i)(A), Bk−i〉 .

(3) For a bilinear form h, denote by h̄ the corresponding linear operator V → V .
It turns out that the linear operator corresponding to the double form grhk
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coincides with the k-linear extension of the operator h̄ to the space Λr+kV
in the sense of [17].

2.6. Jacobi’s formula.

Proposition 2.9 (A Jacobi’s formula for the sk invariants). Let h = h(t) be a one
parameter family of bilinear forms on V then

(32) d

dt
sk(h) =

〈
tk−1(h), dh

dt

〉
.

In particular, for k = n we recover the classical Jacobi’s formula:

(33) d

dt
det(h) =

〈
tn−1(h), dh

dt

〉
.

Proof. Using basic properties of the exterior product of double forms and the
generalized Hodge star operator, see [9, 12], we get

d

dt
sk(h(t)) = d

dt

(
∗ g

n−khk(t)
(n− k)!k!

)
= ∗
(gn−kkhk−1

(n− k)!k!
dh

dt

)
= ∗

(
∗
(
∗ gn−khk−1

(n− k)!(k − 1)!

)dh
dt

)
=
〈
tk−1(h), dh

dt

〉
.

(34)

�

Remark. If one allows the inner product g on V to vary as well, say g = g(t) ,
then at t = 0 we have the following generalization of the previous formula:

(35) d

dt
sk(h) =

〈
tk−1(h), dh

dt

〉
+
〈
tk − skg,

dg

dt

〉
.

The proof is similar to the above one.

2.7. Cayley-Hamilton Theorem. It is now time to give a sense to the top tk(h),
that is tn(h), where n is the dimension of the vector space V . Recall that for
1 ≤ k ≤ n− 1, formula (28) asserts that

tk(h) =
k∑
r=0

(−1)rsk−r(h)(ht) r© .

It is then natural to define tn(h) to be

(36) tn(h) =
n∑
r=0

(−1)rsn−r(h)(ht) r© .

Proposition 2.10 (Cayley-Hamilton Theorem). With the above notations we have

tn(h) = 0 .
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Proof.

tn(h) =
n∑
r=0

(−1)rsn−r(h)(ht) r©

= sn(h)g +
n∑
r=1

(−1)rsn−r(h)(ht) r©

= sn(h)g −
n∑
r=1

(−1)r−1sn−r(h)(ht) r©

= sn(h)g − ht ◦ tn−1(h) = 0 .
�

2.7.1. Cayley-Hamilton theorem vs. Infinitisimal Gauss-Bonnet theorem. Let M
be a compact smooth hypersurface of the Euclidean space of dimension 2n + 1.
Denote by B the second fundamental form of M and by sk(B) its sk invariant.
For each k, 0 ≤ k ≤ n, the first variation of the integral

∫
M
s2k(B)dvol is up to a

multiplicative constant, the integral scalar product 〈t2k(B), B〉, where t2k(B) is the
cofactor transformation of B as above, see for instance [12]. The later result can
be seen as an integral Jacobi’s formula. By Cayley-Hamilton theorem t2n(B) = 0
and therefore the integral

∫
M
s2n(B)dvol does not depend on the geometry of the

hypersurface. In fact, the previous integral is up to a multiplicative constant the
Euler-Poincaré characteristic by the Gauss-Bonnet theorem.
In this sense, Cayley-Hamilton theorem is indeed an infinitisimal Gauss-Bonnet
theorem.

2.7.2. Further algebraic identities of Cayley-Hamilton type. In order to simplify
the exposition, we assume in this subsection that h is a symmetric bilinear form.
We are going first to give an alternative proof for the Cayley-Hamilton theorem.
Recall that for 1 ≤ k ≤ n− 1 we have, see [9, 12]

tk(h) = 1
k!
(
n− 1− k

)
!
∗
(
gn−1−khk

)
= sk(h)g − 1

(k − 1)!c
k−1hk .

It is then natural to define tn(h) to be

tn(h) = sn(h)g − 1
(n− 1)!c

n−1hn .

Recall that ∗hn = n!sn(h), and therefore hn = n!sn(h)∗1 = sn(h)gn. Consequently
we have

tn(h) = sn(h)g − sn(h) 1
(n− 1)!c

n−1gn = sn(h)g − sn(h)g = 0 .

Next we are going to prove similar results for the higher cofactors s(r,q)(h). Formula
(15) of [9] provides the following expansion for 0 ≤ r ≤ n and 1 ≤ q ≤ n− r:

(37) s(r,q)(h) =
q∑

i=max{0,q−r}

(−1)i+q

i!q!(i+ r − q)!g
i+r−qcihq .
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This new form of s(r,q)(h) allows to extend its definition to the higher values of q,
namely for q equal to n− r + 1, . . . , n. For instance in the top case q = n ≥ 2 we
define

(38) s(r,n)(h) =
n∑

i=n−r

(−1)i+n

i!n!(i+ r − n)!g
i+r−ncihn .

Recall that hn = sn(h)gn and therefore cihn = sn(h) i!n!
(n−i)!g

n−i, consequently we
have for r ≥ 1

s(r,n)(h) =
n∑

i=n−r

(−1)i+n

(n− i)!(i+ r − n)!g
r = (−1)r

r!

( r∑
j=0

(−1)j
(
r

j

))
gr = 0 .

We have therefore proved that

(39) s(r,n)(h) = 0 for all 1 ≤ r ≤ n .

For r = 1 we recover tn(h) = 0 that is the usual Cayley-Hamilton theorem for h.
The next case is when q = n− 1 ≥ 2 and 1 ≤ r ≤ n− 1, here we set

(40) s(r,n−1)(h) =
n−1∑

i=n−r−1

(−1)i+n−1

i!(n− 1)!(i+ r − n+ 1)!g
i+r−n+1cihn−1 .

Next we are going to show that

(41) s(r,n−1)(h) = 0 for all 2 ≤ r ≤ n− 1 .

In order to prove the above identities, first remark that hn−1 is a (n − 1, n − 1)
double form on an n dimensionnal vector space, then using Proposition 2.1 of [13]
we can write hn−1 = gn−2k for some (1, 1) double form k on V . Consequently,
using some identities from [9] we get for i ≤ n− 2 the following

ci(hn−1) = ci(gn−2k) = ∗gi ∗ gn−2k

(n− 2)! (n− 2)!

= ∗gi(−k + gck)(n− 2)! = (− ∗ gik + ∗gi+1ck)(n− 2)!

= −i!(n− 2)!
(
− gn−i−2k

(n− i− 2)! + gn−i−1ck

(n− i− 1)!

)
+ (i+ 1)!)n− 2)!

(n− i− 1)! gn−i−1ck

= (n− 2)!i!
(n− i− 2)!g

n−i−2
(
k + i(ck)

n− i− 1g
)
.

For i = n− 1, we get

cn−1hn = ((n− 1)!)2ck .
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Consequently the formula above defining s(r,n−1)(h) takes the form

s(r,n−1)(h) = ck

r! g
r +

n−2∑
i=n−1−r

(−1)i+n−1

(n− 1)(i+ r − n+ 1)!(n− i− 2)!

× gr−1
(
k + i(ck)

n− i− 1g
)

=
( n−2∑
i=n−1−r

(−1)i+n−1

(i+ r − n+ 1)!(n− i− 2)!

)gr−1k

n− 1

+
( n−1∑
i=n−1−r

(−1)i+n−1i

(i+ r − n+ 1)!(n− i− 1)!

) grck
n− 1 .

Changing the index of both sums to j = i− n+ 1 + r we immediately obtain

s(r,n−1)(h) =
( r−1∑
j=0

(−1)j

j!(r − j − 1)!

) (−1)rgr−1k

n− 1

+
( r∑
j=0

(−1)j(j + n− 1− r)
j!(r − j)!

) (−1)rgrck
n− 1 .

It is then easy to check that the previous two sums are both zero for r ≥ 2.
In the same way we define s(r,n−i)(h) using formula (37), one can prove similarly,
as in the cases where i = 0 and i = 1 above, the following general result

Theorem 2.11 (A general Cayley-Hamilton theorem). For 1 ≤ i+ 1 ≤ r ≤ n− i
we have

s(r,n−i)(h) = 0 .

Finally, let us mention that it would be interesting to reformulate in a nice way
the previous theorem in terms of the composition product.

3. Euclidean invariants for symmetric (2, 2) double forms

In this section we are going to generalize the previous results to symmetric (2, 2)
double forms that satisfy the first Bianchi identity. Recall that a (2, 2) symmetric
double form is a multilinear form with four arguments that is skew symmetric
with respect to the interchange of the first two arguments or the last two, and it is
symmetric if we interchage the first two arguments with the last two. The Riemann
curvature tensor is a typical example.
During this section R denotes a symmetric (2, 2) double form on the n-dimensional
Euclidean vector space (V, g) that satisfies the first Bianchi identity.

3.1. The h2k invariants vs sk invariants. For each k, 0 ≤ 2k ≤ dimV = n, we
define (by analogy to the sk invariants of the previous section) the h2k invariant of
R to be

(42) h2k(R) = 1
(n− 2k)! ∗ (gn−2kRk) .
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In particular h0 = 1 and hn = ∗Rk in case n = 2k.
In the case where R is the Riemann curvature tensor of a Riemannian manifold,
h2k(R) is know as the 2k-th Gauss-Bonnet curvature.

Remark. Suppose n = 2k is even and define the hn-characteristic polynomial of
R to be hn

(
R− λ g

2

2

)
. A direct computation shows that

hn

(
R− λg

2

2

)
= ∗
(
R− λg

2

2

)k
= ∗

k∑
i=0

(
k

i

)
Ri

(−1)k−i

2k−i λk−ig2k−2i

=
k∑
i=0

(
k

i

)
(−1)k−i

2k−i λk−i ∗
(
g2k−2iRi

)
=

k∑
i=0

(
k

i

)
(−1)k−i

2k−i (2k − 2i)!h2i(R)λk−i .

The hn-characteristic polynomilal of R is therefore a polynomial of degree k in λ
and its coefficients are all the h2i(R) invariants of R. It would be interesting to see
whether for each k, the polynomial h2k(R), which is homogeneous of degree 2k and
defined on the space of symmetric (2, 2) double forms, is a hyperbolic polynomial
with respect to g2

2 in the sens of Gårding [2].

3.2. Cofactor transformations of (2, 2) double forms. Using the same proce-
dure of cofactors as in the previous section we obtain several Newton transformations
of R. Let us here examine the following

(43) N2k(R) = ∗ g
n−2k−2Rk

(n− 2k − 2)! and T2k(R) = ∗ g
n−2k−1Rk

(n− 2k − 1)! .

Note that N2k(R) is defined for 2 ≤ 2k ≤ n− 2 and it is a (2, 2) symmetric double
form on V like R that satisfies the first Bianchi identity. On the other hand T2k(R)
is defined for 2 ≤ 2k ≤ n− 1 and it is a symmetric bilinear form on V .
Theorem 4.1 of [9] provides explicit useful formulas for all the N2k(R) and T2k(R)
as follows:

N2k(R) = c2k−2Rk

(2k − 2)! −
c2k−1Rk

(2k − 1)!g + c2kRk

2(2k)!g
2 ,

T2k(R) = c2kRk

(2k)! g −
c2k−1Rk

(2k − 1)! .
(44)

In particular, T2(R) = c2R
2 g − cR is the celebrated Einstein Tensor. The higher

T2k(R) are called Einstein-Lovelock tensors, see [8].
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3.3. Laplace expansion of the h2k invariants and Avez formula.
Theorem 3.1 (Laplace expansion of the h2k invariants). For 4 ≤ 2k + 2 ≤ n we
have
(45) h2k+2(R) = 〈N2k(R), R〉 .
Proof. Using the results of [9] one immediately has

〈N2k(R), R〉 = ∗
{gn−2k−2Rk+1

(n− 2k − 2)!

}
= c2k+2Rk+1

(2k + 2)! .

This completes the proof. �

As a consequence we recover Avez’s formula for the second Gauss-Bonnet
curvature as follows:
Corollary 3.2 (Avez’s Formula). For n ≥ 4, the second Gauss-Bonnet curvature
equals

h4(R) = |R|2 − |cR|2 + 1
4 |c

2R|2 .

Proof. A direct application of formula (44) shows that

N2(R) = R− (cR)g + c2R

4 g2 .

Consequently,

h4(R) = 〈N2(R), R〉 = 〈R,R〉 −
〈
(cR)g,R

〉
+
〈c2R

4 g2, R
〉
.

To complete the proof just recall that the contraction map c is the adjoint of the
multiplication map by the g. �

In the same way one can prove easily the following generalization of Avez’s
formula, see [11],
Corollary 3.3. For 4 ≤ 2k + 2 ≤ n, the (2k + 2)-th Gauss-Bonnet curvature is
determined by the last three contractions of Rk as follows:

h2k+2 =
〈 c2k−2Rk

(2k − 2)! , R
〉
−
〈 c2k−1Rk

(2k − 1)! , cR
〉

+ h2kh2 .

3.4. Girard-Newton identities.
Theorem 3.4. Let c denotes the contraction map then we have

cN2k(R) = (n− 2k − 1)T2k and cT2k(R) = (n− 2k)h2k .

Proof. Using the identity c∗ = ∗g, one easily gets the desired formulas as follows:

cN2k(R) = c ∗ gn−2k−2Rk

(n− 2k − 2)! = ∗ g
n−2k−1Rk

(n− 2k − 1)!
(n− 2k − 1)!
(n− 2k − 2)! = (n− 2k − 1)T2k .

Similarly,

cT2k(R) = c ∗ gn−2k−1Rk

(n− 2k − 1)! = ∗ g
n−2kRk

(n− 2k)!
(n− 2k)!

(n− 2k − 1)! = (n− 2k)h2k.

�
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3.5. Algebraic identities for (2, 2) double forms.

3.5.1. The case of even dimensions. Suppose the dimension of the vector space V
is even n = 2k. We shall now give a sense the top T2k(R). Using formula (44) we
naturally set

(46) Tn(R) = cnRk

n! g − cn−1Rk

(n− 1)! .

Proposition 3.5. Let R be a symmetric (2, 2) double form satisfying the first
Bianchi identity on an Euclidean space of even dimension n then

(47) Tn(R) = 0 .

Proof. Note first that if n = 2k then hn = ∗Rk and therefore Rk = ∗hn. Where ∗
is the Hodge star operator acting on double forms. For any 0 ≤ r ≤ n we have

crRk = cr ∗ hn = ∗grhn = r! gn−r

(n− r)!hn .

That is
crRk

r! = hn
(n− r)!g

n−r .

Next using the definition of Tn above we easily get that

Tn = hng − hng = 0 .

�

Remark. In this case where n = 2k one could using formula (44) define Nn(R)
as well by setting

Nn(R) = cn−2Rk

(n− 2)! −
cn−1Rk

(n− 1)!g + cnRk

2(n!) g
2 .

A direct adaptation of the previous proof shows that we have the algebraic identity
Nn(R) = 0.

3.5.2. The case of odd dimensions. Suppose now the dimension of the vector space
V is odd say n = 2k + 1. We shall now give a sense the top Nn−1(R). Note that
the top Tn−1(R) is well defined and need not vanish in general. Using formula (44)
we naturally set for n ≥ 3

(48) Nn−1(R) = cn−3Rk

(n− 3)! −
cn−2Rk

(n− 2)!g + cn−1Rk

2(n− 1)!g
2 .

Theorem 3.6. Let R be a symmetric (2, 2) double form satisfying the first Bianchi
identity on an Euclidean space of odd dimension n ≥ 3 then

(49) Nn−1(R) = 0 .
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Proof. Let n = 2k + 1 ≥ 3, note that Rk is a (n − 1, n − 1) double form on
an n dimensionnal vector space, then using Proposition 2.1 of [13] we can write
Rk = gn−2D for some (1, 1) double form D on V . Consequently, using some
identities from [9] we get the following

c2k−2Rk = cn−3 (gn−2D
)

= ∗gn−3 ∗ gn−2D

= ∗gn−3(n− 2)!(−D + gcD) = (n− 2)!
(
− ∗ gn−3D + ∗gn−2cD

)
= (n− 2)!(n− 3)!

(
gD + (n− 3)cD

2 g2
)
.

After contracting the previous identity twice we get
c2k−1Rk = (n− 2)!(n− 2)! (D + (n− 2)(cD)g) ,

and

c2kRk = (n− 1)!(n− 1)!cD .

Consequently we have

Nn−1(R) = cn−3Rk

(n− 3)! −
cn−2Rk

(n− 2)!g + cn−1Rk

2(n− 1)!g
2

= (n− 2)!
(
D + (n− 3)cD

2 g −D − (n− 2)cDg + (n− 1)cD2 g
)
g = 0 .

�

Remark. In dimension n = 3 the previous theorem read

N2(R) = R− (cR)g + c2R

4 g2 = 0 .

In the context of Riemannian geometry where R represents the Riemann curvature
tensor the previous identity is equivalent to the vanishing of the Weyl tensor in 3
dimensions, in fact in this dimension N2(R) coincides with the Weyl tensor.

3.5.3. Algebraic scalar identities for (2, 2) double forms. Suppose the dimension n
of our vector space V is odd, say n = 2k + 1 and as above R is a symmetric (2, 2)
double form that satisfies the first Bianchi identity. Corollary 3.3 allows one to
define hn+1(R) = h2k+2(R), precisely we set

h2k+2(R) =
〈 c2k−2Rk

(2k − 2)! , R
〉
−
〈 c2k−1Rk

(2k − 1)! , cR
〉

+
〈c2kRk

(2k)! ,
c2R

2

〉
.

We are going to show that h2k+2(R) as defined by the previous equation is zero.
We proceed as in the proof of Theorem 3.6 and using the same notations of that
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proof we have 〈 c2k−2Rk

(2k − 2)! , R
〉

= (n− 2)!
〈
D + (n− 3)cD

2 g,R
〉
,

−
〈 c2k−1Rk

(2k − 1)! , cR
〉

= −(n− 2)!〈D + (n− 2)cDg, cR〉 ,〈c2kRk

(2k)! ,
c2R

2

〉
= (n− 1)!cDc

2R

2 .

Taking the sum of the above three equation we immediately prove the vanishing of
h2k+2(R). Thus we have proved the following scalar identities

Proposition 3.7. Let R be a symmetric (2, 2) double form satisfying the first
Bianchi identity on an Euclidean vector space of odd dimension n = 2k + 1 ≥ 3
then 〈 cn−3Rk

(n− 3)! , R
〉
−
〈 cn−2Rk

(n− 2)! , cR
〉

+
〈 cn−1Rk

(n− 1)! ,
c2R

2

〉
= 0 .

In particular, for n = 3 we have

〈R,R〉 − 〈cR, cR〉+ 1
4(c2R)2 = 0 .

Remark. It the context of Riemannian geometry, where R is the Riemann curva-
ture tensor (seen as a (2, 2) double form), the previous scalar curvature identities
coincide with Gilkey-Park-Sekigawa universal curvature identities [4] which are
shown to be unique. Also the identities of Proposition 3.5 coincide with the sym-
metric 2-form valued universal curvature identities of [4] where they are also be
shown to be unique. The higher algebraic identities, that are under study here in
this paper, can be seen then as symmetric double form valued universal curvature
identities in the frame of Riemannian geometry.

3.5.4. Higher algebraic identities for (2, 2) double forms. Let k ≥ 1 and 0 ≤ r ≤
n− 2k and let R as above be a symmetric (2, 2) double form on the n-dimensional
Euclidean vector space (V, g) that satisfies the first Bianchi identity. We define the
(r, 2k)-cofactor transformation ot R, denoted h(r,2k)(R), by the following formula

(50) h(r,2k)(R) = 1
(n− 2k − r)! ∗ (gn−2k−rRk) .

Note that h(r,2k)(R) for r = 0 (resp. r = 1, r = 2) coincides with h2k(R) (resp.
T2k(R), N2k(R)).
Theorem 4.1 of [9] shows that

(51) h(r,2k)(R) =
2k∑

i=max{0,2k−r}

(−1)i

i!(r − 2k + i)!g
r−2k+iciRk .

This last formula (51) allows us to define h(r,2k)(R) for higher r’s that is for
r > n− 2k. The following theorem which provides general identities and generalize
Proposition 3.5 and Theorem 3.6 can be proved in the same way
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Theorem 3.8. Let R be a symmetric (2, 2) double form satisfying the first Bianchi
identity on an Euclidean vector space of dimension n.

(1) If n = 2k is even then

h(r,n−2i)(R) = 0 for 2i+ 1 ≤ r ≤ n− 2i .

(2) If n = 2k + 1 is odd then

h(r,n−2i−1)(R) = 0 for 2i+ 2 ≤ r ≤ n− 2i− 1 .

Remark that we recover Proposition 3.5 for n = 2k, r = 1, i = 0 and Theorem 3.6
is obtained for n = 2k + 1, r = 2, i = 0.

3.6. Jacobi’s formula for double forms.

Proposition 3.9 (Jacobi’s formula). Let R = R(t) be a one parameter family of
(2, 2) double forms then

(52) d

dt
h2k(R) =

〈
kN2k−2(R), dR

dt

〉
.

Proof.
d

dt
h2k(R) = d

dt

(
∗ g

n−2kRk(t)
(n− 2k)!

)
= ∗
(gn−2kkRk−1

(n− 2k)!
dR

dt

)
= ∗

(
∗
(
∗ g

n−2kkRk−1

(n− 2k)!

)dR
dt

)
=
〈
kNk−1(R), dR

dt

〉
.(53)

�

Remark. If one allows the scalar product to vary as well say g = g(t) the previous
formula takes the following form at t = 0:

(54) d

dt
h2k(R) =

〈
kN2k−2(R), dR

dt

〉
+
〈
T2k − h2kg,

dg

dt

〉
.

The proof is similar to the above one.

3.7. Algebraic identities vs. infinitisimal Gauss-Bonnet theorem.
Let (M, g) be a compact Riemannian manifold of dimension n = 2k. Denote by R
its Riemann curvature tensor seen here as a (2, 2) double form and, and let h2r(R)
be the corresponding Gauss-Bonnet curvatures as above. For each r, 0 ≤ r ≤ n,
the gradient of the Riemannian functional

∫
M
h2r(R)dvol at g, once restricted to

metrics of unit volume, is equal to T2r(R), where T2r(R) is the h2r(R) cofactor of
R as above, it is known in geometry as the Einstein-Lovelock tensor, see [8]. The
later result can be seen as an integral Jacobi’s formula. Consequently, the algebraic
identity Tn(R) = 0 shows that the integral

∫
M
hn(R)dvol does not depend on the

metric g of M . In fact, the previous integral is up to a multiplicative constant the
Euler-Poincaré characteristic by the Gauss-Bonnet theorem.
Here again, as in the situation of Section 2.7.1, the linearized version of the
Gauss-Bonnet theorem is an algebraic identity for (2, 2) double forms.
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4. Higher cofactor transformations and applications

We shall now in this section generalize the previous results to higher symmetric
(p, p)-double forms.
Let ω be a symmetric (p, p)-double form satisfying the first Bianchi identity, we
define its cofactor transformation of order (r, pq) to be

(55) h(r,pq)(ω) = ∗ gn−pq−rωq

(n− pq − r)! ,

where 0 ≤ r ≤ n − pq. The result is a symmetric (r, r)-double form. We remark
that for ω = h a (1, 1) symmetric double form that is a symmetric bilinear form
we recover the invariants of Section 2 as follows

h(0,q)(h) = q!sq(h) , h(1,q)(h) = q!tq(h) and h(r,q)(h) = q!s(r,q)(h) .

Furthermore, for ω = R a symmetric (2, 2) double form, we recover the invariants
of Section 2 as follows

h(0,2q)(R) = h2q(R) , h(1,2q)(R) = T2q(R) and h(2,2q)(R) = N2q(R) .

One can generalize without difficulties the results of the previous sections to this
general setting. First using Theorem 4.1 of [9] one easily gets

(56) h(r,pq)(ω) =
pq∑

i=max{0,pq−r}

(−1)i+pq

i!(r − pq + i)!g
r−pq+iciωq .

As a first result we have the following Laplace type expansion:

Theorem 4.1. Let ω be a symmetric (p, p)-double form satisfying the first Bianchi
identity on an n-dimensional Euclidean vector space V , Let q be a positive integer
such that n ≥ 2pq then

(57) c2pq(ω2q)
(2pq)! = 〈h(pq,pq)(ω), ωq〉 =

pq∑
r=0

(−1)r+pq

(r!)2 〈crωq, crωq〉 .

Proof. From one hand we have

(58) 〈h(pq,pq)(ω), ωq〉 =
〈
∗ g

n−2pqωq

(n− 2pq)! , ω
q
〉

= ∗
(gn−2pqω2q

(n− 2pq)!

)
= c2pq(ω2q)

(2pq)! .

On the other hand we have

(59) ∗
( gn−2pqωq

(n− 2pq)!

)
=

pq∑
r=0

(−1)r+pq

r!
grcrωq

r! .

Consequently it is straightforward that

(60) c2pq(ω2q)
(2pq)! =

pq∑
r=0

(−1)r+pq

(r!)2 〈grcrωq, ωq〉 =
pq∑
r=0

(−1)r+pq

(r!)2 〈crωq, crωq〉 .

�

Taking ω = R a (2, 2) double form we get
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Corollary 4.2 (General Avez Formula). Let R be a symmetric (2, 2)-double form
satisfying the first Bianchi identity on an n-dimensional Euclidean vector space V ,
Let q be a positive integer such that n ≥ 4q then

(61) h4q(R) =
2q∑
r=0

(−1)r

(r!)2 〈c
rRq, crRq〉.

In particular,

h4 = |R|2 − |cR|2 + 1
4 |c

2R|2 and

h8 = |R2|2 − |cR2|2 + 1
4 |c

2R2|2 − 1
36 |c

3R2|2 + 1
576 |c

4R2|2 .(62)

Remark. The previous corollary improves a similar result of [9] obtained for the
case n = 4q.

Corollary 4.3. Let h be a symmetric bilinear form on an n-dimensional Euclidean
vector space V , Let q be a positive integer such that n ≥ 2q then

(63) s2q(h) =
q∑
r=0

(−1)r+q

(r!)2 〈crhq, crhq〉 .

In particular,

(64) s2(h) = −|h|2 + |ch|2 and s4(h) = |h2|2 − |ch2|2 + 1
4 |c

2h2|2 .

The following proposition can be seen as a generalization of the classical Newton
identities

Proposition 4.4. For 1 ≤ r ≤ n− pq we have
c
(
h(r,pq)(ω)

)
= (n− pq − r + 1)h(r−1,pq)(ω) .

Proof. Using the identity c∗ = ∗g, one easily gets the desired formulas as follows:

c
(
h(r,pq)(ω)

)
= c ∗ gn−pq−rωk

(n− pq − r)! = ∗g
n−pq−r+1Rk

(n− pq − r)!
= (n− pq − r + 1)h(r−1,pq)(ω) .

�

We finish this section by establishing higher algebraic identities. First note
that formula (56) allows to define h(r,2k)(ω) for higher r’s that is in the cases
where r > n− pk. The following theorem provides general algebraic identities and
generalize Theorems 3.8 and 3.6 and Proposition 3.5. It can be proved by imitating
the proof of Theorem 3.6.

Theorem 4.5. Let ω be a symmetric (p, p) double form satisfying the first Bianchi
identity on an Euclidean vector space of dimension n. Then

h(r,pk−pi)(ω) = 0 , for n− pk + pi+ 1 ≤ r ≤ pk − pi .
In particular, we have



ALGEBRAIC IDENTITIES 267

(1) If n = pk is is a multiple of p then

h(r,n−pi)(ω) = 0 for pi+ 1 ≤ r ≤ n− pi .

(2) If n = pk + 1 is then

h(r,n−pi−1)(ω) = 0 for pi+ 2 ≤ r ≤ n− pi− 1 .

Remark that we recover the results of Theorem 3.8 for p = 2, Proposition 3.5
for n = 2k, r = 1, i = 0 and Theorem 3.6 is obtained for n = 2k + 1, r = 2, i = 0.

5. Hyperpfaffians and hyperdeterminants

In this section we briefly discuss interactions between some invariants studied
here in this paper with some invariants in the literature namely hyperdeterminants
and hyperpfafians.

5.1. Pfaffian of Skew-symmetric bilinear forms and the determinant. Let
h be a skew-symmetric bilinear form on the Euclidean vector space (V, g). Then h
can be seen either as a usual 2-form or as a (1, 1) double form.
Suppose dimV = n = 2k is even. We know already that ∗h

n

n! is the determinant of
h once h is seen as a (1, 1) double form, see Section 2. However, if we perform the
same operations on the 2-form h and of course with the ordinary exterior product
of forms and the usual Hodge star operator we obtain another invariant Pf(h)
called the Pfaffian of h. Precisely, we have

(65) Pf(h) = ∗h
k

k! .

It turns out that Pf(h) is a square root of the determinant of h that is (Pf(h))2 =
deth. This identity can be quickly justified as follows:
We proceed by duality, in the case where h is considered as a 2-form, then hk

k! ⊗
hk

k! is
an (n, n) double form. Since the space of (n, n) double forms on V is 1-dimensional
vector space then it is proportional to the double ∗h

n

n! where in the last expression
h is seen as a (1, 1) double form. It turns out that the previous two (n, n) double
forms are equal. To show the desired equation it suffices to compare the image of
the two double forms under the generalized Hodge star operator. From one hand
we have

∗
(hk
k! ⊗

hk

k!

)
= ∗h

k

k! ⊗ ∗
hk

k! = (Pf(h))2 .

On the other hand we have

∗
(
hn

n!

)
= deth.

The Pfaffian satisfies several similar properties to those of the determinant and one
may use the exterior product of exterior forms (as we did here for double forms) to
prove such properties.
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5.2. Pfaffian of 4-forms. Let ω be a 4-form on the Euclidean vector space V .
Remark that ω can be naturally considered as a symmetric (2, 2) double form.
Suppose dimV = n = 4k is a multiple of 4. By definition we have 1

(2k)! ∗ω
2k = hn(ω)

is the hn invariant of ω once it is considered as a (2, 2) double form, see Section 3.
However, if we perform the same operations on the 4-form ω and of course with the
ordinary exterior product of forms and the usual Hodge star operator we obtain a
new invariant Pf(ω), which we shall call the Pfaffian of ω. Precisely, we set

(66) Pf(ω) = ∗ω
k

k! .

Using the same argument as in the above Section 5.1 it is plausible that (Pf(ω))2 =
hn(ω).

5.3. Pfaffians of 2k forms. We now define the Pfaffian for higher forms. Let ω
be a 2k-form on an Euclidean vector space (V, g) of finite dimension n. Remark
that ω can be naturally considered as a (k, k) double form.
Suppose dimV = n = 2kq is a multiple of 2k. By definition we have ∗ ω

2q

(2q)! =
h(0,n)(ω) is the h(0,n) invariant of ω once it is considered as a (k, k) double form,
see Section 4. However, if we perform the same operations on the 2k-form ω and
of course with the ordinary exterior product of forms and the usual Hodge star
operator we obtain another invariant Pf(ω), which we shall call the Pfaffian of ω.
Precisely, we set

(67) Pf(ω) = ∗ω
q

q! .

Using the same simple argument as in Section 5.1 it is plausible that (Pf(ω))2 =
h(0,n)(ω).
It turns out that these Pfaffians coincide with the hyperpfaffians defined first in
[1], see also formula (79) in Section 5.1 of [14].

5.4. Multiforms and Hyperdeterminants. Hyperdeterminants of hyperma-
trices were introduced first by Cayley in 1843. To introduce hyperdeterminants we
need first to briefly introduce a generalization of double forms namely multiforms.
Let (V, g) be an Euclidean real vector space of dimension n. A (k, . . . , k) multiform
is by definition an element of the tensor product ΛkV ∗ ⊗ · · · ⊗ ΛkV ∗. We define
the exterior product of two multiforms in the natural way: for two multiforms
ω1 = θ1 ⊗ · · · ⊗ θr and ω2 = φ1 ⊗ · · · ⊗ φr, we set
(68) ω1ω2 = (θ1 ∧ φ1)⊗ · · · ⊗ (θr ∧ φr) .
We extend also the usual Hodge star operator to multiforms in the obvious way:

∗
(
φ1 ⊗ · · · ⊗ φr

)
= (∗φ1)⊗ · · · ⊗ (∗φr) .

Let ω be a (k, . . . , k) multiform and suppose that the dimension n = pk is a multiple
of k. We define the hyperdeterminant of ω, denoted Det(ω), to be the scalar

(69) Det(ω) = ∗ω
p

p! .
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Obviously, every tensor (hypermatrix) T can be seen as a (1, 1, . . . , 1) multiform,
and under this view the above definition of the hyperdeterminant Det(T ) coincides
with the standard one as in [1, 14].
Let now ω be a k form such that k = pr is a multiple of some positive integer r and
the dimension n of V is a multiple of k say n = qk. Then ω can be naturally seen
as a (p, . . . , p) multiform (r-times). Then the hyperdeterminant of the (p, . . . , p)
multiform ω is related to the hyperpfaffian of the k form ω via the relation

(70)
(
Pf(ω)

)r = Det(ω) .

We recover the results of the previous subsection for r = 2.

6. Final remarks and open question

6.1. Geometric applications of the general algebraic identities. We have
seen in the sequel of the paper that the identity tn(h) = 0 for a bilinear form leads to
a linearized version of the Gauss-Bonnet theorem for compact hypersurfaces of the
Euclidean space. Furthermore, for a (2, 2) double form R, the identity Tn(R) = 0,
for n even and in the context of Riemannian manifolds, is an infinitisimal form of
the general Gauss-Bonnet-Chern theorem for compact manifolds.
It is then natural to ask what differential or topological consequences can be
drawn from the identity Nn−1(R) = 0 for a compact Riemannian manifold of odd
dimension n?
Note that for a 3-dimensionnal Riemannian manifold, the identity Nn−1(R) = 0 for
the Rieman curvature tensor R is equivalent to the vanishing of the Weyl tensor.
The same question can be asked for the other different higher algebraic identities
established here in this paper.

6.2. Spectrum of cofactor transformations of (2, 2) double forms. Let R
be a symmetric (2, 2) double form defined over the n-dimensional Euclidean vector
space (V, g). Denote by λ1, λ2, . . . , λN , where N = n(n−1)

2 , the eigenvalues of the
linear operator Λ2V → Λ2V that is canonically associated to R. For each k with
1 ≤ k ≤ n− 2, the exterior product gkR is a (k + 2, k + 2) symmetric double form
and therefore has real eigenvalues once considered as an operator Λk+2V → Λk+2V .
The eigenvalues of the operator are expected to be polynomials in the eigenvalues
of R. The question here is to find explicit formulas for the eigenvalues of gkR in
terms of λ1, λ2, . . . , λN .
In the case k = n − 2 the answer is trivial as we have in this case one single
eigenvalue and it is equal to

∑N
i=1 λi.

To motivate this question let us recall that the Weitzenböck transformation of
order p, 2 ≤ p ≤ n− 2, of the double form R is given by [10]

Np(R) =
( gcR
p− 1 − 2R

) gp−2

(p− 2)! .

The positivity of the transformation Np(R) has important consequences in Rie-
mannian geometry via the celebrated Weitzenböck formula.
The true question is then to determine the eigenvalues of Np(R) in terms of the
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eigenvalues of R.
More generally, what are the eigenvalues of the exterior products gpRq and the
contractions cpRq in terms of λ1, λ2, . . . , λN?
In particular, find explicit formulas for the invariants h2k(R), for k > 1, in terms
of λ1, λ2, . . . , λN .

6.3. Cofactor transformations vs. Gilkey’s restriction map. Following [3, 4]
we define Ip+1

m,n to be the space of invariant local formulas for symmetric (p, p)
double forms that satisfy the first Bianchi identity and that are homogeneous of
degree n in the derivatives of the metric and which are defined in the category of
m dimensional Riemannian manifolds. In particular I1

m,n = Im,n is the the space
of scalar invariant local formulas and I2

m,n is the space of symmetric 2-form valued
invariants.
Recall that the homogeneity of order n for ω = ω(g) ∈ Ip+1

m,n is equivalent to

ω(λ2g) = 1
λn−2pω(g) ,

for all scalars λ 6= 0.
The last property implies in particular that if ω(g) ∈ Ip+1

m,n then its full contraction
cpω(g) ∈ Im,n and cp−1ω(g) ∈ I2

m,n.
The Gilkey’s restriction map r : Im,n → Im−1,n is closely related to the adjuagate
transformations as we will explain below.
Let ω(g) ∈ Ip+1

m,n , recall that the (1, pq) cofactor transformation of ω is h(1,pq)(ω) =
∗ g
n−pq−1ωq

(n−pq−1)! ∈ I
2
m,n. For a tangent vector v, we have

h(1,pq)(ω)(v, v) = g(n−1)−pqωq

((n− 1)− pq)! (∗v, ∗v).

That is the restriction of the invariant formula Q = ∗ g
n−pqω

(n−pq)! = cpqωq

(pq)! ∈ Im,n to the
(n− 1) dimensional orthogonal complement of the vector v.
More generally, h(r,pq)(ω) is given by r successive applications of Gilkey’s restriction
map to the invariant formula cpqω

(pq)! ∈ Im,n.
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