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Paratopological (topological)

groups with certain networks

Chuan Liu

Abstract. In this paper, we discuss certain networks on paratopological (or topo-
logical) groups and give positive or negative answers to the questions in [13]. We
also prove that a non-locally compact, k-gentle paratopological group is metriz-
able if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn
space with a point-countable cs*-network, which improves some theorems in
[Liu C., Metrizability of paratopological (semitopological) groups, Topology Appl.
159 (2012), 1415–1420], [Liu C., Lin S., Generalized metric spaces with algebraic

structures, Topology Appl. 157 (2010), 1966–1974].
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1. Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such
that the product map of G×G into G is jointly continuous and the inverse map of
G onto itself associating x−1 with arbitrary x ∈ G is continuous. A paratopological

group G is a group G with a topology such that the product map of G×G into
G is jointly continuous. A semitopological group is a group with a topology such
that the product map of G×G into G is separately continuous. A quasitopological

group is a semitopological group and the inverse map is continuous.

Let X be a topological space and F is a subset of X , F is called a sequential
neighborhood of x in X if every sequence converging to x is eventually in F . F
is a sequentially open subset of X if F is a sequential neighborhood of x for each
x ∈ F .

Definition 1.1. Let P =
⋃

x∈X Px be a cover of a space X such that for each
x ∈ X , (a) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px; (b) the family
Px is a network of x in X , i.e., x ∈

⋂

Px, and if x ∈ U with U open in X , then
P ⊂ U for some P ∈ Px.

(1) The family P is called a sn-network (sequential neighborhood network) for
X [12] if each element of Px is sequential neighborhood of x for all x ∈ X . X is
called snf-countable if X has a sn-network P such that each Px is countable.
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(2) The family P is called a so-network (sequentially open network) [12] for
X if each element of Px is a sequentially open neighborhood of X . X is called
sof-countable if X has a so-network P such that each Px is countable.

(3) Fix x ∈ X , Px is said to be a strong so-network at x if Px is a so-network
at x, and for any sequential open set W with x ∈ W , there is a P ∈ Px such that
x ∈ P ⊂ W .

(4) The family P is called a weak base [1] for X if for every A ⊂ X , the set A
is open in X whenever for each x ∈ A there exists P ∈ Px such that P ⊂ A. X
is called weakly first-countable if for each x ∈ X , Px is countable.

We can see that first-countable → sof-countable → snf-countable; first-count-
able → weakly first-countable → snf-countable. A sequential, snf-countable (sof-
countable) space is weakly first-countable (first-countable).

In this paper, we consider the following questions.

Question 1.2 ([13, Question 4.1]). Let G be a snf-countable semitopological

group or quasitopological group. Is G sof-countable?

Question 1.3 ([13, Question 4.3]). Let G be a topological group. Is σG a topo-

logical group?

Question 1.4 ([13, Question 4.5]). Is every snf-countable topological group an
ℵ-space?

Question 1.5 ([13, Question 4.6]). Does every snf-countable ω-narrow topologi-

cal group have a countable sn-network?

Question 1.6 ([13, Question 4.12]). Let G be a paratopological group with a

Gδ-diagonal. If G is a wM -space, is it metrizable?

We shall give positive answers to Question 1.6 (when G is regular) and nega-
tive answers to Questions 1.2, 1.4, 1.5. Ordman and Smith-Thomas [18] gave an
example that the sequential coreflection of a topological group is not a topolog-
ical group, it implies the answer of Question 1.3 is negative, we present another
example for Question 1.3 and give a sufficient and necessary condition for σG to
be a topological group in terms of strong so-network.

By a remainder of a space X we mean the subspace bX \ X of a Hausdorff
compactification bX of X . Arhangel’skii [2] proved that if the remainder of a
Hausdorff compactification of a non-locally compact topological group G has a
point-countable base, then G and bG are separable and metrizable. It is natural
to ask if Arhangel’skii’s result is still valid for a paratopological group. The au-
thor [15] proved that Arhangel’skii theorem is valid for a k-gentle paratopological
group. We could improve the above result by replacing “point-countable base”
with “Fréchet-Urysohn space with a point-countable cs*-network”.

All spaces are Hausdorff unless stated otherwise. The notations N,Q,R denote
natural numbers, rational numbers and real numbers respectively. The letter e
denotes the neutral element of a group. F (X) is a free group on X . Readers may
refer to [2], [7], [10] for notations and terminology not explicitly given here.
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2. Main results

Let X be a topological space, a function d : X ×X → R+ is a symmetric on
the set X if for x, y ∈ X

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x).

A space X is said to be symmetrizable if there is a symmetric d on X satisfying
the following condition: U ⊂ X is open if and only if for each x ∈ U , there exists
ǫ > 0 with B(x, ǫ) ⊂ U . Here B(x, ǫ) = {y ∈ x : d(x, y) ∈ ǫ}.

Example 2.1. There is a separable, snf-countable quasitopological group that is
not sof-countable.

Proof: Let G = R2 with usual addition “+”, then (G,+) is a group. Define
d : G×G → R+ ∪ {0} as follows:

d((x, y), (x′, y′)) =



















|x− x′|, x 6= x′, y = y′;

|y − y′|, x = x′, y 6= y′;

0, x = x′, y = y′;

1, otherwise.

It is easy to check that d(x, y) is a symmetric and (G,+) is a separable, qu-
asitopological group. G is weakly first-countable, in fact, for each x ∈ G, let
Px = {B(x, 1/n) : n ∈ N}, where B(x, 1/n) = {y ∈ G : d(x, y) < 1/n}.

It is easy to see that (0,0) is a cluster point of {(r1, r2) : r1, r2 ∈ Q+}, where
Q+ = {r ∈ Q : r > 0}. If G is first-countable, then there is a sequence {sn :
n ∈ N} ⊂ {(r1, r2) : r1, r2 ∈ Q+} such that sn → (0, 0). d(sn, (0, 0)) → 0 by
[10, Lemma 9.3]. This is a contradiction since d(sn, (0, 0)) = 1. Hence G is not
first-countable. Therefore, G is not sof-countable since a sof-countable sequential
space is first-countable. �

The proof of the following proposition is based on the idea in [13].

Proposition 2.2. Let G be a paratopological group satisfying the condition (w):
for any two sn-networks {Uα(e) : α ∈ Γ}, {Vβ(e) : β ∈ Γ} at e and for any α ∈ Γ,
there exists β ∈ Γ such that Vβ(e) ⊂ Uα(e). Then there is a so-network {Wα(e) :
α ∈ Γ} at e and for each α ∈ Γ, there exists β ∈ Γ such thatWβ(e)Wβ(e) ⊂ Wα(e).

Proof: Since G is a paratopological group, {Uα(e)Uα(e) : α ∈ Γ} is still a sn-
network at e. Let Wα(e) = {x ∈ Uα(e) : xUβ(e) ⊂ Uα(e) for some β ∈ Γ} ⊂
Uα(e). So e ∈ Wα(e) for each α, then {Wα(e) : α ∈ Γ} is a network at e and
satisfies the condition (a) in Definition 1.1, in fact, for any Wα(e),Wβ(e), let
Uγ(e) ⊂ Uα(e) ∩ Uβ(e), Wγ(e) = {x ∈ Uγ(e) : xUδ(e) ⊂ Uγ(e)}, then Wγ(e) ⊂
Wα(e) ∩Wβ(e). We prove that each Wα(e) is sequentially open. For y ∈ Wα(e)
and {yn} is a sequence converging to y, yUβ(e) ⊂ Uα(e). By the condition (w), we
choose γ ∈ Γ such that Uγ(e)Uγ(e) ⊂ Uβ(e). (yUγ(e))Uγ(e) ⊂ yUβ(e) ⊂ Uα(e),
which implies yUγ(e) ⊂ Wα(e). Since yUγ(e) is a sequential neighborhood of y,
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then {yn} is eventually in yUγ(e), hence {yn} is eventually in Wα(e) and Wα(e)
is sequentially open. For α ∈ Γ, choose β ∈ Γ so that Uβ(e)Uβ(e) ⊂ Uα(e). For
y, z ∈ Wβ(e) = {x ∈ Uβ(e) : xUγ(e) ⊂ Uβ(e) for some γ ∈ Γ} ⊂ Uβ(e) we have
yUγ(e) ⊂ Uβ(e), zUγ(e) ⊂ Uβ(e), then yzUγ(e) ⊂ yUγ(e)zUγ(e) ⊂ Uβ(e)Uβ(e) ⊂
Uα(e), that implies yz ∈ Wα(e), and hence Wβ(e)Wβ(e) ⊂ Wα(e). �

Lemma 2.3. Let {Un : n ∈ N} be a decreasing countable network at x and W
be sequential neighborhood of x, then there exists n0 ∈ N such that Un0

⊂ W .

Proof: Suppose not, Un \ W 6= ∅ and pick xn ∈ Un \ W . Then xn → x and
{xn} ∩ W = ∅. This is a contradiction since W is a sequential neighborhood
of x. �

Note that if G is snf-countable, we may assume G has a decreasing countable
sn-network. By Lemma 2.3, a snf-countable paratopological group satisfies the
condition (w).

Corollary 2.4 ([13, Theorem 3.4]). Every snf-countable paratopological group

G is sof-countable.

Since a weakly first-countable space is a sequential snf-countable space and a
sequential sof-countable space is first-countable, we have the following.

Corollary 2.5. Let G be a weakly first-countable paratopological group. Then
G is first-countable.

Definition 2.6. Let (X, τ) be a space. A sequential closure topology στ [8] on
X is defined as follows: O ∈ στ if and only if O is a sequentially open subset in
(X, τ). The topological space (X, στ ) is denoted by σX .

Obviously, σX is a sequential space for any space X . If G is a topological
group, it is easy to see that σG is a quasitopological group.

Theorem 2.7. Let G be a paratopological group. Then σG is a paratopological

group if and only if G has a strong so-network Pe at e satisfying the condition (∗):
for each P1 ∈ Pe, there is a P2 ∈ Pe such that P2P2 ⊂ P1.

Proof: Necessity: Let {Vα(e) : α ∈ Γ} be the local base at e in σG, and let W
be a sequentially open neighborhood of G with e ∈ W , then W is open in σG,
there is a Vβ(e) ∈ {Vα(e) : α ∈ Γ} such that Vβ(e) ⊂ W . Since {Vα(e) : α ∈ Γ}
is a so-network at e in G, then {Vα(e) : α ∈ Γ} is a strong so-network at e in G.
Since σG is a paratopological group and {Vα(e) : α ∈ Γ} is the local base at e, it
is easy to see that the condition (∗) is satisfied.

Sufficiency: Suppose G has a strong so-network {Vα(e) : α ∈ Γ} at e such
that for each Vα(e), Vβ(e)Vβ(e) ⊂ Vα(e). Fix a, b ∈ G, and let U be an open
neighborhood (in σG) of ab. Since (ab)−1U is a sequentially open neighborhood of
e in G, there is a V ∈ {Vα(e) : α ∈ Γ} such that V ⊂ (ab)−1U , then abV ⊂ U . Let
W,W ′ ∈ {Vα(e) : α ∈ Γ} such that WW ⊂ V , W ′ ⊂ W and W ′b ⊂ bW (note that
e ∈ bWb−1 is sequentially open in G). Then aW ′, bW ′ are open neighborhoods of
a, b in σG respectively, aW ′bW ′ ⊂ abWW ′ ⊂ abWW ⊂ abV ⊂ U . �
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Corollary 2.8. Let G be a topological group. Then σG is a topological group

if and only if G has a strong so-network Pe at e satisfying the condition (∗): for
each P1 ∈ Pe, there is a P2 ∈ Pe such that P2P2 ⊂ P1.

Corollary 2.9 ([13, Theorem 4.4]). Let G be a snf-countable topological group.

Then σG is a topological group.

Proof: By Proposition 2.2, G has a countable so-network Pe at e satisfying the
condition (∗): for each P1 ∈ Pe, there is a P2 ∈ Pe such that P2P2 ⊂ P1. We
also can see that Pe is a strong so-network at e by Lemma 2.3. Then σG is a
topological group by Corollary 2.8. �

Proposition 2.10. Let F (X) be a free topological group on a sequential spaceX .
Then σF (X) is a topological group if and only if F (X) is a sequential space.

Proof: Sufficiency is obvious.
Necessity: Suppose F (X) is not sequential, then the topology on σF (X) is

strictly finer than the topology on F (X) and the topology on X as a subspace
of σF (X) is compatible with the original topology on X (note that X is sequen-
tial). However, the topology on F (X) is the finest group topology on F (X) that
generates on X its original topology [6, Corollary 7.1.8]. Hence σF (X) is not a
topological group. �

Remark: Usually, the sequential coreflection of a topological group need not
to be a topological group. Let Sω1

be the space obtained by identifying all limit
points of the topological sum of ω1 convergent sequences. Then Sω1

is Fréchet-
Urysohn. Let F (Sω1

) be the free topological group on Sω1
, by [6, Theorem 7.1.13

(b)], F (Sω1
) contains a closed copy of Sω1

×Sω1
. Since Sω1

×Sω1
is not a sequential

space [9], then F (Sω1
) is not a sequential space, hence its sequential coreflection

σF (Sω1
) is not a topological group by Proposition 2.10.

A subset B of a paratopological group G is called ω-narrow in G if, for each
neighborhood U of the neutral element of G, there is a countable subset F of G
such that B ⊂ FU ∩ UF .

Let X = Πi∈IXi be the product of spaces Xi, with i ∈ I. A standard base of
the ω-box topology on X consists of the ω-cubes B = Πi∈IBi, where each Bi is
open in Xi (and, clearly, the number of indices i ∈ I with Bi 6= Xi is countable).

Example 2.11. There is a Lindelöf (hence, ω-narrow), snf-countable, zero-dimen-
sional topological group G such that Gn is topologically isomorphic to G, w(G) =
c and G does not have a σ-locally finite network.

Proof: Let D = {0, 1} be the discrete topological group with operation “addi-
tion”. In the product group ΠDc, consider the subgroupG = σΠDc = {x ∈ ΠDc :
|supp (x)| < ω}, where supp (x) denotes the set {α ∈ ω1 : x(α) 6= 0}. Endow G
with ω-box topology T . Then (G,+, T ) is a zero-dimensional topological group.
It is proved in [6, Example 4.4.11] that G is a Lindelöf topological P -group, Gn

is topologically isomorphic to G and w(G) = c.
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Claim. Every countable subset of G does not have a cluster point.

Suppose not, then there is a countable subset A of G such that a ∈ A \ {a} for
some a ∈ G. Put J = ∪{supp (x) : x ∈ A \ {a}}, then J is a countable subset
of ω1. Let V = ΠYi ∩ G, where p(Yi) = D if i /∈ J ∪ supp (a); p(Yi) = {1} if
i ∈ supp (a); p(Yi) = {0} if i ∈ J \ supp (a). V is an open neighborhood of a since
V = ΠYi is open in ΠDc that is endowed with ω-box topology. It is easy to see
that V ∩ A = ∅. This is a contradiction.

1) G is snf-countable.
By Claim, there is no non-trivial convergent sequence in G, {x} is a sequential

neighborhood of x ∈ G, hence G is snf-countable.

2) G does not have σ-locally finite network.
Suppose that G has a σ-locally finite network. Since G is a Lindelöf space,

G is a cosmic space (i.e. G has a countable network). Hence G is hereditarily
separable. This is a contradiction since |G| > ω and every countable subset of G
is discrete by Claim. �

Remark: The topological group G in Example 2.11 is neither an ℵ-space nor
a cosmic space (i.e. a space with countable network). Hence the answers for
Questions 1.4, 1.5 are negative. However, the group G in Example 2.11 is not
separable. Note that a separable topological group is ω-narrow [6, Corollary 3.4.8],
it is natural to ask if there is a Lindelöf, separable, snf-countable topological group
that is not a σ-space.

In what follows, we construct a Lindelöf, separable, snf-countable topological
group that is not a σ-space.

Simon [19] proved the following:

Theorem 2.12. There is a countable dense subset A of ΠDc such that |H | = 2c

for any infinite subset H ⊂ A.

The following proposition comes from a discussion with Arhangel’skii.

Proposition 2.13. There is a Lindelöf, separable space Y satisfying the follow-

ing:

(1) Y is not a σ-space (i.e. a space having no σ-locally finite network);
(2) every compact subset of Y is finite;

(3) Y n is Lindelöf for each n ∈ N.

Proof: Let A(ΠDc) = X ∪X1 be the Alexandroff duplicate of X = ΠDc, where
X1 is a copy of X , and let G be the Lindelöf topological group of Example 2.11.
Since G is zero-dimensional and w(G) = c, then G is homeomorphic to a subspace
of X = ΠDc by [7, Theorem 6.2.16]. By Theorem 2.12, we can choose a countable
dense subset A of X such that |H | = 2c for any infinite subset H ⊂ A. Let
A1 ⊂ X1 be a copy of A, and let Y = G ∪ A1. Note that G is a Lindelöf space
that is not a σ-space and A1 is countable, then Y is a Lindelöf, separable space
that is not a σ-space. We prove each compact subset of Y is finite. Let K be
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a compact subset of Y , then K∩G is compact in Y since G is a closed subset of Y .
By Claim in Example 2.11, K∩G is finite. If K∩A1 is infinite, by Theorem 2.12,
|K ∩ A1| = 2c. K ∩ A1 ⊂ K ⊂ Y , then K ∩ A1∩G ⊂ K∩G is an infinite compact
subset of G. This is a contradiction. So K ∩A1 is finite, therefore K is finite.

Note that Gn is Lindelöf for each n and A1 is countable, it is easy to see that
Y n is a union of countably many Lindelöf subspaces, hence Y n is Lindelöf for
each n. �

Theorem 2.14. There is a Lindelöf, separable, snf-countable topological group
that is not a σ-space.

Proof: Let Y be the space in Proposition 2.13, and let F (Y ) be the free topo-
logical group on Y . Since Y is separable and Y n is Lindelöf for each n, F (Y ) is
also Lindelöf and separable by [6, Corollary 7.1.18, Theorem 7.1.13]. F (Y ) is not
a σ-space since Y is not a σ-space. We prove that each compact subset of F (Y )
is finite. Let K be a compact subset of F (Y ). Since Y is Dieudonné-complete,
by [5, Corollary 1.8], there exist a compact Z ⊂ Y and n ∈ N such that K is a
continuous image of a subspace in Zn. Z is finite since each compact subset of Y
is finite, Zn is also finite, hence K is finite and F (Y ) is snf-countable. �

A space X is a q-space if X has a g-function satisfying: for x ∈ X , if xn ∈
g(n, x), then {xn} has a cluster point in X . A space X is a wM -space if there
exists a sequence (Un) of open covers of X such that if xn ∈ st2(x,Un) for each
n ∈ N, then the set {xn : n ∈ N} has a cluster point in X .

Theorem 2.15. Let G be a regular paratopological group in which each singleton

is a Gδ-set. If G is a wM -space, then G is metrizable.

Proof: Since G is a wM -space, then G is a q-space. Moreover, G is first-
countable since a regular q-space in which each singleton is a Gδ-set is first-
countable [17], hence G has a regular Gδ-diagonal [14]. Therefore, G is metrizable
since a wM -space with a regular Gδ-diagonal is metrizable [20]. �

Remark: Theorem 2.15 gives a positive answer to Question 1.6 when G is
regular and T1. But the author doesn’t know if we can replace “paratopological
group” with “semitopological group” in Theorem 2.15.

Next, we discuss remainder of a paratopological group in its Hausdorff com-
pactification. Arhangel’skii [2] proved the following.

Theorem 2.16 ([2]). Let G be a non-locally compact topological group and the

remainder Y = bG\G have a point-countable base. Then G and bG are separable
and metrizable.

Let f : X → Y be a map. The map f is called k-gentle [4] if for each compact
subset F of X the image f(F ) is also compact. A paratopological group is called
k-gentle if the inverse map x → x−1 is k-gentle. Liu and Lin [16] improved the
result by replacing “point-countable base” with “pseudo open s-image of a space
with a point-countable base”. On the other hand, the author also proved the
following theorem on k-gentle, paratopological group.
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Theorem 2.17 ([15]). Let G be a non-locally compact, k-gentle paratopological
group and the remainder Y = bG \ G have a point-countable base. Then G and
bG are separable and metrizable.

Next, we are able to improve both theorems in [15], [16].
A family S of subsets of a space X is said to be a κ-sensor [3] at x ∈ X if, for

each open neighborhood O(x) of x and each open set U such that x ∈ U , there
exists P ∈ S satisfying the following conditions: P ⊂ O(x) and x ∈ U ∩ P .

If there exists a countable κ-sensor at x, the space is said to be countably
κ-sensitive at x [3].

The family P is called a cs*-network for X [12] if, whenever x ∈ X and
a sequence S converges to x ∈ U with U open, there exists P ∈ P such that
x ∈ P ⊂ U and P contains a subsequence of S.

Tanaka [21] proved that a space X is a pseudo open s-image of a space with
a point-countable base if and only if X is a Fréchet-Urysohn space with a point-
countable cs*-network.

Lemma 2.18. Let X be a Fréchet-Urysohn space with a point-countable cs*-
network. Then X is of countably κ-sensitive at each x ∈ X .

Proof: X is a Fréchet-Urysohn space with a point-countable cs*-network P . Fix
x ∈ X , an open neighborhood O(x) of x and an open set U with x ∈ U . Let
Px = {P ∈ P : x ∈ P}, |Px| ≤ ω. Since X is Fréchet-Urysohn, there is a sequence
S ⊂ U converging to x. Px is a cs*-network at x, then there is P ∈ Px such that
x ∈ P ⊂ O(x) and P contains a subsequence S1 of S. x ∈ S1 ⊂ P ∩ U . Hence Px

is a countable κ-sensor at x. �

Theorem 2.19. Let G be a non-locally compact, k-gentle paratopological group.
If the remainder Y = bG \ G is a pseudo open s-image of a space with a point-
countable base, then G and bG are separable and metrizable.

Proof: By [4, Theorem 4.4], Y is either Lindelöf or pseudocompact. If Y is
Lindelöf, then G is a topological group [4, Corollary 4.5]. Hence G and bG are
separable and metrizable by [16, Theorem 5.2].

If Y is pseudocompact, by Lemma 2.18, Y is of countably κ-sensitive at each
x ∈ Y . Then Y is first-countable by [3, Theorem 1.5]. Y has a point-countable
base since a first-countable, quotient s-image of a space with a point-countable
base has a point-countable base [11]. Therefore, G and bG are separable and
metrizable by Theorem 2.17. �
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