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NEW COMPLEXITY ANALYSIS OF A FULL NESTEROV–
TODD STEP INFEASIBLE INTERIOR-POINT ALGORITHM
FOR SYMMETRIC OPTIMIZATION

Behrouz Kheirfam and Nezam Mahdavi-Amiri

A full Nesterov–Todd step infeasible interior-point algorithm is proposed for solving linear
programming problems over symmetric cones by using the Euclidean Jordan algebra. Using a
new approach, we also provide a search direction and show that the iteration bound coincides
with the best known bound for infeasible interior-point methods.

Keywords: interior-point methods, symmetric cone optimization, Euclidean Jordan alge-
bra, polynomial complexity

Classification: 90C51

1. INTRODUCTION

In recent years, there have been extensive investigations concerning the analysis of
interior-point methods (IPMs) for symmetric cone optimization (SCO). SCO includes
solving problems such as linear optimization (LO), semidefinite optimization (SDO)
and second-order cone optimization (SOCO). The foundation for solving these problems
was laid by Nesterov and Nemirovskii [7]. Nesterov and Todd [8] proposed symmetric
interior-point algorithms on a special class of cones called self-scaled cones. The early
work connecting Jordan algebras and optimization is due to Güler [5]. He observed that
the family of the self-scaled cones is identical to the set of symmetric cones for which
there exists a complete classification theory. Faybusovich [2] first extended primal-dual
IPMs for semidefinite optimization (SDO) to SCO by using Euclidean Jordan algebras.
Muramatsu [6] presented a commutative class of search directions for SCO and analyzed
the complexities of primal-dual IPMs for SCO. Rangarajan [9] proved the polynomial-
time convergence of infeasible IPMs (IIPMs) for conic programming over symmetric
cones using a wide neighborhood of the central path for a commutative family of search
directions. Subsequently, Schmieta and Alizadeh [12] introduced primal-dual IPMs for
SCO extensively under the framework of Euclidean Jordan algebra. In [10], an IIPM
for LO was proposed by Roos. It differs from the classical IIPMs, since the new method
uses only full steps which has the advantage that no line searches are needed. Recently,
Gu et al. [4] have extended Roos’ full-Newton step IIPM for LO to full Nesterov–Todd
step (NT-step) IIPM for SCO by using Jordan algebras.
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Motivated by the works mentioned above, we propose another version of Roos’ al-
gorithm for SCO which differs in the feasibility step. We show, by a simple analytical
development, that the iteration bound coincides with the best-known iteration bound
for IIPMs. In our approach, as in [4, 10], the size of the residual vectors reduces with
the same speed as the duality gap.

The remainder of our work is organized as follows: In Section 2, we first briefly
recall the properties of symmetric cones and its associated Euclidean Jordan algebras.
Then, after giving the problem’s background, we propose an algorithm with the modified
feasibility steps. Section 3 is devoted to the analysis of the new feasibility steps, which
is the main part of our work. There, the final iteration bound is also derived. Finally,
we conclude in Section 4.

2. PRELIMINARIES

2.1. Euclidean Jordan algebra

Let V be an n-dimensional vector space over R. (V, ◦, 〈., .〉) is called an n-dimensional
Euclidean Jordan algebra with rank r if there exists a bilinear map ◦ : V ×V → V such
that x◦y = y◦x, x◦(x2 ◦y) = x2 ◦(x◦y), where x2 = x◦x, for all x, y ∈ V with an inner
product 〈., .〉 which is associative. A Jordan algebra has an identity element, if there
exists a unique element e ∈ V such that x ◦ e = e ◦ x = x holds, for all x ∈ V . The set
K = {x2 : x ∈ V } is called the cone of squares of Euclidean Jordan algebra (V, ◦, 〈., .〉).
A cone is symmetric if and only if it is the cone of squares of some Euclidean Jordan
algebra. An element c ∈ V is idempotent if c◦c = c. Two elements x and y are orthogonal
if x ◦ y = 0. An idempotent c is primitive if it is nonzero and can not be expressed by
sum of two other nonzero idempotents. A set of primitive idempotents {c1, c2, . . . , ck}
is called a Jordan frame if ci ◦ cj = 0, for any i 6= j ∈ {1, 2, . . . , k} and

∑k
i=1 ci = e. For

any x ∈ V , let r be the smallest positive integer such that {e, x, x2, · · · , xr} is linearly
dependent; r is called the degree of x and is denoted by deg(x). The rank of V , denoted
by rank(V ), is defined as the maximum of deg(x) over all x ∈ V . An element x ∈ V is
called regular iff its degree equals the rank of V . Since “ ◦ ” is a bilinear map, for every
x ∈ V , there exists a matrix L(x) such that for every y ∈ V, x ◦ y = L(x)y. For each
x ∈ V, define

P (x) := 2L(x)2 − L(x2),

where, L(x)2 = L(x)L(x). The map P (x) is called the quadratic representation of V .
For a regular element x ∈ V , since {e, x, x2, . . . , xr} is linearly dependent, there are

real numbers a1(x), . . . , ar(x) such that the minimal polynomial of every regular element
x is given

f(λ;x) = λr − a1(x)λr−1 + . . . + (−1)rar(x),

which is the characteristic polynomial of the regular element x. The coefficient a1(x) is
called the trace of x, denoted as tr(x). The coefficient ar(x) is called the determinant
of x, denoted as det(x).
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Theorem 2.1. (Spectral decomposition, Theorem III.1.2 in [1]) Let x ∈ V . Then there
exists a Jordan frame {c1, c2, . . . , cr} and real numbers λ1(x), . . . , λr(x) such that

x =
r∑

i=1

λi(x)ci.

The numbers λi(x) (with their multiplicities) are the eigenvalues of x. Furthermore,

tr(x) =
r∑

i=1

λi(x), det(x) =
r∏

i=1

λi(x).

By using eigenvalues, we may extend the definition of any real valued, continuous
univariate function to elements of a Euclidean Jordan algebra. Particularly, we have

Inverse: x−1 :=
∑r

i=1 λ−1
i (x)ci, whenever all λi 6= 0 and undefined otherwise;

Square root: x
1
2 :=

∑r
i=1 λ

1
2
i (x)ci, whenever all λi ≥ 0 and undefined otherwise;

Square: x2 :=
∑r

i=1 λ2
i (x)ci.

The inner product 〈·, ·〉 is defined by 〈x, y〉 = tr(x◦y) for any x, y ∈ V . Thus, we can
define norm on V by ‖x‖F =

√
tr(x2) =

√∑r
i=1 λi(x)2 = ‖λ(x)‖. Note that, since e =

c1 +c2 + . . .+cr has eigenvalue 1, with multiplicity r, it follows that tr(e) = r, det(e) = 1
and ‖e‖F =

√
r.

We say that two elements x and s in V are similar, denoted as x ∼ s, if x and s share
the same set of eigenvalues. We say x ∈ K if and only if λi ≥ 0, for all i = 1, 2, · · · , r,
and x ∈ intK if and only if λi > 0, for all i = 1, 2, · · · , r.

For a comprehensive study on Jordan algebra and symmetric cones, the reader is
referred to [1, 14]. Here, we outline some needed main results on Euclidean Jordan
algebra and symmetric cones for the analysis of our algorithm.

Lemma 2.2. (Lemma 14 in [12]) Let x, s ∈ V . Then, the eigenvalues of x + s are
bounded as follows:

λmin(x + s) ≥ λmin(x)− ‖s‖F , λmax(x + s) ≤ λmax(x) + ‖s‖F ,

where λmin(x) and λmax(x) denote the smallest eigenvalue and the largest eigenvalue of
x respectively.

Lemma 2.3. (Theorem III.2.1 in [1]) Let V be a Euclidean Jordan algebra. Then, K is
a symmetric cone and is the set of elements x in V for which L(x) is positive semidefinite.
Furthermore, if x is invertible, then P (x)intK = intK.

Lemma 2.4. (Lemma 2.15 in [4]) If x ◦ s ∈ intK, then det(x) 6= 0.

Lemma 2.5. (Proposition 21 in [12]) Let x, s, u ∈ intK. Then,

(i) P (x
1
2 )s ∼ P (s

1
2 )x.

(ii) P
(
(P (u)x)

1
2

)
P (u−1)s ∼ P (x

1
2 )s.
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Lemma 2.6. (Proposition 3.2.4 in [14]) Let x, s ∈ intK, and w be the scaling point of

x and s. Then,
(
P (x

1
2 )s

) 1
2 ∼ P (w

1
2 )s.

Lemma 2.7. (Theorem 4 in [13]) Let x, s ∈ intK. Then,

λmin(P (x)
1
2 s) ≥ λmin(x ◦ s).

Lemma 2.8. (Lemma 30 in [12]) Let x, s ∈ intK. Then,

‖P (x)
1
2 s− e‖F ≤ ‖x ◦ s− e‖F .

Lemma 2.9. (Lemma 2.9 in [9]) Given x ∈ intK, we have

‖x− x−1‖F ≤ ‖x2 − e‖F

λmin(x)
.

2.2. Problem background

Let V be a Euclidean Jordan algebra of dimension n with rank r, and K be its associated
cone of squares. Consider the following primal and dual problems:

min
{
〈c, x〉 : Ax = b, x ∈ K

}
, (SP)

and
max

{
bT y : AT y + s = c, s ∈ K

}
, (SD)

where, c and the rows of A lie in V , and b ∈ Rm. Without loss of generality, we assume
that the rows of A are linearly independent.

As usual for IIPMs, we use the starting point as in [4] that one knows a positive scalar
ξ such that x∗ + s∗ �K ξe for some optimal solution (x∗, y∗, s∗) corresponding to (SP)
and (SD) such that tr(x∗ ◦ s∗) = 0 and the initial iterates are (x0, y0, s0) = ξ(e, 0, e),
with e being an identity element of V . Using tr(x0 ◦ s0) = rξ2, the total number of
iterations for the algorithm in [4] is bounded above by

16r log
max{rξ2, ‖r0

p‖F , ‖r0
d‖F }

ε
, (1)

where, r0
p = b−Ax0 and r0

d = c−AT y0 − s0, that is, r0
p and r0

d are the initial values of
the primal and dual residuals.

To describe our aim, we recall the main ideas underlying the algorithm in [4]. For
any ν with 0 < ν ≤ 1, we consider the perturbed problem

min
{
〈c− νr0

d, x〉 : b−Ax = νr0
p, x ∈ K

}
, (Pν)

and its dual

max
{
(b− νr0

p)T y : c−AT y − s = νr0
d, s ∈ K

}
. (Dν)

Note that if ν = 1, then x = x0 is a strictly feasible solution of (Pν) and (y, s) = (y0, s0)
is a strictly feasible solution of (Dν). We conclude that if ν = 1, then (Pν) and (Dν)
are strictly feasible, meaning that both perturbed problems (Pν) and (Dν) satisfy the
well-known interior-point condition (IPC). More generally, one has the following result
(Lemma 4.1 in [4]).
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Lemma 2.10. Let (SP) and (SD) be feasible and 0 < ν ≤ 1. Then, the perturbed
problems (Pν) and (Dν) satisfy the IPC.

Assuming that (SP) and (SD) are feasible, it follows from Lemma 2.10 that the
problems (Pν) and (Dν) satisfy the IPC, for each 0 < ν ≤ 1. Then, their central paths
exist, meaning that the system

b−Ax = νr0
p, x ∈ K, (2)

c−AT y − s = νr0
d, s ∈ K, (3)

x ◦ s = µe, (4)

has a unique solution, for any µ > 0. This solution is denoted as (x(µ, ν), y(µ, ν), s(µ, ν)).
These are the µ-centers of the perturbed problems (Pν) and (Dν). Now, if µ = νµ0,
then the solution should be denoted by (x(ν), y(ν), s(ν)). With this notation, one has
(x(1), y(1), s(1)) = (x0, y0, s0) = (ξe, 0, ξe) with µ0 = ξ2. We measure the proximity of
iterate (x, y, s) to the µ-centers of the perturbed problems (Pν) and (Dν) by the quantity

δ(x, s;µ) := δ(v) := 1
2‖v

−1 − v‖F = 1
2

√√√√ r∑
i=1

(
λ−1

i (v)− λi(v)
)2

, (5)

where
v :=

P (w)−
1
2 x

√
µ

[
=

P (w)
1
2 s

√
µ

]
, (6)

and w = P (x)
1
2
(
P (x)

1
2 s

)− 1
2

[
= P (s)−

1
2
(
P (s)

1
2 x

) 1
2
]

is the Nesterov–Todd scaling point
of x and s (see Lemma 3.2 in [3]).

Initially, we have δ(x, s;µ) = 0. In the sequel, we assume that at the start of each
iteration, δ(x, s;µ) is smaller than or equal to a threshold value τ > 0. This certainly
holds at the start of the first iteration.

We now describe one main iteration of the algorithm given in [4]. The algorithm
begins with an infeasible interior-point (x, y, s) such that (x, y, s) is feasible for the
perturbed problems (Pν) and (Dν), tr(x ◦ s) = rµ and δ(x, s;µ) ≤ τ . Each main
iteration consists of a feasibility step and a few centering steps. The feasibility step
serves to get iterates (xf , yf , sf ) that are strictly feasible for (Pν+) and (Dν+) with
ν+ := (1− θ)ν, θ ∈ (0, 1), and such that δ(xf , sf ;µ+) ≤ 1√

2
, i. e., (xf , yf , sf ) lies in the

quadratic convergence neighborhood with respect to the µ+-center of (Pν+) and (Dν+).
Then, by performing a few centering steps, starting from (xf , yf , sf ) and targeting at
the µ+-center of (Pν+) and (Dν+), we get the iterate (x+, y+, s+) that is feasible for
(Pν+) and (Dν+) and such that tr(x+ ◦ s+) = µ+r and δ(x+, s+;µ+) ≤ τ . This process
is repeated until the norms of the residuals and tr(x ◦ s) are less than some prescribed
accuracy parameter ε.

For the feasibility step, the search directions ∆fx,∆fy and ∆fs are defined by the
system

A∆fx = θνr0
p (7)

AT ∆fy + ∆fs = θνr0
d (8)

P (w−
1
2 )x ◦ P (w

1
2 )∆fs + P (w

1
2 )s ◦ P (w−

1
2 )∆fx = (1− θ)µe− P (w−

1
2 )x ◦ P (w

1
2 )s, (9)
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where, θ ∈ (0, 1).

After a feasibility step, the new iterates

xf = x +4fx, yf = y + ∆fy, sf = s +4fs,

are still interior points, i. e., xf , sf ∈ intK, since θ is small enough and δ(xf , sf ;µ+) ≤
1√
2
. In the centering step, starting at the iterates (x, y, s) = (xf , yf , sf ) and targeting at

the µ-centers, the search directions ∆x,∆y and ∆s are the usual Nesterov–Todd (NT)
directions, defined by

A∆x = 0
AT ∆y + ∆s = 0

P (w−
1
2 )x ◦ P (w

1
2 )∆s + P (w

1
2 )s ◦ P (w−

1
2 )∆x = µe− P (w−

1
2 )x ◦ P (w

1
2 )s.

Denoting the components of the iterate after a centering step by x+, y+ and s+, we
recall the following result [4].

Lemma 2.11. If δ(v) < 1, then the full Nesterov–Todd step is strictly feasible, i. e., x+

and s+ are positive, and 〈x+, s+〉 = µtr(e). Moreover, if δ(v) ≤ 1√
2
, then δ(v+) ≤ δ(v)2.

Now, define

df
x :=

P (w)−
1
2 ∆fx

√
µ

, df
s :=

P (w)
1
2 ∆fs

√
µ

. (10)

The system defining the search directions ∆fx,∆fy and ∆fs can be expressed in terms
of the scaled directions df

x and df
s as follows

Ādf
x = θνr0

p,

ĀT ∆y

µ
+ df

s = 1√
µθνP (w)

1
2 r0

d,

df
x + df

s = (1− θ)v−1 − v,

(11)

where, Ā =
√

µAP (w)
1
2 .

The main contribution of our work here is a modification of the feasibility step. We
present a different algorithm, obtained by changing the definition of the feasibility step
via replacing the third equation of (11) by df

x + df
s = 0. We will see this simplifies the

analysis of the algorithm, whereas the iteration bound essentially remains the same. We
now give a more formal description of Algorithm 1 below.
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Algorithm 1: A full Nesterov–Todd step IIPM for SCO

Input :
accuracy parameter ε > 0,
barrier update parameter θ, 0 < θ < 1,

and threshold parameter 0 < τ ≤ 1√
2
.

begin
x := ξe; y := 0; s := ξe; µ := µ0 = ξ2; ν = 1;

while max
(
rµ, ‖rp‖F , ‖rd‖F

)
> ε do

feasibility step :
(x, s, y) := (x, s, y) + (∆fx,∆fs,∆fy);

µ− update :
µ := (1− θ)µ;

centering step :
while δ(x, s;µ) ≥ τ do

(x, y, s) := (x, y, s) + (∆x,∆y, ∆s)
end while

end while
end.

3. ANALYSIS OF THE FEASIBILITY STEP

Let x, y and s denote the components of the iterate at the start of an iteration, with
tr(x ◦ s) = rµ and δ(x, s;µ) ≤ τ . These certainly hold at the start of the first iteration,
because we have tr(x0 ◦ s0) = rξ2 and δ(x0, s0;µ0) = 0.

3.1. Effect of the feasibility step

According to Lemma 2.11, we need to show that δ(xf , sf ;µ+) ≤ 1√
2

after the feasibility
step, that is, the new iterates are within the region where the NT process targeting at
the µ+-centers of (Pν+) and (Dν+) is quadratically convergent. Using (10), we have

xf = x + ∆fx =
√

µ(P (w)
1
2 (v + df

x),

sf = s + ∆fs =
√

µP (w)−
1
2 (v + df

s ).
(12)

Therefore, by df
x + df

s = 0, we have

(v + df
x) ◦ (v + df

s ) = v2 + v ◦ (df
x + df

s ) + df
x ◦ df

s = v2 − (df
x)2. (13)

Since P (w)
1
2 and P (w)−

1
2 are automorphisms of intK (Lemma 2.3), xf and sf belong

to intK if and only if v+df
x and v+df

s belong to intK. The next lemma gives conditions
for strict feasibility of the full NT-step.

Lemma 3.1. The iterate (xf , yf , sf ) is strictly feasible if v ± df
x ∈ intK.
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P r o o f . Introduce a step length α with α ∈ [0, 1] and define

vα
x = v + αdf

x, vα
s = v − αdf

x.

We thus have v0
x = v, v0

s = v, v1
x = v + df

x and v1
s = v − df

x. It follows that

vα
x ◦ vα

s = (v + αdf
x) ◦ (v − αdf

x) = v2 − (αdf
x)2. (14)

If v ± df
x ∈ intK, then we have (df

x)2 ≺K v2. Substituting this into (14), we get

vα
x ◦ vα

s �K (1− α2)v2.

Since v ∈ intK, we have
vα

x ◦ vα
s �K 0.

By Lemma 2.4, it follows that det(vα
x ) 6= 0 and det(vα

s ) 6= 0, for α ∈ [0, 1]. Since
det(v0

x) = det(v0
s) = det(v) > 0, by continuity, det(vα

x ) and det(vα
s ) stay positive, for

all α ∈ [0, 1]. Moreover, by Theorem 2.1, this implies that all the eigenvalues of vα
x and

vα
s stay positive for all α ∈ [0, 1]. Hence, we can conclude that all the eigenvalues of v1

x

and v1
s are nonnegative. Therefore, v ± df

x ∈ intK, completing the proof. �

Lemma 3.2. (Lemma II.60 in [11]) If δ := δ(v) is defined as (5), then

1
ρ(δ)

≤ λi(v) ≤ ρ(δ), i = 1, 2, . . . , r,

where, ρ(δ) := δ +
√

1 + δ2.

Assuming v ± df
x �K 0, which according to Lemma 3.1 implies that the iterate

(xf , yf , sf ) is strictly feasible, we proceed by deriving an upper bound for δ(xf , sf ;µ+).
Let wf be the scaling point of xf and sf . Denoting the v-vector after the feasibility step
with respect to the µ+-center as vf , we have, according to (5) and (6),

δ(xf , sf ;µ+) := δ(vf ) :=
1
2
‖(vf )−1 − vf‖F , (15)

where,

vf :=
P (wf )−

1
2 xf√

µ(1− θ)

[
=

P (wf )
1
2 sf√

µ(1− θ)

]
. (16)

Lemma 3.3. (Lemma 3.4 in [4]) One has

(vf )2 ∼ P (v + df
x)

1
2 (v + df

s )
1− θ

.

Lemma 3.4. We have

λmin

(
(vf )2

)
≥ 1

1− θ

( 1
ρ(δ)2

− ‖df
x‖2F

)
.
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P r o o f . By using Lemmas 3.3, 2.7, (13), Lemma 2.2 and Lemma 3.2, we get

λmin

(
(vf )2

)
=

1
1− θ

λmin

(
P (v + df

x)
1
2 (v + df

s

)
≥ 1

1− θ
λmin

(
(v + df

x) ◦ (v + df
s )

)
=

1
1− θ

λmin

(
v2 − (df

x)2
)

≥ 1
1− θ

(
λmin(v2)− ‖df

x‖2F
)

≥ 1
1− θ

( 1
ρ(δ)2

− ‖df
x‖2F

)
.

This completes the proof. �

Lemma 3.5. We have

‖e− (vf )2‖F ≤
√

rθ + 2(1 + ρ(δ))δ + ‖df
x‖2F

1− θ
.

P r o o f . By using Lemmas 3.3, 2.8 and properties of the Frobenius norm, we have

‖e− (vf )2‖F =
∥∥∥e− P

( v + df
x√

1− θ

) 1
2
( v + df

s√
1− θ

)∥∥∥
F

≤
∥∥∥( v + df

x√
1− θ

)
◦

( v + df
s√

1− θ

)
− e

∥∥∥
F

=
∥∥∥v2 − (df

x)2

1− θ
− e

∥∥∥
F

≤ 1
1− θ

(√
rθ + ‖e− v2‖F + ‖df

x‖2F
)
, (17)

where, the last inequality follows from the triangle inequality. On the other hand, using
(5), the inequality |1− t| ≤ |t−1 − t|, for all t > 0, and Lemma 3.2, we obtain

‖e− v2‖F ≤ ‖e− v‖F + ‖v − v2‖F ≤ 2δ + λmax(v)2δ ≤ 2δ(1 + ρ(δ)). (18)

Substituting the bound of (18) into (17), the result follows. �

Using lemmas 3.4, 3.5 and 2.9, we have the following result.

Lemma 3.6. We have

2δ(vf ) ≤
ρ(δ)

(√
rθ + 2(1 + ρ(δ))δ + ‖df

x‖2F
)√

(1− θ)
(
1− ρ(δ)2‖df

x‖2F
) .



892 B. KHEIRFAM AND N. MAHDAVI-AMIRI

Needing δ(vf ) ≤ 1√
2
, it follows from Lemma 3.6 that it is sufficient to have

ρ(δ)
(√

rθ + 2(1 + ρ(δ))δ + ‖df
x‖2F

)√
(1− θ)

(
1− ρ(δ)2‖df

x‖2F
) ≤

√
2.

At this stage, we choose

τ =
1
16

, θ =
α

2
√

r
, α ≤ 1. (19)

Then for r ≥ 2 and δ ≤ τ we have ρ(δ) ≤ ρ(τ) ≤ 11
10 and 1 − θ ≥ 1 − 1

2
√

r
≥ 3

5 . In this
case, we obtain

ρ(δ)
(√

rθ + 2(1 + ρ(δ))δ + ‖df
x‖2F

)√
(1− θ)

(
1− ρ(δ)2‖df

x‖2F
) ≤

671
800 + 11

10‖d
f
x‖2F√

3
5

(
1− 121

100‖d
f
x‖2F

) .

It is sufficient to have
671
800 + 11

10‖d
f
x‖2F√

3
5

(
1− 121

100‖d
f
x‖2F

) ≤ √
2,

which implies
‖df

x‖4F + 2.725‖df
x‖2F − 0.4103 ≤ 0.

The above inequality follows that

‖df
x‖F ≤ 1

2
√

2
. (20)

3.2. An upper bound for ‖df
x‖F

Here, we obtain an upper bound for ‖df
x‖F , which enables us to find a default value

for θ. Consider the system

Ādf
x = θνr0

p,

ĀT ∆y

µ
+ df

s = 1√
µθνP (w)

1
2 r0

d,

df
x + df

s = 0.

(21)

By ξ := −∆y
µ and eliminating df

s , we get

Ādf
x = θνr0

p,

ĀT ξ + df
x = − 1√

µθνP (w)
1
2 r0

d.
(22)

Multiplying both sides of the second equation in (22) from the left with Ā and using the
first equation of (22), it follows that

ξ = (ĀĀT )−1
(
− θνr0

p −
1
√

µ
θνĀP (w)

1
2 r0

d

)
. (23)
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Substitution (23) into the second equation of (22), we get

df
x = − 1

√
µ

θν
(
I − ĀT (ĀĀT )−1Ā

)
P (w)

1
2 r0

d + θνĀT (ĀĀT )−1r0
p.

Let (x∗, y∗, s∗) be the optimal solution satisfying x∗ + s∗ �K ξe. Then, we may write

r0
p = A(x∗ − x0), r0

d = AT (y∗ − y0) + (s∗ − s0).

Substituting the expressions for r0
p and r0

d into the expression for df
x, we obtain

df
x =− 1

√
µ

θν
(
I − ĀT (ĀĀT )−1Ā

)
P (w)

1
2
(
AT (y∗ − y0) + s∗ − s0

)
+

θν
√

µ
ĀT (ĀĀT )−1ĀP (w)−

1
2 (x∗ − x0)

=− 1
√

µ
θν

(
I − ĀT (ĀĀT )−1Ā

)
P (w)

1
2 (s∗ − s0)

+
θν
√

µ
ĀT (ĀĀT )−1ĀP (w)−

1
2 (x∗ − x0),

the last equality follows by using I − ĀT (ĀĀT )−1Ā is the orthogonal projection to the
null space of 1√

µAP (w)
1
2 . On the the hand, θν√

µ ĀT (ĀĀT )−1ĀP (w)−
1
2 (x∗ − x0) is the

orthogonal projection of θν√
µP (w)−

1
2 (x∗ − x0) onto the row space of Ā. Hence, by the

triangle inequality, it follows that

‖df
x‖F ≤ θν

√
µ

(
‖P (w)

1
2 (s∗ − s0)‖F + ‖P (w)−

1
2 (x∗ − x0)‖F

)
. (24)

Using 0 �K x∗ �K x∗+s∗ �K ξe, 0 �K s∗ �K x∗+s∗ �K ξe and the iterate (x0, y0, s0) =
(ξe, 0, ξe), we have

0 �K x0 − x∗ �K ξe, 0 �K s0 − s∗ �K ξe.

By using almost the same arguments made in [4], we obtain

‖P (w)
1
2 (s∗ − s0)‖F ≤ ξ

√
tr(w2) ≤ ξ

√
tr(x2)

√
µλmin(v)

≤ ξtr(x)
√

µλmin(v)
. (25)

Similarly, we have

‖P (w)−
1
2 (x∗ − x0)‖F ≤ ξ

√
tr(w−2) ≤ ξ

√
tr(s2)

√
µλmin(v)

≤ ξtr(s)
√

µλmin(v)
. (26)

Substituting (25) and (26) into (24) and using µ = νξ2 and Lemma 3.2, we obtain

‖df
x‖F ≤ θνξtr(x + s)

µλmin(v)
=

θtr(x + s)
ξλmin(v)

≤ θρ(δ)
ξ

tr(x + s). (27)
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Let x and (y, s) be feasible for the problems (Pν) and (Dν), respectively, and tr(x◦ s) =
µr. With (x0, y0, s0) and ξ as defined above, we have tr(x + s) ≤ 2ξr (Lemma 4.6 in
[4]). Therefore,

‖df
x‖F ≤ 2rθρ(δ).

Since δ ≤ τ = 1
16 and ρ(δ) is monotonically increasing in δ, we have

‖df
x‖F ≤ 2rθρ(

1
16

) = 2.129rθ.

By using θ = α
2
√

r
, the above inequality turns to

‖df
x‖F ≤ 1.0645

√
rα. (28)

In order to have δ(vf ) ≤ 1√
2
, by (20), we should have ‖df

x‖F ≤ 1
2
√

2
. The last inequality

is true if
1.0645

√
rα ≤ 1

2
√

2
.

This means if we take

α =
1

3.02
√

r
, (29)

it is guaranteed that δ(vf ) ≤ 1√
2
.

3.3. Complexity

We have seen that if at the start of an iteration the iterate satisfies δ(x, s;µ) ≤ τ , with
τ as defined in (19), then after the feasibility step, with θ as defined in (19), the iterate
satisfies δ(xf , sf ;µ+) ≤ 1√

2
.

The centering steps serve to get iterates which satisfy tr(x+ ◦ s+) = µ+r and
δ(x+, s+;µ+) ≤ τ , where τ is much smaller than 1√

2
. By using Lemma 2.11, the re-

quired number of centering steps can easily be obtained. This goes as follows. After
the µ update, we have δ(xf , sf ;µ+) ≤ 1√

2
, and hence after k centering steps, the iterate

(x+, y+, s+) satisfies

δ(x+, s+;µ+) ≤
( 1√

2

)2k

.

From this, one easily deduces that δ(x+, s+;µ+) ≤ τ will hold after at most⌈
log2

(
log2

1
τ2

)⌉
, (30)

centering steps.
According to (30), at most

log2

(
log2

1
τ2

)
= log2(log2 256) = 3
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centering steps suffice to get the iterate (x+, y+, s+) to satisfy δ(x+, s+;µ+) ≤ τ. So,
each iteration consists of at most four so-called ‘inner’ iterations, at each of which we
need to compute a new search direction. In each main iteration, both the duality gap
and the norms of the residual vectors are reduced by the factor 1 − θ. Hence, using
tr(x0 ◦ s0) = rξ2, the total number of the main iterations is bounded above by

1
θ

log
max{rξ2, ‖r0

p‖F , ‖r0
d‖F }

ε
.

Due to (19) and (29), we have

θ =
1

6.04r
.

Hence, the total number of inner iterations is bounded above by

24.16 r log
max{rξ2, ‖r0

p‖F , ‖r0
d‖F }

ε
.

This bound coincides with the currently best available bound for IIPMs applied to SCO.
The above explanation leads to the following result which proves the polynomial iteration
complexity of the algorithm.

Theorem 3.7. If θ =
1

6.04r
, then the number of iterations of the infeasible primal-dual

algorithm with full Nesterov–Todd steps does not exceed

24.16 r log
{rξ2, ‖r0

p‖F , ‖r0
d‖F }

ε
.

4. CONCLUSIONS

We analyzed an infeasible interior-point algorithm with a full Nesterov–Todd step for
symmetric cone optimization, modifying the feasibility step of the algorithm given in
[4]. This modification tendered a simple analysis to establish the polynomial iteration
complexity of the algorithm.
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