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Abstract. This paper gives necessary and sufficient conditions for subgroups with trivial
core to be of odd depth. We show that a subgroup with trivial core is an odd depth
subgroup if and only if certain induced modules from it are faithful. Algebraically this
gives a combinatorial condition that has to be satisfied by the subgroups with trivial core
in order to be subgroups of a given odd depth. The condition can be expressed as a certain
matrix with {0, 1}-entries to have maximal rank. The entries of the matrix correspond to
the sizes of the intersections of the subgroup with any of its conjugate.
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1. Introduction

In a recent paper [5] a characterization of odd depth extensions of semisimple

algebras in terms of Bratelli’s diagram was given by the authors. If B ⊂ A is an

extension of semisimple algebras then Theorem 3.6 from [5] shows that B is a depth

2m+1 subalgebra of A if and only if the distance between any two simple B-modules

is at most m, inside the Bratelli diagram associated to the inclusion B ⊂ A. For

a description of the Bratelli diagram associated to an extension of semisimple algebras

one can consult [7].

However, translating this odd depth characterization in terms of the algebra struc-

tures of B and A is in general a difficult task. For instance, even in the case of group
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algebra extensions these conditions cannot be translated in only group theoretical

terms. Although the depth two subgroups are precisely the normal subgroups [8],

a similar description is not yet known for any higher depth. For example, in [4]

a sufficient condition for depth three was given but it is not yet known if that con-

dition is necessary. More precisely if H ⊂ G is an extension of finite groups, it was

shown that H is a depth three subgroup of G provided that there is x ∈ G such

that Hx ∩ H = 1. Here Hx = x−1Hx. This result was then generalized to higher

odd depth in Theorem 6.9 of [5]. It was shown in Theorem 6.9 of [5] that H is

a depth 2m+1 subgroup of G provided that H intersects trivially m of its conjugate

subgroups.

This paper establishes a converse relation for subgroups with trivial core. This

converse is given in terms of all the intersections of H and any of its m-conjugate

subgroups. It is proven that if H is a subgroup of depth 2m+1 then the collection of

all these intersections has a special property called property (P ) in this paper. This

property (P ) is reformulated as a matrix with {0, 1}-entries to be of maximal rank.

The condition is written only in terms of group theoretical concepts.

Describing all the maximal rank {0, 1}-matrices is an old well known and compli-

cated linear algebra problem. Along the years, study of these matrices can be found

for instance in [9] and [6] and more recently in [11], [3] and their references. Our

paper establishes a relation between odd depth subgroups and {0, 1}-matrices. It

would be interesting to investigate what is the exact class of {0, 1}-matrices yielded

from the odd depth subgroups of a finite group. To answer this problem a more

detailed study of the sets Cn
H from the last section has to be done.

Suppose now that H is any subgroup of G and N := coreG(H) is its core. Propo-

sition 6.8 of [5] implies that the depth of H/N inside G/N is less or equal than the

depth of H inside G. Since H/N has trivial core inside G/N it follows that our

results can also be applied to any subgroup H of G not necessarily with a trivial

core. However in this situation the statement of our results become more elaborated.

See for example Remark 3.6 for depth three subgroups.

We also should mention that there is not yet known any example of a subgroup

of even depth strictly greater than 4. For depth 4 see Example 2.4 from page 137 of

[5] namely, D8 ⊂ S4 under the standard inclusion.

The paper is organized as follows. In the first section we recall the algebraic notion

of depth for extensions of semisimple algebras from [1]. It extends the depth notion

introduced in [5]. Its connections with the equivalence relations introduced by Rieffel

in [10] are also recalled here. The next section studies the depth three subgroup

situation and proves the main result, stated as Corollary 3.5 in this section. The last

section generalizes the previous results to higher odd depth subgroups.
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2. Preliminaries

Throughout this paper we work over an algebraically closed ground field k. Sup-

pose that B ⊆ A is an inclusion of k-algebras. Set T1(B, A) := A which can be

regarded as an (A, A)-bimodule via left and right multiplication with elements in A.

Define inductively other (A, A)-bimodules Tn(B, A) by

Tn+1(B, A) := A
⊗

B

Tn(B, A),

for all n > 1.

Via restriction Tn(B, A) may be viewed as (B, A)-bimodule and as (A, B)-

bimodule, respectively. Denote these restrictions by T l
n(B, A) and T r

n(B, A), re-

spectively. Furthermore, let Tn(B, A) viewed as (B, B)-bimodule, be denoted by

T ′

n(B, A). In addition, define T0(B, A) to be the (B, B)-bimodule B. With this no-

tation, the ring extension itself B ⊂ A is said to have left and right depth 2s + 1 for

some s > 0, if there is some m ∈ N with T ′

s+1(B, A); mT ′

s(B, A), that is T ′

s+1(B, A)

is isomorphic to a direct summand of a direct sum of m copies of T ′(B, A).

Furthermore, the ring extension B ⊂ A is said to have left depth 2s (respectively

right depth 2s), for some s > 1 if T r
s+1(B, A); mT r

s (B, A) (respectively T l
s+1(B, A);

mT l
s(B, A)) for some m ∈ N.

If B ⊂ A has both left and right depth d it is said to have depth d. It is easy to

observe that if B ⊂ A has depth d then it also has depth d + 1. Let d(B, A) be the

minimal depth of the ring extension B ⊂ A. Thus d(B, A) is the smallest integer

d > 1 such that B ⊂ A has depth d provided that such an integer exists; otherwise,

let d(B, A) = ∞.

It was shown recently in [1] that for any inclusion of finite groups H ⊂ G the

inclusion kH ⊂ kG is always of finite depth for any field k. It is also not difficult to

notice that any extension of semisimple Hopf algebras is of finite depth. It is however

still an open question if an arbitrary extension of finite dimensional Hopf algebras

has finite depth.

Through the rest of this paper we fix an algebraically closed field k of characteristic

zero. We say that a subgroup H is of depth d inside G if the ring extension kH ⊂ kG

has depth d.

2.1. On inclusions of semisimple algebras. In this subsection we recall the

characterization of odd depth extensions of semisimple algebras in terms of the

Bratelli diagrams from [5]. It will be needed in the next two sections of the pa-

per.
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For a semisimple algebra A let Irr (A) be the set of irreducible A-modules. This

set can also be identified with the set of all irreducible characters of A.

Suppose that B ⊆ A is an inclusion of semisimple algebras. Label the simple A-

modules by V1, . . . , Vs and the simple B-modules by M1, . . . , Mr. Restrict the j-th

simple A-module Vj to B and express the result in terms of simple B-modules:

(2.1) Vj↓
A
B
∼=

r
⊕

i=1

mijMi

Then M = (mij) is an r × s-matrix, and

(2.2) Mi↑
A
B = A

⊗

B

Mi
∼=

s
⊕

j=1

mijVj

since HomA

(

A
⊗

B

Mi, Vj

)

∼= HomB(Mi, Vj) for all i, j. In other words, we have

(2.3) [Mi↑
A
B, Vj ] = mij = [Mi, Vj↓

A
B]

where [X, Y ] := dimHomA(X, Y ) for any two finite-dimensional A-modules X, Y .

2.2. The equivalence relations. We define a relation on Irr(B) as follows. If

M and N are two irreducible B-modules we say M ∼ N if M↑A
B and N↑A

B have

a common irreducible A-constituent. This relation ∼ is reflexive and symmetric but

not transitive in general. Its transitive closure is an equivalence relation denoted

by ≈ or dA
B. Thus M ≈ N if and only if there are M0, . . . , Mm ∈ Irr(B) such that

M = M0 ∼ M1 ∼ . . . ∼ Mm = N .

Similarly define a relation on Irr(A) by W ∼ V if W↓A
B and V ↓A

B have a common

irreducible constituent. This relation ∼ is again reflexive and symmetric but not

transitive in general. Its transitive closure is an equivalence relation denoted by

≈ or uA
B. Thus W ≈ V if and only if there are V0, . . . , Vr ∈ Irr(A) such that

W = V0 ∼ V1 ∼ . . . ∼ Vr = V .

These two equivalence relations were first considered in [10].

2.3. Distance between modules (characters). Let i, j ∈ {1, . . . , r} be two

different indices. We say that the distance d(Mi, Mj) between Mi and Mj is m if m

is the smallest number such that there arem−1 intermediate simple B-modules with

Mi = Mi0 ∼ Mi1 ∼ . . . ∼ Mim
= Mj. Thus d(Mi, Mj) = 1 if and only if Mi ∼ Mj.

We put d(Mi, Mj) = −∞ if Mi and Mj are not dA
B-equivalent, and d(Mi, Mi) = 0

for all 1 6 i 6 r. Note that the distance defined here is half of the graphical distance

between the black points corresponding to Mi and Mj in the Bratelli diagram [7].
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Theorem 3.6 from [5] shows that B is a depth 2m + 1 subalgebra of A if and only

if the distance between two any simple B-modules is at most m. In particular B is

a depth three subring of A if and only if the relation ∼ on Irr(B) is transitive.

2.4. On characterizing sets C with property (P ).

Definition 2.1. Let X = {1, 2, . . . , n} be a finite set and

(2.4) C = {A1, . . . , Ar}

be a collection of nonempty subsets of X such that X =
r
⋃

i=1

Ai. Let x1, x2, . . . , xn

be n variables. We say that C has property (P ) if the homogeneous linear system in

{xi}i=1,n given by the following r equations

(2.5)
∑

i∈A1

xi = 0,
∑

i∈A2

xi = 0, . . . ,
∑

i∈Ar

xi = 0

has only the trivial solution x1 = x2 = . . . = xn = 0 in kn.

Remark 2.2. Clearly the property (P ) is equivalent to a certain matrix with

{0, 1}-entries to have maximal rank. We will denote this matrix by M(C). The

structure of {0, 1}-matrices of maximal rank is not completely understood. However

asymptotic computations for the number of such matrices of a fixed (m×n)-size are

done, see for example [3] and the references therein.

For a set X let P(X) be its power algebra. Recall that this is the Boolean algebra

(P(X),∪,∩) with elements subsets ofX and the union, intersection and complements

as structure operations.

Theorem 2.3. Let X = {1, 2, . . . , n} and C = {A1, . . . , Ar} be as in Defini-

tion 2.1. Consider the subalgebra 〈C〉 of (P(X),∪,∩) generated by the elements Ai

of C. If C has property (P ) then any minimal set (under inclusion) of the subalgebra

〈C〉 has exactly one element.

P r o o f. Suppose that C has property (P ) and let M ∈ 〈C〉 be a minimal set.

Suppose moreover that M has at least two elements, let us say, i and j with i 6= j.

Then one can assign the values 1 and −1 to xi and xj respectively, and zero to all

the other variables xl with l ∈ X and l 6= i, j. Note that since M is minimal (under

inclusion) in 〈C〉 any other set N containing one of the elements i and j also contains

the other element. In this situation {xs}s=1,...,n is a non zero solution of the system

(2.2) and this contradicts the property (P ) of C. �
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3. Set theoretical condition for depth three subgroups

with trivial core

Consider now an inclusion of finite groups H ⊂ G. For A = kG and B = kH

denote the equivalence relations from (2.2) by uG
H and dG

H .

Let N := coreG(H) be the largest normal subgroup of G contained in H . Recall

that N is the intersection of all conjugates of G. Thus coreG(H) =
⋂

g∈G

gHg−1. The

following is Corollary 6.6 from [5].

Corollary 3.1. Let H be a subgroup of G and N := coreG(H). The equivalence

relation uG
H is the same as the equivalence relation uG

N coming from N E G. Thus

the equivalence classes of Irr(G) under uG
H are in natural bijection with the G-orbits

on Irr(N).

Proposition 3.2. Suppose H ⊂ G with coreG(H) = 1. Then H is a depth

three subgroup of G if and only if kG
⊗

kH

M is a faithful kH-module for all simple

H-modules M .

P r o o f. Since coreG(H) = 1 by Corollary 3.1 the equivalence relation dG
H has

just one equivalence class. Proposition 3.1 of [5] implies that also uG
H has just one

equivalence class. Then Corollary 3.7 of the same paper implies that H is a depth

three subgroup if and only if T (M) := kG
⊗

kH

M is a faithful kH-module for all

simple H-modules M . �

3.1. Definition of the set CH. Let H be a subgroup of a finite group G. Define

CH to be the collection of all subsets H ∩ xHy−1 of H where the elements x and y

run through all the elements of G.

Let G =
s
⊔

i=1

giH be a decomposition of G into right H-cosets. Note that any

element of CH is of the form H ∩giHgj
−1 for some indices i and j. Indeed, if x = gih

and y = gjh
′ then xHy−1 = giHgj

−1. Also note that

H =

s
⋃

i,j=1

(H ∩ giHgj
−1).

Let Hi,j := H ∩ giHgj
−1 and Hi := Hi,i. It is clear that Hi,j = {h ∈ H ;

hgj ∈ giH}.
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Proposition 3.3. Let G =
s
⊔

i=1

giH be a decomposition of G as right H-cosets.

Then

(1) HiHi,jHj = Hi,j for all 1 6 i, j 6 s.

(2) If |Hi,j | = 1 then |Hi| = |Hj | = 1.

(3) For a fixed i it follows that H =
r
⊔

j=1

Hi,j .

(4) H−1
i,j = Hj,i.

(5) One has Hi,j 6= ∅ if and only if Hgj ∩ giH 6= ∅.

(6) Let h, l ∈ H . Then H ∩ hxHyl = h(H ∩ xHy)l.

(7) Suppose Hi,j 6= ∅ and let h ∈ Hi,j . Then Hi,j = hHj = Hih.

P r o o f. (1) It is easy to check that HiHi,jHj = Hi,j .

(2) The second item follows from the first one.

(3) Let G =
r
⊔

j=1

gjH . Then for a fixed index i one has: G =
r
⊔

j=1

Hg−1
j and

G = giG =
r
⊔

j=1

giHg−1
j . Thus

H = H ∩ G = H ∩

( r
⊔

j=1

giHg−1
j

)

=

r
⊔

j=1

(H ∩ giHg−1
j ) =

r
⊔

j=1

Hi,j .

(5) One has to verify that Hi,j 6= ∅ if and only if Hgj ∩ giH 6= ∅. Indeed if h =

gilg
−1
j ∈ Hi,j with l ∈ H then hgj = gil ∈ Hgj ∩ giH . Conversely if Hgj ∩ giH 6= ∅

then there is h, l ∈ H such that hgj = gil and therefore h = gilg
−1
j ∈ Hi,j .

(6) Straightforward computation.

(7) Suppose that h ∈ Hi,j . One has h = gilg
−1
j with l ∈ H . Thus gj = h−1gil and

Hi,j = H ∩ giHg−1
j = H ∩ giH(h−1gil)

−1 = H ∩ giHl−1g−1
i h

= H ∩ giHg−1
i h = (H ∩ giHg−1

i )h = Hih.

Here we have used the previous item of this proposition. On the other hand the

equality hgj = gil implies gi = hgj l
−1 and

Hi,j = H ∩ giHg−1
j = H ∩ hgj l

−1Hg−1
j = hHj .

�

3.2. Depth three subgroups.

Theorem 3.4. Suppose H ⊂ G with coreG(H) = 1. Then kG
⊗

kH

k is a faithful

kH-module if and only if CH has property (P ).
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P r o o f. Note that
{

gi

⊗

kH

1
}

i=1,s
form a basis for the induced module k↑G

H .

Thus an element a =
∑

h∈H

ahh is in the annihilator of k↑G
H↓G

H if and only if:

a
(

gi

⊗

kH

1
)

= 0

for all i = 1, . . . , s.

Note that h
(

gi

⊗

kH

1
)

= gj

⊗

kH

1 where j is an index such that hgi ∈ gjH , i.e.

h ∈ Hi,j .

Thus a =
∑

h∈H

ahh annihilates kG
⊗

kH

k if and only if
∑

h∈Hi,j

ah = 0 for all i and j.

This implies that AnnkH

(

kG
⊗

kH

k
)

= 0 if and only if CH has property (P ). �

Corollary 3.5. Suppose that H is a subgroup of G with trivial core. If H is

a depth 3 subgroup then CH has property (P ).

P r o o f. By Proposition 3.2 it follows that k↑G
H↓G

H is a faithful H-module. By

Theorem 3.4 this is equivalent to the fact that the set CH has property (P ). �

In [5] it was shown that the subgroup H is depth three provided that one of the

subsets of CH is a one element subset. By Theorem 2.3 the previous corollary can be

regarded as a weaker converse of the statement from [5]. If H is depth three inside

G then the minimal sets (under inclusion) of CH are one element sets.

Remark 3.6. Suppose that H is a depth three subgroup of G and let N :=

coreG(H). It follows from Proposition 6.8 of [5] that depth of H/N inside G/N is

less or equal than the depth of H inside G. Thus d(H/N, G/N) 6 3. On the other

hand it is easy to see that H/N has trivial core inside G/N . Thus H/N is not normal

inside G/N . This implies that d(H/N, G/N) = 3 and therefore the previous theorem

can be applied for the inclusion H/N ⊂ G/N .

4. Odd higher depth for coreless subgroups

Let H ⊂ G be an inclusion of finite groups. In this section we generalize the

results from the previous section to higher odd depth subgroups with trivial core.

For any n > 1 a set Cn
H is constructed and it will be shown that depth 2n+1 implies

that the set Cn
H has property (P ).

4.1. The linear operator T . Let C(H) be the character ring of kH , i.e., the

space of class functions on H . Recall that the operator T : C(H) → C(H) from [5]

was given by T (α) = ResG
H(IndG

H(α)). Thus one can also write T (α) = α↑G
H↓G

H .
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Proposition 4.1. Suppose H ⊂ G with coreG(H) = 1. Then H is a depth

2n + 1 subgroup of G if and only if T n(M) is a faithful kH-module for all simple

H-modules M .

P r o o f. Since coreG(H) = 1 by Corollary 6.6 of [5] the equivalence relation

dG
H has just one equivalence class. Proposition 3.1 of the same paper implies that

also uG
H has just one equivalence class. Then Theorem 3.9 together with Lemma 5.4

from [5] implies that H is a depth 2n+1 subgroup if and only if T n(M) is a faithful

kH-module for all simple H-modules M . �

Let C
(k)
H be the collection of subsets of H given by

Hi1,i2,...,ik
m1,m2,...,mk

:= Hm1,i1 ∩ gm1
Hm2,i2gi1

−1 ∩ . . .

∩ gm1
gm2

. . . gmk−1
Hmk,ik

(gi1gi2 . . . gik−1
)
−1

where m1, . . . , mk and i1, . . . , ik run through all possible indices.

Proposition 4.2. Suppose H ⊂ G with coreG(H) = 1. Then T n(k) is a faithful

kH-module if and only if C
(n)
H has property (P ).

P r o o f. Note that T n(k) = kG
⊗

kH

kG
⊗

kH

. . . kG
⊗

kH

k has a basis as vector space

given by

gi1

⊗

kH

gi2

⊗

kH

. . . gik

⊗

kH

1

and

h
(

gi1

⊗

kH

gi2

⊗

kH

. . . gik

⊗

kH

1
)

= gm1

⊗

kH

gm2

⊗

kH

. . .
⊗

kH

gmk

⊗

kH

1

if and only if h ∈ Hi1,i2,...,ik
m1,m2,...,mk

. Therefore an element a =
∑

h∈H

ahh is in the annihi-

lator of T n(k) if and only if
∑

h∈H
i1,i2,...,ik
m1,m2,...,mk

ah = 0 for all indices is and ms. It follows

that T n(k) is a faithful kH-module if and only if C
(n)
H has property (P ). �

Put Hm1,m2,...,mk
:= Hm1,m2,...,mk

m1,m2,...,mk
. Note that

Hm1,m2,...,mk
= H ∩ gm1

Hg−1
m1

∩ gm1
gm2

H(gm1
gm2

)
−1 ∩ . . .

∩(gm1
gm2

. . . gmk
)H(gm1

gm2
. . . gmk

)−1.

Lemma 4.3. With the above notations one has that

Hm1,m2,...,mk
Hi1,i2,...,ik

m1,m2,...,mk
Hi1,i2,...,ik

= Hi1,i2,...,ik
m1,m2,...,mk

.

P r o o f. This follows from the first item of Proposition 3.3. �
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Corollary 4.4. Suppose that H is a depth 2m + 1 subgroup of G with trivial

core. Then Cm
H has property (P ).
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