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Abstract. Let R be a ring. We recall that R is called a near pseudo-valuation ring if
every minimal prime ideal of R is strongly prime.
Let now σ be an automorphism of R and δ a σ-derivation of R. Then R is said to be an

almost δ-divided ring if every minimal prime ideal of R is δ-divided.
Let R be a Noetherian ring which is also an algebra over Q (Q is the field of rational

numbers). Let σ be an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation
of R such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Further, if for any strongly prime ideal U
of R with σ(U) = U and δ(U) ⊆ δ, U [x; σ, δ] is a strongly prime ideal of R[x;σ, δ], then we
prove the following:

(1) R is a near pseudo valuation ring if and only if the Ore extension R[x;σ, δ] is a near
pseudo valuation ring.

(2) R is an almost δ-divided ring if and only if R[x;σ, δ] is an almost δ-divided ring.

Keywords: Ore extension; automorphism; derivation; minimal prime; pseudo-valuation
ring; near pseudo-valuation ring

MSC 2010 : 16N40, 16P40, 16S36

Introduction

In this paper we generalize Theorems 4.3 and 4.4 of [13], and thus answer (par-

tially) the following question:

Question A (Question 1 of [13]). Let R be a near pseudo-valuation ring

(NPVR), σ an automorphism of R and δ a σ-derivation of R. Is the Ore extension

O(R) = R[x; σ, δ] a near pseudo-valuation ring (NPVR) (even if R is commutative

Noetherian)?

The work was supported by UGC Grant F. No. 40-484/2011(SR)
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All the notation is the same as in Bhat and Kumari [13], but to make the paper

self contained, we give the following introduction.

All rings are associative with identity. Throughout the paper R denotes a ring

with identity 1 6= 0. The set of all nilpotent elements of R and the prime radical of R

are denoted by N(R) and P (R) respectively. The set of prime ideals of R is denoted

by Spec(R) and the set of minimal prime ideals of R is denoted by Min Spec(R).

The center of R is denoted by Z(R). The field of rational numbers and the ring of

integers are denoted by Q and Z respectively unless otherwise stated. Let I and J

be any two ideals of a ring R. Then I ⊂ J means that I is strictly contained in J .

Skew polynomial rings: This article concerns the study of skew polynomial

rings over pseudo valuation rings. Therefore, we discuss these notions one by one.

Let R be a ring, σ an automorphism of R and δ a σ-derivation of R (δ : R → R

is an additive map with δ(ab) = δ(a)σ(b) + aδ(b) for all a, b ∈ R).

For example, let σ be an automorphism of a ring R and δ : R → R any map.

Let ϕ : R → M2(R) be defined by

ϕ(r) =

(

σ(r) 0

δ(r) r

)

for all r ∈ R.

Then δ is a σ-derivation of R if and only if ϕ is a homomorphism.

We denote the Ore extension R[x; σ, δ] by O(R). If I is an ideal of R such that I

is σ-stable, i.e., σ(I) = I and I is δ-invariant, i.e., δ(I) ⊆ I, then we denote I[x; σ, δ]

by O(I). We would like to mention that R[x; σ, δ] is the usual set of polynomials

with coefficients in R, i.e.,
{ n

∑

i=0

xiai, ai ∈ R
}

with the usual addition of polynomials

and multiplication subject to the relation ax = xσ(a) + δ(a) for all a ∈ R. We take

coefficients of polynomials on the left as in McConnell and Robson [19].

In case δ is the zero map, we denote the skew polynomial ring R[x; σ] by S(R)

and for any ideal I of R with σ(I) = I, we denote I[x; σ] by S(I).

In case σ is the identity map, we denote the differential operator ring R[x; δ] by

D(R) and for any ideal J of R with δ(J) ⊆ J , we denote J [x; δ] by D(J).

Ore-extensions (skew-polynomial rings and differential operator rings) have been

of interest to many authors. For example, see [12], [11], [14], [10], [15], [18], [19].

Pseudo-valuation rings (PVRs):

We recall that as in Hedstrom and Houston [16], an integral domain R with quo-

tient field F is called a pseudo-valuation domain (PVD) if each prime ideal P of R

is strongly prime (ab ∈ P , a ∈ F , b ∈ F implies that either a ∈ P or b ∈ P ). Later

on, Badawi and Houston in [8] showed that the definition of a strongly prime ideal

is equivalent to a prime ideal being powerful.
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For example, let F = Q
(√

2
)

. Set V = F + xF [[x]] = F [[x]]. Then V is a pseudo-

valuation domain. We also note that S = Q + Qx + x2V is not a pseudo-valuation

domain (Badawi [6]). For more details on pseudo-valuation rings and almost-pseudo

valuation rings, the reader is referred to Badawi [6].

In Badawi, Anderson and Dobbs [7], the study of pseudo-valuation domains was

generalized to arbitrary rings in the following way:

A prime ideal P of R is said to be strongly prime if aP and bR are comparable

(under inclusion, i.e., aP ⊆ bR or bR ⊆ aP ) for all a, b ∈ R. A ring R is said to

be a pseudo-valuation ring (PVR) if each prime ideal P of R is strongly prime. We

note that a PVR is quasilocal by Lemma 1 (b) of Badawi, Anderson and Dobbs [7].

An integral domain is a PVR if and only if it is a PVD by Proposition 3.1 of

Anderson [1], Proposition 4.2 of Anderson [2] and Proposition 3 of Badawi [4]. We

denote the set of strongly prime ideals of R by SSpec(R).

In Badawi [5], another generalization of PVDs is given in the following way:

For a ring R with a total quotient ring Q such that N(R) is a divided prime ideal

of R, let ϕ : Q → RN(R) be such that ϕ(a/b) = a/b for every a ∈ R and every

b ∈ R \Z(R). Then ϕ is a ring homomorphism from Q into RN(R), and ϕ restricted

to R is also a ring homomorphism from R into RN(R) given by ϕ(r) = r/1 for every

r ∈ R. Denote RN(R) by T . A prime ideal P of ϕ(R) is called a T -strongly prime

ideal if xy ∈ P , x ∈ T , y ∈ T implies that either x ∈ P or y ∈ P . A ring ϕ(R) is said

to be a T -pseudo-valuation ring (T -PVR) if each prime ideal of ϕ(R) is T -strongly

prime. A prime ideal S of R is called a ϕ-strongly prime ideal if ϕ(S) is a T -strongly

prime ideal of ϕ(R). If each prime ideal of R is ϕ-strongly prime, then R is called

a ϕ-pseudo-valuation ring (ϕ-PVR).

Near pseudo-valuation rings (NPVRs):

Definition 0.1 (Definition 1.1 of Bhat [11]). A ring R is said to be a near

pseudo-valuation ring (NPVR) if each minimal prime ideal P of R is strongly prime.

For example, a reduced ring is NPVR.

Here the term near may not be interpreted as near ring (Bell and Mason [9]). We

note that a near pseudo-valuation ring (NPVR) is a pseudo-valuation ring (PVR),

but the converse is not true. For example, a reduced ring is a NPVR, but need not

be a PVR.

We recall that a prime ideal P of R is said to be divided if it is comparable (under

inclusion) to every ideal of R. A ring R is called a divided ring if every prime ideal of

R is divided (Badawi [3]). It is known (Lemma 1 of Badawi, Anderson and Dobbs [7])

that a pseudo-valuation ring is a divided ring.

Recall that in Bhat [11] an almost divided ring has been defined in the following

way:
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Let R be a ring, σ an automorphism of R and δ a σ derivation of R. An ideal I

of R is called σ stable if σ(I) = I and is called δ-invariant if δ(I) ⊆ I.

Definition 0.2 (Definition 1.2 of Bhat [11]). Let R be a ring. Then R is said to

be an almost divided ring if every minimal prime ideal of R is divided.

We also recall that a prime ideal P of R is σ-divided if it is comparable (under

inclusion) to every σ-stable ideal I of R. A ring R is called a σ-divided ring if every

prime ideal of R is σ-divided (see Bhat [12]).

Recall that an almost σ-divided ring and an almost δ-divided ring has been defined

in Bhat [11] in the following way:

Definition 0.3 (Definition 1.3 of Bhat [11]). Let R be a ring. Then R is said to

be an almost σ-divided ring if every minimal prime ideal of R is σ-divided.

Recall that a prime ideal P of R is δ-divided if it is comparable (under inclusion)

to every σ-stable and δ-invariant ideal I of R. A ring R is called a δ-divided ring if

every prime ideal of R is δ-divided.

Definition 0.4 (Definition 1.4 of Bhat [11]). Let R be a ring. Then R is said to

be an almost δ-divided ring if every minimal prime ideal of R is δ-divided.

It is clear that every divided ring is an almost divided ring.

σ(∗) rings: Recall that in Krempa [17], a ring R is called σ-rigid if there exists

an endomorphism σ of R with the property that aσ(a) = 0 implies that a = 0 for

a ∈ R.

We also recall that in [18], Kwak defines a σ(∗)-ring R to be a ring in which

aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R, and establishes a relation between

a 2-primal ring and a σ(∗)-ring.

Example 0.5. Let R =

(

F F

0 F

)

, where F is a field. Then P (R) =

(

0 F

0 0

)

.

Let σ : R → R be defined by σ

( (

a b

0 c

) )

=

(

a 0

0 c

)

. Then it can be seen that σ

is an endomorphism of R and R is a σ(∗)-ring.

Main result. Let R be a Noetherian ring which is an algebra over Q. Let σ be

an automorphism of R such that R is a σ(∗)-ring and δ a σ derivation of R such that

σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then

(1) P ∈ Min Spec(O(R)) implies that P ∩ R ∈ Min Spec(R), and conversely P1 ∈
Min Spec(R) implies that O(P1) ∈ Min Spec(O(R)).

Further, if for any U ∈ SSpec(R) with σ(U) = U and δ(U) ⊆ δ, O(U) =

U [x; σ, δ] ∈ SSpec(R), then
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(2) R is a near pseudo-valuation ring if and only if O(R) = R[x; σ, δ] is a near

pseudo-valuation ring;

(3) R is an almost δ-divided ring if and only if O(R) = R[x; σ, δ] is an almost

δ-divided ring.

These results are proved in Theorems 1.3, 1.8 and 1.9 respectively.

1. Minimal prime ideals and near pseudo-valuation rings

Theorem 1.1. Let R be a Noetherian ring and σ an automorphism of R. Then

R is a σ(∗)-ring if and only if for each minimal prime U of R, σ(U) = U and U is

a completely prime ideal of R.

P r o o f. See Theorem 2.4 of [14]. �

Proposition 1.2. Let R be a Noetherian ring which is also an algebra over Q.

Let σ be an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R.

Then P ∈ Min Spec(R) implies δ(P ) ⊆ P .

P r o o f. See Proposition 3.3 of [13]. �

Theorem 1.3. Let R be a Noetherian ring which is also an algebra over Q.

Let σ be an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of

R. Then P ∈ Min Spec(O(R)) implies that P ∩ R ∈ Min Spec(R), and conversely

P1 ∈ Min Spec(R) implies that O(P1) ∈ Min Spec(O(R)).

P r o o f. Let P1 ∈ Min Spec(R). Then σ(P1) = P1 by Theorem 1.1 and δ(P1) ⊆
P1 by Proposition 1.2. Now it can be seen that O(P1) ∈ Spec(O(R)). Suppose

O(P1) /∈ Min Spec(O(R)) and let P2 ⊂ O(P1) be a minimal prime ideal of O(R).

Then P2 = O(P2) ∩ R ⊂ O(P1) ∈ Min Spec(O(R)). Therefore P2 ∩ R ⊂ P1, which is

a contradiction, as P2 ∩ R ∈ Spec(R). Hence O(P1) ∈ Min Spec (O(R)).

Conversely suppose that P ∈ Min Spec(R), then it can be seen that P ∩ R ∈
Spec(R), and O(P ∩ R) ∈ Spec(O(R)). Therefore, O(P ∩ R) = P . We now show

that P ∩ R ∈ Min Spec(R). Suppose P1 ⊂ P ∩ R is a minimal prime ideal of R.

Then O(P1) ⊂ O(P ∩ R) and as in the first paragraph O(P1) ∈ Spec(O(R)), which

is a contradiction. Hence P ∩ R ∈ Min Spec(R). �

Remark 1.4. LetR be a Noetherian ring which is also an algebra overQ. Let σ be

an automorphism of R and δ a σ-derivation such that σ(δ(a)) = δ(σ(a)) for all a ∈ R.

Then if P ∈ Min Spec(O(R)), then P ∩R ∈ Min Spec(R) with σ(P ∩R) = P ∩R and

δ(P ∩ R) ⊆ P ∩ R, and if P1 ∈ Min Spec(R) such that σ(P1) = P1, and δ(P1) ⊆ P1,

then O(P1) ∈ Min Spec(O(R)).
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P r o o f. The proof follows from Theorem 1.3 above. �

Theorem 1.5 (Hilbert Basis Theorem). Let R be a right/left Noetherian ring.

Let σ and δ be as usual. Then the Ore extension O(R) = R[x; σ, δ] is right/left

Noetherian.

P r o o f. See Theorem 1.12 of Goodearl and Warfield [15]. �

The following example shows that the extension of a strongly prime ideal need not

be a strongly prime ideal:

Example 1.6 (Example 3.1 of [10]). Let R = Q[t] = (t2). Let σ = id and δ = 0.

For all p(t) ∈ Q[t], we denote by p(t) the image of p(t) under the natural projection

Q[t] → R.

Now P = t̄R is a strongly prime ideal of R. Let a = 1 and b = x and J = PR[x] =

t̄R[x]. Then neither aJ ⊆ bR[x] nor bR[x] ⊆ aJ . Therefore, J is not a strongly prime

ideal of R[x].

Example 1.7 (Example 3.2 of [10]). R = Z(p). This is in fact a discrete valuation

domain, and therefore, its maximal ideal P = pR is strongly prime. But pR[x] is not

strongly prime in R[x] because it is not comparable with xR[x] (so the condition of

being strongly prime in R[x] fails for a = 1 and b = x).

In view of Examples 1.6, 1.7 we are not able to answer Question A completely

and moreover, in answering it partially we impose some conditions as given in the

statements of Theorems 1.8, 1.9 below:

Theorem 1.8. Let R be a Noetherian ring which is an algebra over Q. Let σ

be an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such

that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Further, let U ∈ SSpec(R) with σ(U) ⊆ U and

δ(U) ⊆ U imply O(U) ∈ SSpec(R). Then R is a near pseudo-valuation if and only if

O(R) is a near pseudo-valuation ring.

P r o o f. Let R be a near pseudo-valuation ring which is also an algebra over

Q. Now O(R) is Noetherian by Theorem 1.5. Let J ∈ Min Spec(O(R)). Then by

Theorem 1.3, J ∩ R ∈ Min Spec(R). Since R is a σ(∗)-ring, σ(J ∩ R) = J ∩ R

and δ(J ∩ R) ⊆ J ∩ R by virtue of Theorem 1.1 and Proposition 1.2. Now R is

a Noetherian near pseudo-valuation Q-algebra, therefore J ∩ R ∈ SSpec(R). Now

by hypothesis O(J ∩ R) ∈ SSpec(O(R)). Now it is easy to see that O(J ∩ R) = J .

Therefore J ∈ SSpec(O(R)). Hence O(R) is a Noetherian near pseudo-valuation

ring.

Conversely, let O(R) be a near pseudo-valuation ring. Let U ∈ Min Spec(R) and

a, b ∈ R. Then O(U) ∈ Min Spec(O(R)), by virtue of Theorem 1.3. Since O(R)
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is a near pseudo-valuation ring, so O(U) ∈ SSpec(O(R)). Therefore a(O(U)) and

b(O(R)) are comparable (say a(O(U)) ⊆ b(O(R))). So a(O(U)) ∩ R ⊆ b(O(R)) ∩ R,

i.e., aU ⊆ bR. Hence R is a near pseudo-valuation ring. �

Theorem 1.9. Let R be a Noetherian ring which is an algebra over Q and let σ

be an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such

that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Further, let U ∈ SSpec(R) with σ(U) ⊆ U and

δ(U) ⊆ U imply O(U) ∈ SSpec(R). Then R is an almost δ-divided ring if and only

if O(R) is a Noetherian almost δ-divided ring.

P r o o f. Let R be an almost δ-divided ring which is also an algebra over Q.

Hence O(R) is Noetherian by Theorem 1.5. Let J ∈ Min Spec(O(R)). Since R is

a σ(∗)-ring, we have σ(J ∩ R) = J ∩ R and δ(J ∩ R) ⊆ J ∩ R by Theorem 1.1

and Proposition 1.2. Let K be a proper ideal of O(R) such that σ(K) = K and

δ(K) ⊆ K. Now by Theorem 1.3, J ∩R ∈ Min Spec(R). Also K ∩R is an ideal of R

with σ(K∩R) = K∩R and δ(K∩R) ⊆ K∩R. Now R is almost δ-divided, therefore

J ∩ R and K ∩ R are comparable under inclusion. Say J ∩ R ⊆ K ∩ R. Therefore,

O(J ∩ R) ⊆ O(K ∩ R). Thus J ⊆ K. Hence O(R) is a Noetherian almost δ-divided

ring.

Conversely, suppose that O(R) is an almost δ-divided ring. Let U ∈ Min Spec(R).

Since R is a σ(∗)-ring, we have σ(U) = U and δ(U) ⊆ U , using Theorem 1.1 and

Proposition 1.2. Let V be an ideal of R such that σ(V ) = V and δ(V ) ⊆ V .

Theorem 1.3 implies that O(U) ∈ Min Spec(O(R)). Now O(R) is an almost δ-divided

ring implies that O(U) and O(V ) are comparable under inclusion, i.e., O(U) ⊆ O(V )

(say). This implies that O(U) ∩ R ⊆ O(V ) ∩ R, i.e., U ⊆ V . Hence R is an almost

δ-divided ring. �

Question 1.10. Let R be an NPVR. Let σ be an automorphism of R and δ

a σ-derivation of R. Is O(R) = R[x; σ, δ] an NPVR (even if R is commutative

Noetherian)?

Acknowledgement. The author would like to express his sincere thanks to the

referee for his/her suggestions.
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