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Abstract. The rate of moment convergence of sample sums was investigated by Chow
(1988) (in case of real-valued random variables). In 2006, Rosalsky et al. introduced and
investigated this concept for case random variable with Banach-valued (called complete
convergence in mean of order p). In this paper, we give some new results of complete
convergence in mean of order p and its applications to strong laws of large numbers for
double arrays of random variables taking values in Banach spaces.
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1. Introduction

Let E be a real separable Banach space with norm ‖·‖ and {Xn, n > 1} a sequence

of random variables taking values in E (E-valued r.v.’s for short). Recall that Xn is

said to converge completely to 0 in mean of order p if

∞
∑

n=1

E‖Xn‖
p < ∞.

This mode of convergence was investigated for the first time by Chow [2] for the

sequence of real-valued random variables and by Rosalsky et al. [6] for the sequence
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101.03-2013.02) and third author (grant no. 10103-2012.17) have been partially supported
by Vietnams National Foundation for Science and Technology Development (NAFOS-
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of random variables taking values in a Banach space. In this paper, we introduce and

study the complete convergence in mean of order p to 0 of double arrays of E-random

variables. In Section 3 some properties of the complete convergence in mean of order

p are given and a new characterization of a p-uniformly smooth Banach space E in

terms of the complete convergence in mean of order p of double arrays of E-valued

r.v.’s is obtained. These results are used in Section 4 to obtain some strong laws

of large numbers for martingale difference double arrays of random variables taking

values in Banach spaces.

2. Preliminaries and some useful lemmas

For a, b ∈ R, max {a, b} will be denoted by a ∨ b. Throughout this paper, the

symbol C will denote a generic constant (0 < C < ∞) which is not necessarily the

same in each appearance. The set of all non-negative integers will be denoted by N

and the set of all positive integers by N
∗. For (k, l) and (m,n) ∈ N

2, the notation

(k, l) � (m,n) (or (m,n) � (k, l)) means that k 6 m and l 6 n.

Definition 2.1. Let E be a real separable Banach space with norm ‖ · ‖ and let

{Smn; (m,n) � (1, 1)} be an array of E-valued r.v.’s.

(1) Smn is said to converge completely to 0 and we write Smn
c
→ 0 if

∞
∑

m=1

∞
∑

n=1

P (‖Smn‖ > ε) < ∞ for all ε > 0.

(2) Smn is said to converge to 0 in mean of order p (or in Lp for short) asm∨n → ∞

and we write Smn
Lp
−→ 0 as m ∨ n → ∞ if

E‖Smn‖
p → 0 as m ∨ n → ∞.

Smn is said to converge completely to 0 in mean of order p and we write Smn
c,Lp
−→

0 if
∞
∑

m=1

∞
∑

n=1

E‖Smn‖
p < ∞.

(3) Smn is said to converge almost surely to 0 as m∨n → ∞ and we write Smn → 0

a.s. as m ∨ n → ∞ if

P
(

lim
m∨n→∞

‖Smn‖ = 0
)

= 1.
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It is clear that Smn
c,Lp
−→ 0 implies Smn

Lp
−→ 0 as m ∨ n → ∞. By the Markov

inequality
∞
∑

m=1

∞
∑

n=1

P{‖Smn‖ > ε} < ∞ for all ε > 0

we also see that Smn
c,Lp
−→ 0 implies Smn

c
→ 0 and Smn

a.s.
−→ 0.

For an E-valued r.v. X and sub σ-algebra G of F , the conditional expectation

E(X | G) is defined and enjoys the usual properties (see [7]).

A real separable Banach space E is said to be p-uniformly smooth (1 6 p 6 2)

if there exists a finite positive constant C such that for any Lp integrable E-valued

martingale difference sequence {Xn, n > 1},

E

∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

p

6 C

n
∑

i=1

E‖Xi‖
p.

Clearly every real separable Banach space is 1-uniformly smooth and every Hilbert

space is 2-uniformly smooth. If a real separable Banach space is p-uniformly smooth

for some 1 < p 6 2 then it is r-uniformly smooth for all r ∈ [1, p). For more details,

the reader may refer to Pisier [5].

Let {Xmn, (m,n) � (1, 1)} be a double array of E-valued r.v.’s, let Fij be the

σ-field generated by the family of E-random variables {Xkl ; k < i or l < j} and

F11 = {∅ ; Ω}.

The array of E-valued r.v.’s {Xmn, (m,n) � (1, 1)} is said to be an E-valued

martingale difference double array if E(Xmn | Fmn) = 0 for all (m,n) � (1, 1).

The following lemmas are necessary for proving the main results in the paper.

Lemma 2.1. Let E be a p-uniformly smooth Banach space for some 1 6 p 6 2 and

let {Xmn ; (m,n) � (1, 1)} be a double array of E-valued r.v.’s satisfyingE(Xij | Fij)

which is measurable with respect to Fmn for all (i, j) � (m,n). Then

E max
16k6m
16l6n

∥

∥

∥

∥

k
∑

i=1

l
∑

j=1

(Xij − E(Xij | Fij))

∥

∥

∥

∥

p

6 C

m
∑

i=1

n
∑

j=1

E‖Xij‖
p,

where the constant C is independent of m and n.

P r o o f. The proof is completely similar to that of Lemma 2 of Dung et al. [3]

after replacing Skl =
k
∑

i=1

l
∑

j=1

Vij by Skl =
k
∑

i=1

l
∑

j=1

(Xij − E(Xij | Fij)). �

The following lemma is a version of Lemma 3 of Adler and Rosalsky [1] for arrays

of positive constants.
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Lemma 2.2. Let p > 0 and let {bmn ; (m,n) � (1, 1)} be an array of positive

constants with bpij/ij 6 bpmn/mn for all (i, j) � (m,n) and lim
m∨n→∞

bpmn/mn = ∞.

Then
∞
∑

i=m

∞
∑

j=n

1

bpij
= O

(mn

bpmn

)

as m ∨ n → ∞

if and only if

lim inf
m∨n→∞

bprm,sn

bpmn
> rs for some integers r, s > 2.

P r o o f. Set cmn =
bpmn

mn , (m,n) � (1, 1) then cij 6 cmn for all (i, j) � (m,n) and

lim
m∨n→∞

cmn = ∞. It is required to show that

(2.1)

∞
∑

i=m

∞
∑

j=n

1

ijcij
= O

( 1

cmn

)

as m ∨ n → ∞

if and only if

(2.2) lim inf
m∨n→∞

crm,sn

cmn
> 1 for some integers r, s > 2.

If (2.2) holds, then exits δ > 1 and no ∈ N such that crm,sn > δcmn for allm∨n > no,

so

∞
∑

i=m

∞
∑

j=n

1

ijcij
6

∞
∑

k,l=0

mrk+1−1
∑

i=mrk

nsl+1−1
∑

j=nsl

1

klckl
6

∞
∑

k,l=0

(r − 1)(s− 1)

cmrk,nsl

6 (r − 1)(s− 1)
1

cmn

( ∞
∑

k=1

1

δk

)2

.

Then, we have (2.1).

Conversely, assume that (2.2) does not hold. Then lim inf
m∨n→∞

crm,sn/cmn = 1 for

any r, s > 2, then crm,sn < 2cmn for any r, s > 2 and an infinite numbers pair of

values of (m,n) and so,

∞
∑

i=m

∞
∑

j=n

1

ijcij
>

mr
∑

i=m

ns
∑

j=n

1

ijcij
>

(log r)(log s)

crm,sn
>

(log r)(log s)

2cm,n
.

Since r, s is arbitrary, (2.1) does not hold as well. �
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3. The complete convergence in mean

From now on, E be a real separable Banach space and for each double array of

E-valued r.v.’s {Xmn ; (m,n) � (1, 1)}; we always denote Fij is σ-field generated by

the family of E-random variables {Xkl ; k < i or l < j}, F11 = {∅ ; Ω},

Skl =
k
∑

i=1

l
∑

j=1

Xij and S∗
kl =

k
∑

i=1

l
∑

j=1

(Xij − E(Xij | Fij));

{bmn ; (m,n) � (1, 1)} be a sequence of positive constants satisfying bij 6 bmn for

all (i, j) � (m,n) and lim
m∨n→∞

bmn = ∞.

Firstly, we show a condition under which the complete convergence in mean order

p implies the convergence a.s. and the convergence in Lp.

Theorem 3.1. Let {Xmn ; (m,n) � (1, 1)} be a double array of E-valued r.v.’s.

Suppose that

(3.1) M = sup
m,n

b2m+12n+1

b2m2n
< ∞.

If

(3.2)
max(k,l)�(m,n) ‖Skl‖

(mn)1/pbmn

c,Lp
−→ 0 for some 1 6 p 6 2,

then

(3.3)
max(k,l)�(m,n) ‖Skl‖

bmn
→ 0 a.s. and in Lp as m ∨ n → ∞.

P r o o f. Set Amn = {(k, l), (2n, 2m) � (k, l) ≺ (2m+1, 2n+1)}. We see that

∑

(m,n)�(0,0)

E
(max(k,l)�(2m,2n) ‖Skl‖

b2m2n

)p

(3.4)

6
∑

(m,n)�(0,0)

E
(M max(k,l)�(2m,2n) ‖Skl‖

b2m+12n+1

)p

6 Mp
∑

(m,n)�(0,0)

min
(k.l)∈Amn

E
(max(i,j)�(k,l) ‖Sij‖

bkl

)p

6 Mp
∑

(m,n)�(0,0)

∑

(k,l)∈Amn

1

2m2n
E
(max(i,j)�(k,l) ‖Sij‖

bkl

)p
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6 Mp
∑

(m,n)�(0,0)

∑

(k,l)∈Amn

4

kl
E
(max(i,j)�(k,l) ‖Sij‖

bkl

)p

6 4Mp
∑

(m,n)�(1,1)

1

mn
E
(max(k,l)�(m,n) ‖Skl‖

p

bpmn

)

6 4Mp
∑

(m,n)�(1,1)

E
(max(k,l)�(m,n) ‖Skl‖

(mn)1/pbmn

)p

< ∞.

This implies that

(3.5) E
(max(k,l)�(2m,2n) ‖Skl‖

b2m2n

)p

→ 0 as m ∨ n → ∞.

Now for (k, l) ∈ Anm we have

E
(max(i,j)�(k,l) ‖Sij‖

bkl

)p

6 E
(max(k,l)�(2m+1,2n+1) ‖Skl‖

bkl

)p

(3.6)

6 E
(max(k,l)�(2m+1,2n+1) ‖Skl‖

b2m2n

)p

6 MpE
(max(k,l)�(2m+1,2n+1) ‖Skl‖

b2m+12n+1

)p

.

From (3.5) and (3.6) we conclude that
(

sup
(k,l)�(m,n)

∥

∥

∥

k
∑

j=1

l
∑

i=1

Xij

∥

∥

∥

)

/bmn
Lp
−→ 0 as

m ∨ n → ∞.

By (3.4) and the Markov inequality, for all ε > 0 we have

∑

(m,n)�(0,0)

P
(

max
(k,l)�(2m,2n)

‖Skl‖ > εb2m2n

)

6
4Mp

εp

∑

(m,n)�(1,1)

E
(max(k,l)�(m,n) ‖Skl‖

(mn)1/pbmn

)p

< ∞.

This implies by the Borel-Cantelli lemma that

max(k,l)�(2m,2n) ‖Skl‖

b2m2n

a.s.
−→ 0 as m ∨ n → ∞.

By the same argument as in (3.6), we have

sup(k,l)�(m,n)

∥

∥

∑k
j=1

∑l
i=1 Xij

∥

∥

bmn

a.s.
−→ 0 as m ∨ n → ∞.

The proof of the theorem is completed. �

The following theorem shows that the rate of the convergence of strong laws of

large numbers may be obtained as a consequence of the complete convergence in

mean.
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Theorem 3.2. Let α, β ∈ R and let {Xmn ; (m,n) � (1, 1)} be a double array of

E-valued r.v.’s. If

1

(mαnβ)1/pbmn
max

(k,l)�(m,n)
‖Skl‖

c,Lp
−→ 0 for some 1 6 p 6 2,

then

(3.7)
∑

(m,n)�(1,1)

m−αn−βP
(

b−1
mn max

(k,l)�(m,n)
‖Skl‖ > ε

)

< ∞ for every ε > 0.

In the case of α < 1, β < 1 and {bmn ; (m,n) � (1, 1)} satisfying (3.1), (3.7) implies

P
(

sup
(k,l)�(m,n)

‖Skl‖

bkl
> ε

)

= o
( 1

m1−αn1−β

)

as m ∨ n → ∞ for every ε > 0.

P r o o f. By Markov inequality, for all ε > 0

∑

(m,n)�(1,1)

m−αn−βP
(

b−1
mn max

(k,l)�(m,n)
‖Skl‖ > ε

)

6
1

εp

∑

(m,n)�(1,1)

m−αn−βE
(max(k,l)�(m,n) ‖Skl‖

bmn

)p

< ∞.

Then, we have (3.7).

Let α < 1, β < 1. Fix ε > 0, and set Amn = {(k, l), (2n−1, 2m−1) ≺ (k, l) �

(2m, 2n)}. We see that

∑

(m,n)�(1,1)

m−αn−βP
(

sup
(k,l)�(m,n)

b−1
kl ‖Skl‖ > ε

)

=
∑

(i,j)�(1,1)

2i−1
∑

m=2i−1

2j−1
∑

n=2j−1

m−αn−βP
(

sup
(k,l)�(m,n)

b−1
kl ‖Skl‖ > ε

)

6 C
∑

(i,j)�(1,1)

2i−1
∑

m=2i−1

2j−1
∑

n=2j−1

2−iα2−jβP
(

sup
(k,l)�(2i−1,2j−1)

b−1
kl ‖Skl‖ > ε

)

6 C
∑

(i,j)�(1,1)

2i(1−α)2j(1−β)P
(

sup
(u,v)�(i,j)

max
(k,l)∈Auv

b−1
kl ‖Skl‖ > ε

)

6 C
∑

(i,j)�(1,1)

2i(1−α)2j(1−β)
∑

(u,v)�(i,j)

P
(

b−1
2u−12v−1 max

(k,l)�(2u,2v)
‖Skl‖ > ε

)
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6 C
∑

(u,v)�(1,1)

P
(

b−1
2u−12v−1 max

(k,l)�(2u,2v)
‖Skl‖ > ε

)

∑

(i,j)�(u,v)

2i(1−α)2j(1−β)

6 C
∑

(u,v)�(1,1)

2u(1−α)2v(1−β)P
(

b−1
2u2v max

(k,l)�(2u,2v)
‖Skl‖ >

ε

M

)

6 C
∑

(m,n)�(1,1)

m−αn−βP
(

b−1
mn max

(k,l)�(m,n)
‖Skl‖ >

ε

M

)

< ∞ (by (3.7)).

Since
{

P
(

sup
(k,l)�(m,n)

b−1
kl ‖Skl‖ > ε

)

, (m,n) ∈ N
∗2
}

are non-increasing in (m,n) for

order relationship � in N
∗2, it follows that

P
(

sup
(k,l)�(m,n)

b−1
kl ‖Skl‖ > ε

)

= o
( 1

m1−αn1−β

)

as m ∨ n → ∞ for all ε > 0.

�

Now we establish sufficient conditions for complete convergence in mean of order p.

Theorem 3.3. Let E be a p-uniformly smooth Banach space for some 1 6 p 6 2.

Let {Xmn ; (m,n) � (1, 1)} be a double array of E-valued r.v.’s such that E(Xij |Fij)

is measurable with respect to Fmn for all (i, j) � (m,n). Suppose that

(3.8)

∞
∑

m=1

∞
∑

n=1

b−p
mn < ∞.

If

(3.9)

∞
∑

m=1

∞
∑

n=1

ϕ(m,n)E‖Xmn‖
p < ∞,

where ϕ(m,n) =
∞
∑

i=m

∞
∑

j=n

b−p
ij , then

(3.10)
1

bmn
max

(k,l)�(m,n)
‖S∗

kl‖
c,Lp
−→ 0.

P r o o f. We have
∞
∑

m=1

∞
∑

n=1

E
max(k,l)�(m,n) ‖S

∗
kl‖

p

bpmn
6 C

∞
∑

m=1

∞
∑

n=1

∑m
i=1

∑n
j=1 E‖Xij‖p

bpmn
(by Lemma 2.1)

6 C

∞
∑

i=1

∞
∑

j=1

E‖Xij‖
p

( ∞
∑

m=i

∞
∑

n=j

1

bpmn

)

6 C

∞
∑

i=1

∞
∑

j=1

ϕ(i, j)E‖Xij‖
p < ∞ (by (3.9)).

�
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A characterization of p-uniformly smooth Banach spaces in terms of the complete

convergence in mean of order p is presented in the following theorem.

Theorem 3.4. Let 1 6 p 6 2, let E be a real separable Banach space. Then the

following statements are equivalent:

(i) E is of p-uniformly smooth.

(ii) For every double array of random variables {Xmn ; (m,n) � (1, 1)} with values

in E such that E(Xij | Fij) is measurable with respect to Fmn for all (i, j) �

(m,n), and every double array of positive constants {bmn ; (m,n) � (1, 1)} with

bij 6 bmn for all (i, j) � (m,n) and satisfying

(3.11)
∞
∑

i=m

∞
∑

j=n

1

bpij
= O

(mn

bpmn

)

,

the condition

(3.12)

∞
∑

m=1

∞
∑

n=1

mn
E‖Xmn‖p

bpmn
< ∞

implies

(3.13)
1

bmn
max

(k,l)�(m,n)
‖S∗

kl‖
c,Lp
−→ 0.

(iii) For every double array of random variables {Xmn ; (m,n) � (1, 1)} with values

in E such that E(Xij | Fij) is measurable with respect to Fmn for all (i, j) �

(m,n), the condition

(3.14)
∞
∑

m=1

∞
∑

n=1

E‖Xmn‖p

(nm)p
< ∞

implies

(3.15)
max(k,l)�(m,n) ‖S

∗
kl‖

(mn)(p+1)/p

c,Lp
−→ 0.

P r o o f. (i)→(ii), because by (3.11) and (3.12) we have

∞
∑

m=1

∞
∑

n=1

ϕ(m,n)E‖Xmn‖
p < ∞,

which implies by Theorem 3.3 that (3.13) holds.
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(ii)→(iii): we choose bmn = (mn)(p+1)/p, then

lim inf
m∨n→∞

bpkm,ln

bpmn
= (kl)p+1 > kl (k > 2, l > 2)

and, by Lemma 2.2, (3.11) holds and by (3.14), (3.12) holds. Thus by (ii), we have

the conclusion (3.15).

(iii)→(i): let {Xn,Gn, n > 1} be an arbitrary martingale differences sequence such

that
∞
∑

n=1

E‖Xn‖p

np
< ∞.

For n > 1, set Xmn = Xn if m = 1, and Xmn = 0 if m > 2. Then {Xmn ; (m,n) �

(1, 1)} is an array of random variables with

∞
∑

m=1

∞
∑

n=1

E‖Xmn‖p

(mn)p
=

∞
∑

n=1

E‖Xn‖p

np
< ∞.

By (iii) and noting that F1n = σ{Xi ; i < n} ⊆ Gn−1 for all n > 1, hence E(Xmn |

Fmn) = 0 for all (m,n) � (1, 1), we have

∑n
i=1 Xi

(mn)(p+1)/p

c,Lp
−→ 0,

and by Theorem 3.1 (with bmn = mn) then
( n
∑

i=1

Xi

)

/mn
a.s.
−→ 0 as m ∨ n → ∞.

Taking m = 1 and letting n → ∞, we obtain that 1/n
n
∑

i=1

Xi → 0 a.s.

Then by Theorem 2.2 in [4], E is p-uniformly smooth. �

For bmn = mα+1/pnβ+1/p (α, β > 0), from (ii) of Theorem 3.4 we get the following

corollary.

Corollary 3.1. Let E be a p-uniformly smooth Banach space for some 1 6 p 6 2.

Let α, β > 0 and let {Xmn ; (m,n) � (1, 1)} be an array of E-valued r.v.’s such that

E(Xij | Fij) is measurable with respect to Fmn for all (i, j) � (m,n). If

∞
∑

m=1

∞
∑

n=1

E‖Xmn‖p

nαpmβp
< ∞,

then
sup(k,l)�(m,n) ‖S

∗
kl‖

mα+1/pnβ+1/p

c,Lp
−→ 0.
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4. Applications to the strong law of large numbers

By applying the theorems about complete convergence in mean in Section 3 we

establish some results on strong laws of large numbers for double arrays of martingale

differences with values in p-uniformly smooth Banach spaces.

Theorem 4.1. Let E be a p-uniformly smooth Banach space for some 1 6 p 6 2

and let {Xmn, (m,n) � (1, 1)} be an E-valued martingale differences double array.

If
∞
∑

m=1

∞
∑

n=1

E‖Xmn‖p

nαpmβp
< ∞,

then
max(k,l)�(m,n) ‖Skl‖

mαnβ
→ 0 a.s. and in Lp as m ∨ n → ∞.

P r o o f. By Corollary 3.1, we have

sup(k,l)�(m,n) ‖Skl‖

mα+1/pnβ+1/p

c,Lp
−→ 0.

Applying Theorem 3.1 with bmn = mαnβ , we have

max(k,l)�(m,n) ‖Skl‖

mαnβ
→ 0 a.s. and in Lp as m ∨ n → ∞.

�

The following theorem is a Marcinkiewicz-Zygmund type law of large numbers for

double arrays of martingale differences.

Theorem 4.2. Let 1 6 r 6 s < q < p 6 2, let E be a p-uniformly smooth Banach

space. Suppose that {Xmn, (m,n) � (1, 1)} is an E-valued martingale differences

double array which is stochastically dominated by an E-random variable X in the

sense that for some 0 < C < ∞,

P{‖Xmn‖ > x} 6 CP{‖X‖ > x}

for all (m,n) � (1, 1) and x > 0.

If E(XijI(‖Xij‖ 6 i1/qj1/r) | Fij) is measurable with respect to Fmn for all

(i, j) � (m,n) and E‖X‖q < ∞ then

(4.1)
max(k,l)�(m,n) ‖Skl‖

m1/qn1/r
→ 0 a.s. and in Ls as m ∨ n → ∞.
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P r o o f. For each (m,n) � (1, 1) set

Ymn = XmnI(‖Xmn‖ 6 m1/qn1/r), Zmn = XmnI(‖Xmn‖ > m1/qn1/r),

Umn = Ymn − E(Ymn | Fmn), Vmn = Zmn − E(Zmn | Fmn).

It is clear that Xmn = Umn + Vmn.

First,

∞
∑

m=1

∞
∑

n=1

E‖Ymn‖p

(m1/qn1/r)p
6

∞
∑

m=1

∞
∑

n=1

1

(m1/qn1/r)p

∫ m1/qn1/r

0

pxp−1P{‖Xmn‖ > x} dx

6 C

∞
∑

m=1

∞
∑

n=1

1

(m1/qn1/r)p

∫ m1/qn1/r

0

pxp−1P{‖X‖ > x} dx

= C

∞
∑

m=1

∞
∑

n=1

∫ 1

0

P{‖X‖ > t1/pm1/qn1/r} dt

= C

∫ 1

0

( ∞
∑

n=1

( ∞
∑

m=1

P
{ ‖X‖

t1/pn1/r
> m1/q

}

))

dt

= CE(‖X‖q)

∫ 1

0

(

1

tq/p

∞
∑

n=1

1

nq/r

)

dt < ∞.

By applying Corollary 3.1, it follows that

sup(k,l)�(m,n)

∑k
i=1

∑l
j=1 Uij

m1/q+1/pn1/r+1/p

c,Lp
−→ 0,

and by Theorem 3.1, we get

sup(k,l)�(m,n)

∑k
i=1

∑l
j=1 Uij

m1/qn1/r
→ 0 a.s. and in Lp as m ∨ n → ∞.

Then

(4.2)
sup(k,l)�(m,n)

∑k
i=1

∑l
j=1 Uij

m1/qn1/r
→ 0 a.s. and in Ls as m ∨ n → ∞.

Next,

∞
∑

m=1

∞
∑

n=1

E‖Zmn‖s

(m1/qn1/r)s
=

∞
∑

m=1

∞
∑

n=1

1

ms/qns/r

∫ ∞

0

sxs−1P{‖Zmn‖ > x} dx
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=

∞
∑

m=1

∞
∑

n=1

1

ms/qns/r

∫ m1/qn1/r

0

sxs−1P{‖Xmn‖ > m1/qn1/r} dx

+

∞
∑

m=1

∞
∑

n=1

1

ms/qns/r

∫ ∞

m1/qn1/r

sxs−1P{‖Xmn‖ > x} dx

6 C
∞
∑

m=1

∞
∑

n=1

1

ms/qns/r

∫ m1/qn1/r

0

xs−1P{‖X‖ > m1/qn1/r} dx

+ C
∑∞

m=1

∞
∑

n=1

1

ms/qns/r

∫ ∞

m1/qn1/r

xs−1P{‖X‖ > x} dx

= C

( ∞
∑

n=1

∞
∑

m=1

P
{‖X‖

n1/r
> m1/q

}

+

∞
∑

m=1

∞
∑

n=1

∫ ∞

1

ts−1P{‖X‖ > tm1/qn1/r} dt

)

6 C

( ∞
∑

n=1

E‖X‖q

nq/r
+

∫ ∞

1

ts−1

( ∞
∑

n=1

∞
∑

m=1

P
{ ‖X‖

n1/rt
> m1/q

}

)

dt

)

6 C

( ∞
∑

n=1

E‖X‖q

nq/r
+

∫ ∞

1

ts−1

( ∞
∑

n=1

E‖X‖q

nq/rtq

)

dt

)

6 CE‖X‖q
∞
∑

n=1

1

nq/r

(
∫ ∞

1

1

tq−s+1
dt+ 1

)

< ∞.

By applying Corollary 3.1, it follows that

sup(k,l)�(m,n)

∑k
i=1

∑l
j=1 Vij

m1/q+1/sn1/r+1/s

c,Ls
−→ 0

and by Theorem 3.1 we have

(4.3)
sup(k,l)�(m,n)

∑k
i=1

∑l
j=1 Vij

m1/qn1/r
→ 0 a.s. and in Ls as m ∨ n → ∞.

By (4.2), (4.3) and since the inequality E‖X + Y ‖s 6 2s−1(E‖X‖s + E‖Y ‖s) holds

for 1 6 s 6 2 we have (4.1). The proof is completed. �

Finally, we establish the rate of convergence in the strong law of large numbers.

Theorem 4.3. Let 0 < r < p, 0 < s < p, let E be a p-uniformly smooth Banach

space for some 1 6 p 6 2 and {Xmn ; (m,n) � (1, 1)} an E-valued martingale

differences double array. If

∞
∑

m=1

∞
∑

n=1

E‖Xmn‖p

np−rmp−s
< ∞,
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then

(4.4) P
(

sup
(k,l)�(m,n)

‖Skl‖

kl
> ε

)

= o
( 1

mrns

)

as m ∨ n → ∞ for every ε > 0.

P r o o f. By (ii) in Theorem 3.4 and Lemma 2.2 (with {bmn = m1+(1−r)/p ×

n1+(1−s)/p ; (m,n) � (1, 1)}), we have

1

m1+(1−r)/pn1+(1−s)/p
max

(k,l)�(m,n)
‖Skl‖

c,Lp
−→ 0,

and by Theorem 3.2 (with α = 1− r, β = 1− s), we have (4.4). �
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